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POGLAVLJE 1

Rjesavanje sistema linearnih jednadzbi

U ovom je poglavlju opisan postupak rjeSavanja proizvoljnog sistema
linearnih algebarskih jednadzbi Gaussovom metodom eliminacija nepozna-
nica. Dokazano je da homogeni sistemi s viSe nepoznanica nego li jednadzbi
uvijek imaju netrivijalno rjesenje.

1. Sistemi linearnih jednadzbi

1.1. Sistem linearnih jednadzbi. Neka je zadano m x n realnih bro-
jeva ayjj zait =1,...,mij=1,...,n1ijos m realnih brojeva Bi,..., .
Sistem ili sustav jednadzbi

anéy + -+ apén = B,
(1.1) 9161 + -+ @onbn = P2,

amlfl + ot ampén = Bm

je problem kod kojeg treba naéi sve n-torke realnih brojeva z = (&1,...,&,)
takve da vrijedi relacija (1.1). Obi¢no govorimo da su &1, . .., &, nepoznanice
sistema', premda je u stvari nepoznata n-torka brojeva z = (£1,...,&,).

Ponekad sistem od m jednadzbi s m nepoznanica zovemo krace sistemom
tipa m X n.

1.2. Pitanje. Da li je sistem jednadzbi & —& =1, & —E& =1,
E3—& =1, & —& =1 tipabx4? DA NE

1.3. Primjer. Sustav jednadzbi
31+ & — & =5,

(1.2) -6 +&=0

1Nepoznanice sistema se vrlo cesto pisu kao x1,...,x, i sistem se zapisuje kao

a11%1 + -+ Q1nn = b1,

a21%1 + -+ + G2nTn = b2,

aAm1T1 + -+ AmnTn :b'rn7

no mi ¢emo realne brojeve obi¢no oznac¢avati malim grékim slovima, kao §to smo u (1.1)
koristili alfa a, beta 1 ksi £ s jednim ili dva indeksa.

9



10 1. RJESAVANJE SISTEMA LINEARNIH JEDNADZBI

ima dvije jednadzbe s tri nepoznanice 1, &2, 3. O¢ito trojke = = (1,3,1) i
x = (2,1,2) zadovoljavaju uvjet (1.2). No da bismo rijesili sustav jednadzbi
(1.2) trebamo nadi sve trojke x = (&1, &2,&3) tako da vrijedi (1.2).

Dok sustav jednadzbi (1.2) ima barem dva rjesenja, sustav

361+ & — & =5,
31+8&—8§=6
oCito nema ni jedno rjeSenje jer ne postoji trojka brojeva x = (&1, &2,&3)

takva da bi jedan te isti izraz jednom bio jednak 5, a drugi put 6. No ovaj
smo put sustav rijesili: skup svih rjesenja sustava (1.3) je prazan skup!

(1.3)

1.4. Homogeni sistemi jednadzbi. Kazemo da je sistem jednadzbi

o111+ F o€y =0,
(1.4) 211 + -+ € =0,

O‘mlgl + - +amn€n =0

homogen sistem. Uoc¢imo da je = (0,...,0) rjeSenje homogenog sistema,
zovemo ga trivijalnim rjesenjem. Rjesenje z = (&1,...,&,) homogenog si-
stema zovemo netrivijalnim ako je & # 0 za neki i € {1,...,n}.

1.5. Primjer. (0,0,0,0) je trivijalno rjesenje homogene jednadzbe
361 — &+ &3+ 08 =0,

a (1,3,0,0) je jedno netrivijalno rjesenje.

1.6. Ekvivalentni sistemi. Za dva sistema jednadzbi od n nepozna-
nica kazemo da su ekvivalentni sistemi ako imaju iste skupove rjesenja. Na
primjer, ako drugu jednadzbu & = &3 sistema (1.2) uvrstimo u prvu, dobi-
vamo ekvivalentni sistem

261 + &2 =5,
—§1+8=0.

1.7. Matrica sistema. Brojeve «;; zovemo koeficijentima sistema, a
zapisane u pravokutnom obliku

a11 192 . An

21 [65P) e Qon
A=

Am1l O, ... AOmn,

zovemo matricom sistema (1.1). Obi¢no kazemo da je matrica sistema tipa
m X n. Brojeve B1,..., By zovemo slobodnim clanovima sistema. Koefici-
jente sistema i desnu stranu obi¢no zapisujemo u pravokutnom obliku, kako
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se 1 pojavljuju u zapisu jednadzbi,

a1 12 e A1n 51 Bl

a21 Q22 e Q2n 52 BQ
(Ab) =1 . . . . i b= .

am1 Om2 ... Qmp ﬁm 5m

i zovemo ih progirenom matricom sistema i desnom stranom sistema (1.1).
Cesto sistem krace zapisujemo kao

misleéi pritom da je A matrica sistema, = (£1,...,§,) zapisan kao stupac

&

T = :

&n
i b desna strana sistema. Matricu sistema u kojoj su svi koeficijenti sistema
jednaki nuli zapisujemo kratko kao A = 0, a sli¢no i za desnu stranu ho-
mogenog sistema piSemo kratko b = 0. Za matricu A = 0 kazemo da je
nul-matrica. Ako su svi koeficijenti nekog retka matrice jednaki nuli, onda

¢emo reéi da je to nul-redak. Isto tako za stupac kojemu su svi koeficijenti
nula kazemo da je nul-stupac.

1.8. Primjer. Matrica, prosirena matrica i desna strana sistema (1.2)

su
3 1 -1 3 1 -15 5
A—<—1 0 1>’ (A’b)—<—1 0 1 o)’ b‘(o)‘

1.9. Zadatak. Napisite prosirenu matricu sustava jednadzbi

S+&=1 &+&=1 &G+&a=1 &+&a=1

1.10. Zadatak. Napisite sustav jednadzbi kojemu je proSirena matrica

0 1 -1 5
31 0 0
1 1 -1 5
-1 0 1 O

Da li je to sustav tipa 4 x 47

2. Trokutasti sistemi jednadzbi

Neke posebne tipove sistema linearnih jednadzbi lako je rijesiti, a po-
sebno su vazni trokutasti i stepenasti sistemi.
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2.1. Jedna jednadzba s jednom nepoznanicom. Najjednostavniji
je 1 x 1 “sistem”

af =
od jedne jednadzbe s jednom nepoznanicom. Ako je a # 0, onda imamo
jedinstveno rjesenje £ = —f/a. Ako je a = 0, onda za svaki { imamo o€ = 0

i svaki broj & je rjeSenje u slucaju § = 0, a ni jedan broj £ nije rjeSenje u
slucaju g # 0.

2.2. Zadatak. Rijesite jednadzbe
a) 1&=1, b)1E=0, ¢)0&=11i d)0=0.

2.3. Sistem jednadzbi s jednom nepoznanicom. Kao i u prethod-
nom sluc¢aju, lako je rijesiti m x 1 sistem od m jednadzbi
a;é = 5, 1=1,....,m
s jednom nepoznanicom £. Na primjer, od tri sistema tipa 2 x 1
0 =0, 0 =0, 0& =2,
26 =2, 0 =0, 2¢6 =0,
prvi ima jedinstveno rjesenje £ = 1, drugi ima beskonac¢no rjesenja £ € R, a

tre¢i nema ni jedno rjesenje.

2.4. Jedna jednadzba s viSe nepoznanica. Promatrajmo 1 x n
“sistem” od jedne jednadzbe s n nepoznanica
a1y + - F oo o i oo Foaéy =06

i pretpostavimo da je oj # 0. Tada rjesavanjem po j-toj nepoznanici dobi-
vamo

1
§ = o (B— (&1 + -+ aj 181+ ajraé + -+ ana)),
J
pa za svaki izbor brojeva &1,...,&-1,&+1...,& moZemo odrediti §; da
jednadzba bude zadovoljena. Tako dobivamo sva rjeSenja jednadzbe.

2.5. Primjer. Homogenu jednadzbu

36 — &+ &+ 08 =0

mozemo rjesavati po prvoj nepoznanici &; tako da po volji biramo vrijednosti
za &2, &3,&4 1 onda izraCunamo

§1=(&—&)/3
Zmaci da je skup svih rjesenja jednadzbe jednak
{(3(&2— &), 6,635,8) | &2,83,84 € R},

Jednadzbu mozemo rjesSavati i po drugoj nepoznanici & tako da po volji
biramo vrijednosti za &1, &3, &4 i onda izra¢unamo

§o = 361 + &3.
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Tako opet dobijemo sva rjeSenja, samo je sada skup svih rjeSenja jednadzbe
drugacije zapisan:

{(&1,3861 +&3,83,84) | €1, 83,64 € R},

Jasno je da jednadzbu ne mozemo rijesiti po nepoznanici &4.
2.6. Zadatak. Rijesite jednadzbu & + & + 2&3 = 1.

2.7. Matrica sistema je nul-matrica. Sistem
Ox=5b

nema rjeSenja kada sistem nije homogen, a svaki n-torka x = (&1,...,&,)
realnih brojeva jest rjeSenje kad je b = 0. Na primjer, sistem

000 ? (5
0o0o0/{  \o
€3
nema rjeSenja.
2.8. Trokutaste matrice. Kazemo da je n x n matrica A = (ayj)

donja trokutasta matrica ako je o;; = 0 za ¢ < j. Na primjer, svaka od
matrica

100 100 000 000
110, {t1o], [too], (o000
111 00 1 010 000

je donja trokutasta jer je za svaku a9 = a3 = asz = 0. Kazemo da jenxn
matrica A = (ay;) gornja trokutasta matrica ako je cy; = 0 za i > j. Tako
imamo 4 X 4 gornje trokutaste matrice

Q1] Q12 13 Qg
0 a a3
0 0 a3z as
0 0 0 44

2.9. Sistemi jednadzbi s trokutastom matricom sistema. Siste-
me jednadzbi kojima su matrice sistema gornje trokutaste zovemo trokutas-
tim sistemima. RjeSavanje n x n trokutastog sistema svodi se, u n koraka,
na rjesavanje jedne jednadzbe s jednom nepoznanicom. Kada je, na primjer,
matrica sistema gornja trokutasta kojoj su dijagonalni elementi razlic¢iti od
nule, tj.

a11#07 a22#07 MR} ann?éoa
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rjeSavanje sistema
anél +aéo + -+ a1 p—1&n—1 + @128 = B,
09282 + -+ F 2 n—1&n—1 + 2pép = Ba,

An—1n—1&n—1 + n—1nén = Pn—1,
A& = Bn
zapocinjemo rjeSavanjem zadnje jednadzbe
Annén = Bn.
Ta jednadzba ima jedinstveno rjeSenja &, koje uvrStavamo u predzadnju
jednadzbu i rjeSsavamo jednadzbu s nepoznanicom &, 1
Op—1mn—-1&n—1 = —0n—1n&n + Bn-1.

Nastavljajuéi taj postupak do prve jednadzbe dobivamo jedinstveno rjesenje
sistema. Na primjer, rjeSavanje sistema

§1— &2+ 283 = —1,

(2.1) 28y — €3 =3,
263 =2
zapoc¢injemo rjeSavanjem trece jednadzbe
283 = 2.

Jedinstveno rjesenje &3 = 1 uvrStavamo u drugu jednadzbu i dobivamo
252:£3+3:1—|—3:4

Jedinstveno rjesenje & = 2 uvrStavamo u prvu jednadzbu i dobivamo jed-
nadzbu

§1=8§—-253-1=2-2-1=-1
koja ima jedinstveno rjesenje &1 = —1. Sada zakljuc¢ujemo da sistem ima
jedinstveno rjesenje x = (—1,2,1).

Kod gornje trokutastog sistema odredivali smo redom $to su vrijednosti
nepoznanica &, £,-1, ..., 1. Kod trokutastih sistema kojima su neki dija-
gonalni elementi nula moze se desiti da tek u kasnijoj fazi rjeSavanja usta-
novimo da sistem nema rjeSenja ili da neke nepoznanice nemaju proizvoljne
vrijednosti. Na primjer, kod trokutastih sistema za g =0i =1

061 —&— &+ & =1,

082 + &3 — &4 = B,
§3+§4:27
264 =2,

iz zadnje jednadzbe jednoznaéno dobivamo & = 1, a onda iz predzadnje
&3 = 1. Sada u slucaju g = 1 vidimo da sistem nema rjeSenja, a u slucaju
B = 0 je & proizvoljan, no onda iz prve jednadzbe zakljuc¢ujemo & = 1
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i & proizvoljan. Takav nedostatak nema stepenasti sistem kojeg u nasem
primjeru dobijemo oduzimanjem druge jednadzbe od trece

& —&+8&=-1,

53_54237
254:2_57
2, = 2

i onda oduzimanjem treée jednadzbe od Cetvrte

—& -8+ =1,

53_54:67
254:2_57
0=4.

Zadnja jednadzba tog sistema u stvari glasi

081 + 082 + 063 + 084 = 3,

pa za 3 = 1 jednadzba (i sistem) nema rjesenja, a za 8 = 0 to nije nikakav
uvjet na nepoznanice, tre¢a jednadzba daje 4 = 1, druga &3 = 1, te na
kraju prva & =11 & po volji.

2.10. Stepenaste matrice. Za m x n matricu kazemo da je gornja
stepenasta po recima ako je svaki nul-redak nize od svih redaka koji nisu
nula i u svakom retku prvi element razlic¢it od nule stoji desno od prvog
elementa razli¢itog od nule u prethodnom retku. To za matricu A = ()
mozemo zapisati kao uvjet da zasvakii=1,...,m—1lisvakik=1,...,n

ajj =0 zasve 1<j<k povlati aj1;=0 zasve 1<j<Ek.

Prvi element u retku koji je razli¢it od nule zove se ugaoniili stoZerni element
matrice.

Na primjer, imamo 3 X 4 gornje stepenaste matrica kod kojih su svi
ugaoni elementi 1

12220 12220 122 2 2
o1000)], [o0o12¢2], (0001 2],
001 2 2 00001 00000

a u prethodnoj smo tocki imali primjer sistema sa stepenastom proSirenom
matricom sistema

0 -1 -1 1 -1
o0 1 -1 B8
00 0 2 2-8
o0 0 0 8B
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2.11. Stepenasti sistemi jednadzbi. Sisteme kojima su matrice si-
stema stepenaste po recima zovemo stepenastim sistemima. Takve sisteme
rijeSavamo na slican nacin kao i trokutaste sisteme. Na primjer, od dva
stepenasta sistema

&1 — &+ 28 =1, & — &+ 283 = —1,
286 — &3 =3, , 286 — &3 =3,
25=2, 25 =2,
063=1 063=0

prvi nema rjeSenja jer jednadzba 0£3 = 1 nema rjeSenja, a drugi ima jedins-
tveno rjesenje x = (—1,2,1) jer je zadnja jednadzba 0&3 = 0 zadovoljena za
svaki &3, a iz prethodnog primjera (2.1) znamo jedinstveno rjesenje preostale
tri jednadzbe.

Kod rjesavanja stepenastih sistema moze se dogoditi da u pojedinom
koraku trebamo rijesiti jednadzbu s viSe nepoznanica. Na primjer, rjeSavanje
stepenastog sistema

gl - 52 + 253 = _1a
28 —& =3
zapocinjemo rjeSavanjem druge jednadzbe
280 — &3 =3.
Rjesavanjem te jednadzbe po nepoznanici & vidimo da imamo rjeSenje
L=(A+3)/2
za svaki izbor realnog broja &3 = A. Uvrstavanjem rjeSenja u prvu jednadzbu
dobivamo
§&1=6—25—-1=(A+3)/2—2XA—1=-3)\/2+1/2.
2.12. Zadatak. Rijesite stepenasti sistem jednadzbi
G+o+8+4a+86+86 =06,
§3+8&+8&+8& =4,
&+ &6 = 2.

3. Gaussova metoda eliminacije

3.1. Gaussove eliminacije. Pretpostavimo da matrica sistema (1.1)
nije nul-matrica. To zna¢i da u bar jednom retku matrice sistema postoji
bar jedan element razli¢it od nule. Smijemo pretpostaviti da je za neki j
element ay; iz prvog retka razlicit od nule (jer inace promijenimo redoslijed
pisanja jednadzbi, ne mijenjajuéi pritom skup svih rjesenja sistema). Bududéi
da je aq; # 0, prvu jednadzbu moZemo rjeSavati po nepoznanici ;:

(3.1)

§ = oL (B1 = (i&r + -+ o j—1&-1 + a1 jri&rr + -+ anén)) -
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Uvrstimo li §; u preostale jednadzbe, dobivamo sistem:

(3.2)
a1+ a1+ o o+ aén = B,
ag &1+ g g€ + g &1+ a6 = By,
g4+ ag,j—lfj—l + ag,j+1§j+1 + -+ os,8n = B3,
I AR NPT R + 181 o+ Onn = By -

Nakon uvrstavanja i sredivanja dobivamo da su za i > 1 i k # j koeficijenti
o). (uz nepoznanicu &) i f] u i-toj jednadzbi dani formulom

g b
A = g — aij—, P =i — i,
Qaij 14
odnosno
' s
(3.3) A =ik + Mo 1 Bi=6i+ b za A= _a” -
15

Ovaj rezultat interpretiramo na sljede¢i nacin: Pribrajanjem i-toj jednadzbi
u sistemu (1.1) prve jednadzbe pomnozene s \; dobivamo novu jednadzbu u
kojoj nema nepoznanice §;; kaZemo da smo eliminirali nepoznanicu §5. U
Gaussovom postupku eliminacije na ovaj nacin eliminiramo jednu te istu
nepoznanicu §§ u svim jednadzbama za i = 2,...,m.

3.2. Primjer. Neka je

00 5 0
00 -1 2
01 -1 5
02 1 0

matrica sistema jednadzbi s nepoznanicama &7, &a, €3, &4.

Kao prvo vidimo da se nepoznanica &; “zapravo ne pojavljuje” u siste-
mu jednadzbi, pa sve ovisi o rjeSenju sistema s nepoznanicama &z, &3,&, i
matricom sistema

0 5 0
0 -1 2
1 -1 5
2 1 0

Koristeéi prvu jednadzbu mogli bismo eliminirati nepoznanicu £3 u ostalim
jednadzbama. No, kako se ¢esto radi, mozemo tre¢u jednadzbu premjestiti
na prvo mjesto, dobivsi novi sistem s matricom

01 -1 5
00 5 0
00 -1 2|
02 1 0

a onda u ostalima jednadzbama eliminirati nepoznanicu &o.
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3.3. Gaussove eliminacije daju ekvivalentni sistem jednadzbi.
Ako je x rjeSenje pocetnog sistema jednadzbi (1.1), onda je jasno da je
x rjeSenje i novog sistema (3.2) dobivenog pribrajanjem i-toj jednadzbi u
sistemu (1.1) prve jednadzbe pomnozene s \;. No pocetni sistem jednadzbi
(1.1) mozemo rekonstruirati iz novog sistema pribrajanjem i-toj jednadzbi u
sistemu (3.2) prve jednadzbe pomnozene s —\;. To znaci da je svako rjesenje
x novog sistema (3.2) ujedno i rjeSenje pocetnog sistema (1.1). Znaci da
pocetni sistem (1.1) i novi sistem (3.2) imaju isti skup rjeSenja.

3.4. Elementarne transformacije sistema jednadzbi. Na sistemi-
ma jednadzbi mozemo izvoditi tako zvane elementarne transformacije.

Prvi tip elementarne transformacije sistema je zamjena redosljeda pisa-
nja dviju jednadzbi u sistemu. Takva je transformacija razmatrana u pri-
mjeru 3.2. Jasno je da je takvom transformacijom dobiven ekvivalentan
sistem.

Drugi tip elementarne transformacije sistema je mnozenje jedne jed-
nadzbe sistema brojem A # 0. Ocito je da “staru” jednadzbu mozemo
rekonstruirati iz “nove” mmnozenjem brojem A7!, pa je zato “novi’ sistem
ekvivalentan “starom”. Takvu transformaciju obi¢no izvodimo kada zelimo
da koeficijent o;; # 0 u i-toj jednadzbi uz j-tu nepoznanicu “postane” 1, pa
onda i-tu jednadzbu mnozimo s a—lu

Treci tip elementarne transformacije sistema je dodavanje jednoj jed-
nadzbi sistema neke druge jednadzbe pomnozene s nekim brojem A. Upravo
taj tip transformacije koristimo u Gaussovom postupku eliminacije nepo-
znanica opisanom u prethodnoj tocki.

3.5. Obratni hod u Gaussovoj metodi. Ponekad se opisani postu-
pak eliminacija nepoznanica zove direktni hod u Gaussovoj metodi, a postu-
pak nalazenja rjeSenja pocetnog sistema (1.1) iz novog sistema (3.2) zove se
obratni hod u Gaussovoj metodi. Tu valja primijetiti da je x = (&1,...,&)
rjeSenje novog sistema (3.2) ako i samo ako je (&1,...,&-1,&+1,---,6n)
rjeSenje sistema

a4+ 0/2,]'7151‘—1 + 04/2,j+1§j+1 + -+ abybn =65,

ag &+ tag &1 Fah &+ abbn = B,

(3.4)
Cppp&t + - F g, 18-1 + &+ e = By
i ako je
1
§ = oy (B1 = (i&i + -+ o j—1&-1 +arjri&pr + -+ amén)) -

Znaci da iz rjesenja sistema (3.4) mozemo nadi rjeSenje pocetnog sistema
(1.1). Time je problem rjeSavanja sistema od m jednadzbi s n nepoznanica
sveden na problem rjesavanja sistema od m—1 jednadzbi s n—1 nepoznanica.
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3.6. Gaussova metoda. Kada matrica sistema nije nula, primjenom
Gaussovih eliminacija problem rjeSavanja sistema od m jednadzbi s n nepo-
znanica svodimo na problem rjesavanja sistema od m—1 jednadzbi s n—1 ne-
poznanica. Ako je matrica manjeg sistema nula, onda sistem znamo rijesiti.
Ako matrica manjeg sistema nije nula, onda ponovo primijenimo Gaussove
eliminacije. Na kraju postupka dobivamo ili matricu sistema nula, ili sistem
s jednom nepoznanicom, ili jednu jednadzbu. U svakom od tih slucajeva
znamo rijesiti sistem, a rjeSenje pocetnog sistema dobivamo obratnim ho-
dom.

3.7. Primjer. Neka je zadan sistem od 4 jednadzbe s 3 nepoznanice

§1,82,83

§1— &+ 285 = —1,
§1+26 —&3=2,
{1 +&+86=0,
=&+ +25=2.

Odaberemo 17 = 1 # 0 i pomocu prve jednadzbe eliminiramo nepoznanicu
&1 u ostalima. U prvom koraku mijenjamo drugu jednadzbu: mnozimo prvu

jednadzbu s A = —1 i pribrajamo drugoj jednadzbi. U drugom koraku
mijenjamo tre¢u jednadzbu i biramo A = 1. U tre¢em koraku biramo A = 1.
§1— & +26 =1, §1— & +26=—1, £ — & +2 =1,
382 — 383 =3, 38 — 383 =3, 382 — 383 =3,
&1 +&+8§=0, 3¢ = —1, 3¢ = —1,
&+ & +23=2; &1+ & +28=2 483 = 1.

U sljedeé¢em ciklusu eliminirali bismo drugu nepoznanicu u treéoj i ¢etvrtoj
jednadzbi, koristeéi za to drugu jednazbu. No u ovom se je primjeru desilo
da u trecoj i ¢etvrtoj jednadzbi veé¢ nema nepoznanice &. Odaberemo

as3 = 3 # 0 i pomocu treée jednadzbe eliminiramo nepoznanicu &3 u
cetvrtoj.

&1 — &+ 26 =—1,

352 - 363 = 37
353 = _17
0=1.

Zadnji redak na kraju procesa Gaussovih eliminacija oznacuje jednadzbu
06 =1

koja nema rjeSenja. Znaci da i pocetni sistem nema rjeSenja.
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3.8. Primjer. Neka je zadan sistem od 3 jednadzbe s 3 nepoznanice
617 gQa 53
& —&+286=-1,
§1+286— & =2,
—&+&+E&=0.

To su prve tri jednadzbe iz prethodnog primjera, pa Gaussovim eliminaci-
jama dobijamo ekvivalentan sistem

& — &+ 26 =1,

3§2 - 363 = 37
3¢ = —1.
Sada primijenimo obratni hod: iz treée jednadzbe dobijamo & = —1/3.

Uvrstavanjem dobivenog &3 u drugu jednadzbu dobijamo & = 2/3. Uvrsta-
vanjem dobivenih &,&3 u prvu jednadzbu dobivamo & = 1/3. Dobiveno
rjesenje x = (1/3,2/3,—1/3) jedinstveno je rjesenje pocetnog sistema.

3.9. Gaussova metoda i prosirena matrica sistema. Valja primi-
jetiti da je kod primjene Gaussovih eliminacija na sistem (1.1) bilo dovoljno
zapisivati samo prosirenu matricu sistema (A, b). Zato rjeSavanje sistema u
primjeru 3.7 zapisujemo ovako:

1] -1 2 -1 1 -1 2 -1

1 2 -1 2 0 3 -3 3
@Ao=1-0 17 1+ o711 1 of”
-1 1 2 2 -1 1 2 2
1 -1 2 -1 1 -1 2 -1 1 -1 2 -1
Lo 3 3 3| fo 3 =3 3| fo 3 -3 3
0 0 3 -1 0 0 -1 00 3 -1
-1 1 2 2 0 0 4 1 o0 o I

U ovom primjeru prvo odaberemo «1; = 1 # 0 i pomoc¢u prve jednadzbe
eliminiramo nepoznanicu &£; u ostalima. U prvom koraku mijenjamo drugi
redak: mnozimo prvi redak s A = —1 i pribrajamo drugom retku. U drugom
koraku mijenjamo treéi redak i biramo A = 1. U tre¢em koraku biramo
A= 1

U sljede¢em ciklusu eliminirali bismo drugu nepoznanicu u trec¢oj i Ce-
tvrtoj jednadzbi, koristeéi za to drugu jednazbu. No u ovom se je primjeru
desilo da u trecoj i cetvrtoj jednadzbi ve¢ nema nepoznanice &5.

Odaberemo as3 = 3 # 0 i pomocu treée jednadzbe eliminiramo nepo-
znanicu &3 u ¢etvrtoj. Zadnji redak na kraju procesa Gaussovih eliminacija
oznacuje jednadzbu

0&1 4 0& + 0&3 = £

koja nema rjeSenja, pa onda ni pocetni sistem nema rjeSenja.
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3.10. Svodenje sistema na stepenasti oblik. Obi¢no je najjednos-
tavnije sistem jednadzbi rjesavati tako da proSirenu matricu sistema elemen-
tarnim transformacijama redaka svedemo na stepenastu matricu po recima.
Tako matricu sistema iz primjera 3.2 svodimo na gornji stepenasti oblik

00 5 O 01 -1 5 01 -1 5

00 -1 2 = 00 5 0 s 00 5 0 s

01 -1 5 00 -1 2 00 -1 2

02 1 0 02 1 0 00 3 -10

01 -1 5 01 -1 5 01 -1 5
. 0 0 1 0 . 0 0 1 0 00 1 O

00 -1 2 00 0 2 00 0 2

00 3 -10 00 0 -10 00 0 O

Gornji primjer nam pokazuje kako proizvoljni sistem mozemo svesti na ste-
penasti: Ako matrica sistema nije nula, onda u prvom stupcu matrice koji
nije nula (u gornjem je primjeru to drugi stupac) odaberemo koeficijent koji
nije nula (u primjeru je to 1 u trecoj jednadzbi) i pripadnu jednadzbu/redak
premjestimo na prvo mjesto. Pomocu odabranog koeficijenta eliminiramo
sve koeficijente ispod njega. Postupak nastavimo s preostalim jednadzbama
ne mijenjajuci vise prvu.
3.11. Zadatak. RijesSite homogeni sistem jednadzbi
§1— & +28 =0,
{1+ 6 +25=0

svodenjem na stepenasti sistem.

3.12. Zadatak. RijesSite homogeni sistem jednadzbi
§1—& 428 =0,
=&+ &+ & =0,
=& + & + 26 =0,
38— 38 =0

svodenjem na stepenasti sistem.

4. Homogeni m X p sistemi za m < p

4.1. Homogeni sistem s matricom sistema nula. Ocito je svaki
izbor n-torke brojeva (Ag,..., \,) rjeSenje homogenog sistema jednadzbi

OAr+ -+ 0\, =0,

OAjF---+0X, =0

s matricom sistema nula. Posebno, takav sistem uvijek ima netrivijalno
rjeSenje.
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4.2. Homogena jednadzba s viSe od jedne nepoznanice. Ocito
jedna homogena jednadzba

A+ -+ apA, =0
s barem dvije nepoznanice A1, ..., )\, ima netrivijalno rjesenje.

4.3. Teorem. Homogeni sistem od m jednadzbi
P
Zaij)\jzo, izl,...,m
j=1

i p > m nepoznanica uwvijek ima netrivijalno riesenje (Ai,...,\p).

Naime, ili na kraju Gaussovog postupka eliminacije imamo jednu homo-
genu jednadzbu s p —m + 1 > 2 nepoznanica koja ima netrivijalno rjesenje,
ili je postupak eliminacije prekinut ranije jer smo dobili homogeni sistem s
matricom sistema nula, a koji takoder ima netrivijalno rjeSenje.

4.4. Primjer. Neka je zadan homogeni sistem od 2 jednadzbe s 3 nepo-
znanice
Al — A2+ 2X3 =0,
Al 428 — A3 =0.
Gaussovom eliminacijom dobijamo ekvivalentan sistem
Al — A2 +2X3 =0,
3d —3X3=0

koji ima netrivijalno rjeSenje A3 = 1 £ 0, As = A3, Ay = Ay — 2)3.



POGLAVLJE 2

Vektorski prostor R"

U ovom poglavlju uvodimo operaciju zbrajanja na skupu R” svih ure-
denih n-torki realnih brojeva i operaciju mnozenja n-torki realnim broje-
vima. Te dvije operacije na skupu R" nasljeduju neka dobra svojstva zbra-
janja i mnoZenja u polju realnih brojeva, pa R™ s uvedenim operacijama
zovemo vektorskim prostorom. Koristeéi te operacije definiramo geometrij-
ske objekte u R™ kao Sto su pravci i ravnine. Pomodéu operacija zbrajanja
i mnozenja skalarom definiramo i elementarne transformacije na matricama
te linearne kombinacije vektora. Na kraju uvodimo pojam linearne ljuske
vektora i pojam potprostora prostora R™.

0.1. Pojam preslikavanja. Neka su A i B dva skupa. Ako svakom
elementu a skupa A pridruzimo neki element f(a) skupa B, pisemo

a f(a),

onda kazemo da je zadano preslikavanje f sa skupa A v skup B i piSemo
f: A— B.

Kazemo da su dva preslikavanja f: A —» Big: A — B jednaka ako je
fla) = g(a)

za sve elemente a skupa A.

0.2. Konaé¢ni nizovi elemenata u skupu. Neka je S neki skup. Tada
preslikavanje f: {1,2,...,k} — S zovemo nizom od k ¢lanova u skupu S,

ili samo konacnim nizom u S. Preslikavanje f je u potpunosti zadano ako
ZNnamo

f) =51, f@2)=s2, fB3)=s3, ..., [f(k)=sk,
pa obi¢no kazemo da je
S1,892,83,...,8 il (s1,$2,83,...,Sk)
niz u S, a elemente s1, s2, S3, ..., Sk skupa S zovemo ¢lanovima niza.

Takoder kazemo da je prvi ¢élan niza s1, drugi ¢lan niza so itd. Iz opce
definicije jednakosti preslikavanja slijedi da su nizovi

fAL2,.. k=S 1 g:{1,2,....k} = S
jednaki ako i samo ako je
f)=9(1), f(2)=9(2), fB)=903), ..., [f(k)=gk)

23
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Nizove (s1,...,s;) od k ¢lanova u skupu S zovemo i uredenom k-torkom
elemenata iz S. Skup svih k-torki elemenata iz S oznacavamo sa S* i ¢itamo
“skup es na katu potenciju” ili samo “es na katu”.

0.3. Primjer. Za skup S = {0, 1} imamo niz
0,0,0,1,0,1,1
od sedam ¢lanova, pri ¢emu je prvi ¢lan niza 0, drugi ¢lan niza isto 0 itd.
Jasno je da je
1,0,1,1,0,0,0

drugi niz u skupu S jer se radi o drugom preslikavanju {1,2,...,7} — S.

0.4. Primjer. Zaskup S = {0, 1} skup S? sastoji se od uredenih parova

(0,0), (0,1), (1,0), (1,1).
0.5. Zadatak. Za skup S = {0, 1} ispiSite sve elemente skupa S3.

0.6. Razlika izmedu skupa od n elemenata i niza od n ¢lanova.
Kad govorimo o skupu {si, s2,...,s,} od n elemenata, onda podrazumije-
vamo da su svi elementi tog skupa medusobno razli¢iti i ne podrazumije-
vamo nikakav poredak medu njima. Kad govorimo o nizu (s1, so, ..., s,) od
n Clanova, onda podrazumijevamo da je s1 prvi ¢lan niza, so drugi ¢lan niza
itd, a ne podrazumijevamo da su ti ¢lanovi medusobno razliciti.

0.7. Zadatak. Za skup S = {0, 1} ispisite sve dvoclane podskupove
skupa S i sve dvoclane nizove u S.

1. Vektori u R" i matrice tipa n x k

1.1. Skup R". Neka je n fiksan prirodan broj. Elementi skupa R"
(¢itamo “er na entu” ili samo “er en”) su sve uredene n-torke realnih bro-
jeva (g, ag,...,a,). Uredenu n-torku realnih brojeva a = (aq, ag, ..., ay)
obi¢no zovemo tockom ili vektorom u R™, a realne brojeve a1, a9, ..., ay
koordinatama vektora (tocke) a, pri ¢emu je prva koordinata oy, druga ko-
ordinata je o itd.

1.2. Primjer. (0,1,1,—1,v/3)i(0,1,1,—1,0) su dvije razlicite petorke
realnih brojeva, ili dvije razlicite tocke u R®.

1.3. Zadatak. Napisite dvije razlicite tocke u R8.
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1.4. Skupovi R” javljaju se u geometriji i analizi. Skupove R!,
R? i R? mozemo si predociti geometrijski. Tako si, na primjer, skup R? svih
uredenih parova realnih brojeva a = (a1, a2) mozemo zamisliti kao skup
toCaka a u euklidskoj ravnini s koordinatama aq i as u odabranom Kartezi-
jevom sustavu koordinata. Na slican si na¢in uredene trojke realnih brojeva
(a1, ag, a3) iz R? zamisljamo kao tocke euklidskog prostora s koordinatama
a1, a9 1 ag u odabranom Kartezijevom sustavu koordinata. U slucajun > 3
za skup R™ nemamo neposredne geometrijske predodzbe, no jos uvijek neka
svojstva tog skupa interpretiramo “geometrijski”, po analogiji s R? i R3.

Skupovi R™ javljaju se prirodno u matematickoj analizi i njenim primje-
nama kao skupovi parametara (o kojima ovise neke velic¢ine). Tako je, na
primjer, brzina vjetra (vs,vy,v,) u trenutku t u tocki prostora s koordina-
tama z,y, z “tocka” (vg,vy, vzt 2,y,2) u RT.

1.5. Zapisivanje uredenih n-torki brojeva. U matematickoj ana-
lizi i geometriji je obi¢aj uredene n-torke brojeva a € R™ zvati tockama i
zapisivati ih kao retke

a = (O[l,O[Q,...,Qn),

a u linearnoj je algebri obic¢aj uredene n-torke brojeva a € R™ zvati vekto-
rima i zapisivati ih kao stupce, kazemo wvektor-stupce

aq
a2

Qn

Mi ¢emo, prema prilici, koristiti oba nacina zapisivanja. Kasnije ¢emo go-
voriti i o vektor-recima

a:(Oél Qo ... an),

Sto su takoder n-torke brojeva.

1.6. Primjer.

su dva razli¢ita vektora u R®.

1.7. Konaé¢ni nizovi vektora u R". Pored pojedinih vektora u R”
Cesto ¢emo pisati i nizove vektora u R", kao $to je, na primjer, niz od Cetiri
vektora

s B (4 0) @)
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u R2. Zelimo li opéenito za niz vektora
ap, az, ..., 0k

u R" zapisati koordinate tih vektora, onda je obi¢aj da koristimo (odgova-
raju¢a mala gréka) slova s dva indeksa

011 12 Qg

021 Q22 Qok
ay = . , Q2 = . y  eeey O =

Qnl (677] Ak

Dogovor je da «j; oznacava i-tu koordinatu j-tog ¢lana niza a;.

1.8. Matrica tipa n x k. Konacan niz vektora ai,ao,...,ar u R", ili,
Sto je isto, k-torku vektora

(a1,a2,...,ax)

zovemo i matricom realnih brojeva tipa n X k. Zapisujuéi koordinate vektora
imali bismo previse (suvisnih) zagrada i zareza

11 12 aig
a2] 22 Qo

) ) M M
anl (075 Qnk

pa radije piSemo samo

a1 12 ... Qg

0421 a22 e an

Qnl Qp2 ... Qpk
Kazemo da matrica (a1, ..., a) ima n redaka i k stupaca. Ponekad matricu
(ai,...,ax) krace zapisujemo kao

(Oéij)izl,m’n ili samo (Ozij).
G=1,0k
Za i-tu koordinatu «;; vektor-stupca a; obi¢no kazemo da je element matrice
u i-tom retku i j-tom stupcu. Obi¢no ¢emo matrice oznacavati velikim
latinskim slovima, na primjer

A= (ay,...,ax)
ili

alr Qi ... Q1

Qo1 Qo2 ... Qg

Qnpl Qp2 ... Qi
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1.9. Primjer. Niz vektora (1.1) zovemo i matricom tipa 2 x 4 i kratko

zapisujemo kao
2 1 1 5
1 -1 1 6/

1.10. Pitanje. Da li je matrica

1 0 0 1
0 11 0
-2 2 3 V3
tipa 4 x 37 DA NE

1.11. Jednakost matrica. U skladu s opéom definicijom iz tocke 0.2,
za dvije matrice A = (aq,...,ax) 1 B = (b1,...,bg) istoga tipa n x k kazemo
da su jednake i piSemo A = B ako su im pripadni vektor-stupci jednaki:

ar =by,...,a = by.

1.12. Nul-matrica. Vektor (0,...,0) u R™ kojem su sve koordinate
nula zovemo nul-vektorom ili nulom i kratko oznacavamo s 0. Matricu
(0,...,0) kojoj su svi stupci nul-vektori zovemo nul-matricom ili nulom i
oznacavamo je s 0:

00 0
00 0
0=(0,0,...,0) = .
0 0 . 0
Tako je, na primjer,

0 00 O

0=10 0 0 O

0 00 O

3 X 4 nul-matrica.

1.13. Kvadratne matrice. Matrice tipa n xn zovemo kvadratnim ma-
tricama. Elemente a1,. .., ap, kvadratne matrice A = () zovemo dija-
gonalom od A, elemente «;j, i < j gornjim trokutom od A, a elemente a;;,
1 > j dongim trokutom od A. Elemente donjeg trokuta, dijagonale i gornjeg
trokuta 4 x 4 matrice mozemo si predociti kao zvjezdice

% . . . . %

Kvadratne matrice kojima donji trokut ima matri¢ne elemente 0 zovemo
gorngim trokutastim matricama, matrice kojima gornji trokut ima matriéne
elemente 0 zovemo donje trokutastim matricama, a matrice kojima i gornji
i donji trokut ima matri¢ne elemente 0 zovemo dijagonalnim matricama.
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Tako, na primjer, imamo donje trokutaste, dijagonalne i gornje trokutaste
4 x 4 matrice:

az 0 0 O agz 0 0 0 a1l a1z 013 oy
azgy azx 0 0 0 ap 0 O 0 o a3 aoy
azy agy agz 0 0 0 a3z O |71 0 0 a3 as
Q41 Qg2 43 Qu44 0 0 0 oau 0 0 0 oy

8 (000)7
) 000

2. Vektorski prostor R”

2.1. Zbrajanje vektora i mnozenje vektora skalarom. Na skupu
R™ definiramo operaciju zbrajanju po pravilu

Qaq b1 a1+ B

(o) B2 ag + B2
a+b=1]1 .1+ . |= .

(6793 Bn Qy + Bn

Takoder definiramo operaciju mnozenja vektora realnim brojem A, obi¢no
kazemo skalarom A, po pravilu

(65] )\Oél

a9 )\052
Aa=A| . | =

oy, Ao,

Ponekad je zgodno pisati A - @ umjesto Aa, kao na primjer 1 - a umjesto la
kad Zelimo naglasiti da vektor ¢ mnozimo brojem 1. Kada na skupu R”
koristimo operacije zbrajanje vektora i mnozenje vektora skalarom, onda je
obicaj elemente od R” zvati vektorima, a ne tockama. Da bismo u formu-
lama odmah vidjeli zbrajamo li vektore ili brojeve, bit ¢e zgodno vektore
oznacavati malim latinskim slovima, na primjer a,b, ¢, ili malim latinskim
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slovima s indeksima, na primjer a1, as, a3, a brojeve i koordinate vektora

malim grékim slovimal.

2.2. Primjer. U R* imamo

1 3 1+3 4 1 3-1 3
2| [ 3 23 | 1] g2 o3|
0 5 0+5 50771 o 3-0 0
2 -1 2+ (—1) 1 2 3.2 6

2.3. Algebarska svojstva zbrajanja i mnozenja skalarom. Bu-
duéi da je operacija zbrajanja vektora a + b definirana kao zbrajanje odgo-
varajuc¢ih koordinata «; + f3;, to iz svojstava asocijativnosti i komutativnosti
za zbrajanje brojeva slijede svojstva asocijativnosti

(a+b)+c=a+(b+c)
i komutativnosts
a+b=b+a
za zbrajanje vektora. Na primjer, zbog komutativnosti zbrajanja brojeva
vrijedi

o1 b1 a1 + 51 B1+ o b1 o1
a2 B2 ag + B2 B2 + ao B2 %
o B B : - : =1 T -
(6773 ﬁn ay + 511 /Bn + ay, ﬁn (077}

To smo mogli krace zapisati provjeravajuéi samo jednakost i-te koordinate
o+ Bi =B+ o

u vektorima a+bib+azasvakii=1,2,...,n.
Vektor kojemu su sve koordinate nula zovemo nul-vektorom ili nulom u
Rn

0
0
0=1.
0
IMala grcka slova
@ alfa L iota 0,§ sigma
B beta K kapa T tau
¥ gama A lambda v ipsilon
1) delta I mi , b fi
€,€ epsilon v ni X hi
¢ zeta 13 ksi P psi
n eta ks pi w omega
9,0 theta P, 0 1 70)
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Tako je 0= (§) nula u R?, a 0= (§> je nula u R3. O¢ito je za vektore a i
0 iz R"
a+0=0+a=a.

Takoder je ocito da svaki vektor a u R" ima jedinstveni suprotni element

aq —aq

Q2 —Q
- = — =

e70) —Qp

sa svojstvom
—a+a=a+ (—a)=0.
Kao i za brojeve, obi¢no pisemo a — b umjesto a + (—b).
S druge strane, operacija mnozenja skalarom nasljeduje neka svojstva
mnozenja brojeva:
la=a,  Apua) = (a,

te
0-an (—1) (e%1 A0
0-as (—1) - a2 A0
0-a= . =0, (-1)a= . =—a, X0= . =0.
0-ap (—1) - ay A-0

Zbog distributivnosti mnozenja brojeva prema zbrajanju imamo dvije
distributivnosti mnoZenja skalarom: u odnosu na zbrajanje u R i u odnosu
na zbrajanje u R"

A+ p)a=Aa+pa, Aa+0b)= A a+ Ab.

Zbog navedenih svojstava zbrajanja vektora i mnozenja vektora skalarom
skup R™ zovemo wektorskim prostorom R™. Grubo govore¢i, s vektorima
racunamo “kao s brojevima”.

2.4. Proporcionalni vektori. Kazemo da su vektori a i b u R"™ pro-
porcionalni ako je a = Ab za neki realan broj A ili je b = pa za neki realan
. Valja primijetiti da su po ovoj definiciji svaki a i 0 proporcionalni jer je
0 = 0a, a za a # 0 nije a = 0. No ako su a i b razli¢iti od nule, onda a = Ab
povlaéi A £ 0i b= \"la.

2.5. Pitanje. Koja svojstva mnozenja realnih brojeva i mnozenja vek-
tora realnim brojem koristimo u dokazu tvrdnje: “Ako su a i b razlic¢iti od
nule, onda a = A\b povlaéi A #0ib=\"1a.” ?

2.6. Pitanje. Da li svojstvo komutativnosti zbrajanja vektora u R™
glasi da za neke vektore a i b u R” vrijedia +b=0b+a? DA NE

2.7. Pitanje. Dalije 0 u R? jednaka 0 u R?? DA NE
2.8. Pitanje. Da li za vektor a u R” vrijedi a = —(—a)? DA NE
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2.9. VisSestruke sume vektora. Operacija zbrajanja vektora je bi-
narna operacija, Sto znaci da je definirano zbrajanje dva vektora. Imamo li
viSe vektora aq,as,...ar u R"™, onda definiramo

ar+ag+ - +ap=(...((a1 +az) +az)+ ...+ ax—1) + a.

Buduéi da smo na isti na¢in definirali i viSestruke sume brojeva, sumu vise
vektora racunamo tako da rac¢unamo odgovarajuée sume koordinata. Na
primjer, za Getiri vektora u R? imamo

@)+ () () + () -C1ne) - ()
2.10. Asocijativnost za viSestruke sume vektora. Za sve prirodne
brojeve k i m i vektore aq, ..., agrm € R™ vrijedi
(a1+a2+---+ak)+(ak+1+ak+2+~--+ak+m)
=ay+ag+---+ag+agt1 + agy2 + o0+ At

To svojstvo vrijedi zbog analognog svojstva brojeva. Na primjer

(()=(4)= () =)= (20)+ (28) - 6)
2.11. Komutativnost za viSestruke sume vektora. Za sve permu-
tacije? o skupa {1,2,...,k} i vektore a1, ...,a, € R™ vrijedi
ag(1) + Go2) + -+ Qo) = a1 + a2+ - + ag.
Tako je, na primjer,
az +a3z+a; =a;+az+as.

2.12. Oznaka za viSestruke sume vektora. Kao i za brojeve, vise-
struke sume vektora mozemo zapisati pomoc¢u znaka sumacije » :

k
S aj=ar+ar -t +ag.
j=1

Podsjetimo se da nije vazno koji indeks sumacije koristimo:

k
Zai =ar+ax+---+ag.
i=1
2.13. Distributivnost za visestruke sume. Za visestruke sume bro-
jeva ili vektora vrijede svojstva distributivnosti mnozenja skalarom prema
zbrajanju

k k k k
<Z Az) a = Z )\Z'CL, A (Z ai> = Z )\ai.
1=1 1=1 i=1 i=1

2Permutacija o skupa {1,2, ..., k} je bijekcijao: {1,2,...,k} — {1,2,...,k}. Na pri-
mjer, 0(1) =2, 0(2) = 31 0(3) =1 je permutacija skupa {1, 2,3} koju obi¢no zapisujemo
kao niz brojeva 231.
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3. Geometrijska interpretacija R?, R? i R”

3.1. Geometrijska interpretacija polja realnih brojeva R. Posto-
je razne konstrukcije ili definicije polja realnih brojeva i sve su one mate-
maticki ekvivalentne. U geometrijskoj interpretaciji skup realnih brojeva je
bilo koji izabrani pravac p u euklidskoj ravnini na kojem su izabrane bilo
koje medusobno razlicite tocke 0 i 1. Tocke na tom pravcu p zovemo realnim
brojevima.

Zbroj a + 3 realnih brojeva o, € p definiramo tako da odmjerimo
usmjerenu duzinu (strelicu, vektor) 03 i prenesemo njen pocetak na tocku
«, a kraj te prenesene usmjerene duzine proglasimo zbrojem o + f.

Mnozenje realnih brojeva definiramo koristeéi teorem o slicnosti trokuta:
Neka su «, 8 € p. Odaberemo drugi pravac ¢, q¢ # p, koji sije¢e pravac p u
tocki 0. Na pravcu g odaberemo tocku 1’ tako da su duljine 01 i 01’ jednake,
te tocku ' € ¢ tako da su duljine 08 i 03’ jednake, pazeéi pritom da su
1" i ' na istoj strani (zraci) pravca ¢ u odnosu na 0 ako i samo ako su 1
i f na istoj strani (zraci) pravca p u odnosu na 0. Sada povucemo pravac
r kroz tocke 1’ € ¢ i @ € p i njemu paralelan pravac s kroz tocku 8’ € q.
Tada pravac s sijece pravac p u jednoj tocki X koju proglasimo umnoskom
X = - B € p. Zbog teorema o sli¢nosti trokuta vrijedi 05 : 01 = 0X : Oc,
Sto i jest motivacija nase definicije mnozenja.

Visekratnim nanosenjem usmjerene duzine (ﬁ, pocevsi od tocke 0, dobit
¢emo brojeve 1,2,3,.... Dakle

N C R.

NanoSenjem na drugu stranu usmjerene duzine ﬁ dobit éemo —1,—2,....
Dakle
Z C R.

Koristenjem teorema o sli¢nosti trokuta mozemo konstruirati racionalne bro-
jeve 3, ili 2, ili bilo koji 2. Dakle
QcCR.

Geometrijski definirane operacije zbrajanja i mnozenja na R su asoci-
jativne i komutativne i mnozenje je distributivnho u odnosu na zbrajanje.
Nadalje, obje operacije imaju neutralne elemente nulu i jedan. S obzirom
na zbrajanje svaki realni broj o ima suprotni element —q, a s obzirom na
mnozenje svaki realni broj broj o # 0 ima reciproéni element a~!. Zbog na-
vedenih svojstava zbrajanja i mnozenja govorimo da je skup realnih brojeva
polje.

Za realan broj a piSemo « > 0 ako i samo ako se nalazi na zraci s
pocetkom u tocki (broju) 0 koja prolazi tockom 1. Opéenito pisemo o > 3
ako i samo ako je a — 3 > 0.

3.2. Geometrijska interpretacija R2. Vektorski si prostor R? zami-
§ljamo kao euklidsku ravninu u kojoj smo izabrali pravokutni Kartezijev
koordinatni sustav, pa uredeni par brojeva a = (a1, as) € R? predstavlja
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koordinate toékg) a u ravnini. Obi¢no si tocku a u ravnini zamisljamo kao
vektor-strelicu Oa. Tada zbrajanje vektora a + b u R? odgovara zbrajanju

.= . . . . .
vektor-strelica Oa 4+ 00 u ravnini po pravilu paralelograma: a + b je cetvrti
vrh paralelograma kojemu su tri vrha tocke 0, a ¢ b. Tako je, na primjer,

zbroj vektora u ravnini
2 n 1y (3
1 1) \2

geometrijski dobiven kao ¢etvrti vrh paralelograma kojemu su zadana tri

B0 ()

_>
Mnozenje vektora a skalarom A je produljivanje strelice Oa za faktor A. Tako

je, na primjer, vektor
2 6
(1) =)
2

geometrijski dobiven produljivanjem 3 puta vektora a = (%). Opcenito se
za realan broj A vektor Aa nalazi na pravcu p kroz ishodiste 0 i tocku a,
a geometrijski Aa konstruiramo tako tako da prvo kroz tocku 1 na z-osi i
tocku a povucemo pravac r i onda konstruiramo njemu paralelan pravac s
kroz tocku A na x-osi: zbog teorema o sli¢nosti trokuta pravci p i s sijeku
se u tocki Aa.

3.3. Pravci u R%. U prethodnoj smo se tocki podsjetili da je u euklid-
skoj ravnini za vektor a # 0 skup tocaka
p={Xa| X eR}
pravac kroz tocku a (za A = 1) i ishodiste 0 Kartezijevog sustava (za A = 0).
Zato za vektor a # 0 u R? skup tocaka
p={lacR*|NcR}

zovemo pravacem u R? kroz tocke a i 0, ili samo pravacem kroz ishodiste, a
vektor a zovemo wvektorom smjera pravea p. Ako je

c=pa, p#0,
onda je i ¢ vektor smjera pravca p jer je
{de|AeR}={ ua | A e R} ={la | X € R},
pri ¢emu druga jednakost vrijedi jer je za u # 0 preslikavanje A — uA
bijekcija na R.

Buduéi da je u euklidskoj ravnini zbrajanje vektora definirano po pravilu
paralelograma, proizvoljan pravac ¢ u euklidskoj ravnini mozemo opisati kao
skup

g={b+XaeR?| X\ R}
za neke vektore b i a # 0, pri ¢emu su pravci
g={b+XacR?*|NeR} i p={lacR?*|\ecR}
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paralelni. Zato za vektore bia # 0 u R? skup tocaka
g={b+XaeR?| X\ R}
zovemo pravacem u R2, ili praveem kroz tocku® b, a vektor a zovemo vektorom
smjera pravca p. Ako je d € p neka tocka na pravcu p i c = ua za neki u # 0,
onda pravac p mozemo prikazati i kao
p={b+XacR?*|NcR} ={d+AccR*| Nc R},

tj. kao pravac kroz tocku d s vektorom smjera c. Za razli¢ite pravce koji
imaju proporcionalne vektore smjera kazemo da su paralelni pravci u R?.

3.4. Geometrijska interpretacija R3. Vektorski si prostor R? zami-
§ljamo kao euklidski prostor u kojem smo izabrali pravokutni Kartezijev ko-
ordinatni sustav, pa uredena trojka brojeva a = (a1, as, as) € R? predstav-
lja koordinate tocke a u prostoru. Obi¢no si tocku a u prostoru zamisljamo
kao vektor-strelicu Oa. Tada zbrajanje vektora a + b u R? odgovara zbraja-

. .= . ..
nju vektor-strelica Oa 4+ 0b u prostoru po pravilu paralelograma, a mnozenje
skalarom A kao produljivanje strelice A puta.

3.5. Ravnine u R3. Kao i u slucéaju euklidske ravnine, za vektor a # 0
u euklidskom prostoru skup tocaka

p={Xa|XeR}

je pravac kroz ishodiste 0 Kartezijevog sustava. Ako vektor ¢ # 0 nije pro-
porcionalan vektoru a, onda je pravac

q={pc|peR}
razli¢it od pravca p i ta dva pravca odreduju ravninu II u prostoru koja
prolazi ishodiStem 0. Za realne brojeve A\ i u imamo

Aa + pe €11

jer je to ¢etvrti vrh paralelograma kojem su tri vrha 0, Aa i pe u ravnini II.
Stovise, geometrijski je jasno da svaku tocku ravnine IT mozemo napisati na
taj nacin, tj. da je
IT={Xa+pc| A\ peR}.
Za tocku prostora b koja nije u ravnini II imamo ravninu
Y ={b+Xa+pc| A\ peR}

koja je paralelna s ravninom II. Zato za dane vektore a # 0i b # 0 u R?
koji nisu proporcionalni skup toc¢aka

M= {\a+uceR® |\ pucR}
zovemo ravninom kroz ishodiste. Za tocku b € R? koja nije u ravnini IT skup
Y={b+Xa+uccR®|\pucR}

zovemo ravninom kroz tocku b. Kazemo da su X i II paralelne ravnine.

3Jer za A = 0 imamo b+Xa=bep.
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3.6. Geometrijska interpretacija R". U geometriji, osim samog pro-
stora koji se sastoji od tocaka, prouc¢avamo i familije skupova kao $to su
pravci, ravnine, kruznice, sfere itd. Kao sto smo veé rekli, u slucaju n > 3
za skup R™ nemamo neposredne geometrijske predodzbe, no po analogiji s R?
i R? mozemo uvesti geometrijske pojmove koji imaju sli¢na svojstva® onima
iz euklidske ravnine i euklidskog prostora. Ovdje ¢emo, koriste¢i operacije
zbrajanja i mnozenja skalarom, definirati pravce, segmente, zrake, ravnine i
paralelograme u R"™.

3.7. Pravci u R". Za vektore v # 0 i a u R"™ skup tocaka
(3.1) p={a+tv]|teR}

zovemo pravcem u R™. Kazemo da smo pravac p zadali parametarski®. Ako
si parametar t zamislimo kao vrijeme, onda se tocka x(t) = a + tv giba u
vremenu po pravcu jednolikom brzinom v jer je

tQitl (x(t2) — x(t1)) = ﬁ(tQ —t1)v = .

U trenutku ¢ = 0 je z(0) = a, pa kazemo da pravac p prolazi tockom a ili da
tocka a leZi na pravcu p. Vektor v zovemo vektorom smjera pravca.

3.8. Pravac kroz dvije tocke. Neka su a i b dvije razli¢ite tocke u
R™. Stavimo v = b — a. Tada je

(3.2) p={a+tlb—a)|teR}={(1—-t)a+tb|t R}

pravac u R™. Ako si parametar ¢ zamislimo kao vrijeme, onda se tocka
x(t) = (1 — t)a + tb giba po pravcu tako da je u trenutku ¢ = 0 u polozaju
x(0) = a, a u trenutku ¢ = 1 u polozaju z(1) = b. Znaci da pravac p prolazi
tockama a i b.

3.9. Zadatak. Napisite parametarsku jednadzbu pravca u R? kroz tocke

2 1
1 . 0
a= |, i b= 9
-1 2

3.10. Jedinstvenost pravca kroz dvije tocke. Kroz svake dvije tocke
prolazi jedan i samo jedan pravac.

DoxkAz. Neka su a i b dvije razlicite tocke u R". Tada je formulom (3.2)
zadan pravac p koji prolazi kroz te dvije tocke, pa nam preostaje dokazati
da je taj pravac jedinstven. Pretpostavim zato da su tocke a i b i na pravcu
q={c+tv|teR}. Tada je za neke A\ i p

a=c+ I, b=c+pv.
4Primje]r takvog svojstva je da kroz dvije razli¢ite tocke prolazi jedan i samo jedan

pravac.
5Ponekad kazemo da je formula (3.1) parametarska jednadzba pravca.
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Znaci da je b — a = (. — \)v, pa zbog pretpostavke a # b imamo \ # p i

‘H

v =

(b—a), c:a—)\v:a—u—i)\(b—a).

>

—

Sada iz ¢injenice da je preslikavanje s +— t = u—i/\(s — ) bijekcija na R slijedi

{c+sv|seR}={a— 2:(b

oY —a)+su%)\(b—a)|sE]R}

:{a—i—ﬁ(s A)(b—a)|seR}
={a+tb—a)|teR}.

Znaéi da je pravac q jednak pravcu p zadanom formulom (3.2). O

3.11. Segmenti na pravcu. Neka su a i b dvije razlic¢ite tocke na
pravcu

p={(1—ta+tb|teR}.

Ako si parametar ¢ zamislimo kao vrijeme, onda se tocka z(t) = (1 —t)a+tb
giba po pravcu od tocke a u trenutku t = 0 do tocke b u trenutku ¢t = 1.
Zato kazemo da je toc¢ka c na pravcu p izmedu a ¢ b ako i samo ako je

c=(1—ta+tb zaneki 0<t<I.
Segmentom (na pravcu) zovemo skup oblika

la,b] = {(1 —t)a+tb |0 <t < 1}.

3.12. Pitanje. Da li je skup S u R? segment,

9_¢
Y . ?
S { t11 ‘1933}

Pokusajte “vidjeti” taj skup u euklidskom prostoru sa zadanim Kartezijevim
koordinatnim sustavom. Ako S jest segment, da li je paralelan® zy-ravnini.

3.13. Zrake na pravcu. Ako je p = {a + tv | t € R} pravac, onda
skupove
{a+tv|t<0} i {a+tv|t>0}

zovemo zrakama' na praveu p s ishodistem u tocki a. Jos kazemo da tocka

dijeli pravac na dvije zrake.

6paralelnost pravca i ravnine u R® nismo definirali. Kako bi glasila dobra definicija?
"Ponekad zrakama na pravcu p zovemo skupove

{a+tv|t<0} i {a+tv]|t>0}.
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3.14. Kolinearnost triju tocaka. Kazemo da su tri medusobno razli¢ite
tocke a, b i cu R"™ kolinearne ako leze na istom pravcu. Buduéi da tocke a
i b odreduju jedinstveni pravac

p={(1—t)a+th|teR}
na kojem leze, to su a, b i ¢ kolinearne ako i samo ako je
c=a+tb—a), odnosno c—a=tb-—a)
za neki t € R.

3.15. Zadatak. Da li su u R? kolinearne tocke

() =) ()

Ako jesu, da li je b izmedu a i ¢? Nacrtajte sliku.

3.16. Zadatak. Da li su u R?* kolinearne tocke

—_

Ako jesu, da li je ¢ izmedu a i b7

3.17. Ravnine u R". Za dane vektore v; # 0 i vy # 0 u R" koji nisu
proporcionalni skup

(3.3) Y ={a+ Mv1+ Avg € R" | A\, A2 € R}

zovemo ravninom u R™. Kazemo da smo ravninu zadali parametarskic. Za
vrijednosti parametara A\; = Ao = 0 dobivamo a, pa kazemo da ravnina %
prolazi tockom a ili da tocka a leZi u ravning 3.

3.18. Ravnina kroz tri tocke. Neka su a, b i c tri tocke u R" koje
nisu kolinearne. Stavimo v; = b —a i v9 = ¢ — a. Prema tocki 3.14 vektori
v1 1 v9 nisu proporcionalni i ravnina

(3.4) {a+M(b—a)+ Aa(c—a)| A, A2 € R}

prolazi kroz tocke a (za A\;1 = A2 = 0), b (za \y = 1, 2 = 0) i ¢ (za
A1 =0,y = 1). Kasnije ¢emo vidjeti da je ravnina koja sadrzi te tri tocke
jedinstvena.

3.19. Paralelogram u R". Za dane vektore v; # 01 v2 # 0 u R" koji
nisu proporcionalni skup

(3.5) {)\11)1 + Avg € R” | 0< A, A< 1}

zovemo paralelogramom u R™ sa stranicama vy i vs.

8Ponekad kazemo da je formula (3.3) parametarska jednadzba ravnine.



38 2. VEKTORSKI PROSTOR R"

3.20. Zadatak. Nacrtajte paralelogram u ravnini sa stranicama

(1) )

3.21. Zadatak. Kao sto tocka dijeli pravac na dvije zrake, tako i pra-
vac dijeli euklidsku ravninu na dvije poluravnine. Definirajte parametarski
poluravnine u R2.

4. Elementarne transformacije

Koristeéi operacije zbrajanja vektora i mnozenja vektora skalarom, na
konaénim nizovima vektora iz R™ mozemo izvoditi elementarne transforma-
cije ili elementarne operacije

/

/
VlyeooyUp F> V1,0, Upy

koje su slicne elementarnim transformacijama sistema jednadzbi” u Gausso-
voj metodi. Te su transformacije definirane na sljede¢i nacin:

4.1. Zamjena mjesta dvaju vektora. Za proizvoljne indekse i < j
definiramo transformaciju

V1ye 5 Vi—1,0, Vit -5 V51, b7 Vj41y--+5,Um
= V1., V-1, buvi-i-l? sy Uj—1,A, V5415 - -+, U,
gdje smo stavili @ = v; i b = v;. Ova transformacija je sama svoj inverz; dva
puta primijenjena daje identitetu.
4.2. Mnozenje jednog vektora skalarom razlic¢itim od nule. Za
proizvoljni indeks i i skalar A # 0 definiramo transformaciju
Vg ey Vim1,Qy Vi 1y e o3 Um 2 Ve )Ui—17)\a7vi+17 -y Um,

gdje smo stavili a = v;. Ova transformacija ima inverznu istoga tipa; za isti
indeks biramo skalar %, pa sa ¢ime smo prije mnozili, s time sada dijelimo:

1
Vg ooy Vim1, Ay Vit 1y - ooy, U 2 V1, . <oy Ui—15 Ay V415 -+ - s Um.

4.3. Pribrajanje jednog vektora pomnozenog skalarom drugom
vektoru. Za proizvoljne indekse i # j i skalar A definiramo transformaciju

V1ye oy Vi—1,0,Vit1, - - - ,’Uj_l,b, Vj4+1y--+5,Um
= U1, Vi1, Gy U]y e - - 7vj71’b+ Aa, Vjtly -y U,

gdje smo stavili a = v; i b = v;. Ova transformacija ima inverznu istoga tipa;
za iste indekse biramo skalar —\, pa Sto smo prije dodali sada oduzmemo:

U155 Vi—1,Q, Vit 1, - - - 7/Uj—1)ba Vj+15--+yUm

= U1y ey Vi—1,Q, Vit 1,y .. ,’Uj_l,b — )\a,vj+1, ceey Um.

9vidi tocku 1.3.4
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4.4. Zadatak. Interpretirajte geometrijski u R? i R? elementarne tran-
sformacije na parovima vektora

(a,b) — (Aa,b), (a,b)— (a,ub), (a,b)+— (a,b+Xia), (a,b)+— (a+ud,bd).

Kako se je promijenila povrsina paralelograma koje odreduju vektori prije i
nakon transformacije?

4.5. Elementarne transformacije na stupcima matrice. Buduéi
da je matrica tipa n X m niz od m vektora iz R", elementarne transfor-
macije mozemo primijeniti i na stupce matrice. Tako, na primjer, imamo
elementarnu transformaciju zamjene prvog i treceg stupca matrice

1 00 1 00 1 1
0 11 0]—1|11 0 O
-2 2 3 V3 3 2 -2 V3

4.6. Pitanje. Da li je

100 1 10 01
01 10)]—{f01T10
1 2 3 1 1 2 3 1
elementarna transformacija? DA NE
4.7. Pitanje. Da li je
1001 100 %
01 10]—(0110
1231 123 3

elementarna transformacija? DA NE

4.8. Primjer. Elementarna transformacija (a,b,c,d) — (a — ¢, b,c,d)
daje

1

_ 0 =
N = O
w = o
—_ O =
1
N = O
w = o
—_ O =

-1
-2

a njoj inverzna transformacija (a, b, c,d) — (a + ¢, b, ¢, d) daje

[N
w = o
—_ O =
1
—_ o =
N = O
w = o

1
0
1
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4.9. Kompozicija elementarnih transformacija. Za pocetni niz

vektora (v1,...,v,) uzastopnom primjenom elementarnih transformacija
dobivamo novi niz vektora (wi, ..., wp):
/ /
(V1y ey Um) = (V] ey 00) e (W W)
Cinjenicu da je (wq,...,w,,) dobiven iz (v1,...,v,) kompozicijom elemen-

tarnih transformacija zapisujemo krace kao relaciju
(V1 oy Om) ~ (W1, ..y W)
Ocito vrijedi svojstvo tranzitivnosti relacije ~
(V1 ey Um) ~ (W1, .oy wy) 1 (W1, W) ~ (UL, .oy Upy)
povlaci  (v1,...,0m) ~ (U1, ..., Up).

Buduéi da elementarne transformacije oblika 4.2 za A = 1 i transformacije
oblika 4.3 za A = 0 daju identitetu'?, to relacija ~ ima svojstvo refleksivnosti

(U1, -y 0m) ~ (V1,. .., Um),

a zbog toga Sto svaka elementarna transformacija ima inverznu, vrijedi i
svojstvo simetricnosti relacije ~

(U1, vy Um) ~ (W1, ..oy Wie)  povlall  (wi,..., W) ~ (V1,...,Un).

4.10. Zadatak. Interpretirajte geometrijski u R? elementarne transfor-
macije na stupcima matrica

GGG )6

4.11. Zadatak. Interpretirajte geometrijski u R? elementarne transfor-
macije na stupcima matrica

1 -1 1 1 01 1 00
1 1 1|—=|1 2 1|~ |1 2 0
0 0 1 0 01 0 01

4.12. Primjer. U ovom ¢emo primjeru pokazati da kompozicijom ele-
mentarnih transformacija niz vektora

1 1 2
vi=|2], v=-1], wvs=11
1 -1 2

mozemo prevesti u matricu'!

100
(61,62,63) = 01 0
0 01

10Zb0g toga je na pitanje 4.6 odgovor DA, a u tom primjeru je odgovor DA i zbog
transformacije oblika 4.1.

Hy je jediniéna 3 x 3 matrica kojoj su stupci elementi kanonske baze u R?, vidi malo
nize primjer 6.6.
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Postupak je slican Gaussovim eliminacijama nepoznanica, samo $to sve tran-
sformacije izvodimo na stupcima matrice. Prvo ponistavamo elemente u
gornjem trokutu matrice (v1, ve, v3)

1 1 2 1 0 2 1 0 0 1 0 0
2 -11)]—=f2 3 1)]—1|2 -3 -3]—12 -3 0
1 -1 2 1 -2 2 1 -2 0 1 -2 2

U prvom i drugom koraku izvodimo elementarne transformacije (a,b,c) —
(a,b —a,c) i (a,b,¢c) — (a,b,c — 2a) koristeéi prvi stupac da bismo dobili
nule u prvom retku. U treéem koraku izvodimo transformaciju (a,b,c) —
(a,b,c — b) koristeéi drugi stupac da bismo dobili nulu u drugom retku, ne
“kvare¢i” pritom veé¢ dobivene nule u prvom retku. Zatim nastavljamo s
elementarnim transformacijama, prvo “popravljajuéi” treéi stupac transfor-
macijom tipa 4.2, a potom poniStavajuéi elemente u donjem trokutu matrice
u tre¢em retku koristeéi tre¢i stupac

1 0 0 1 0 0 1 0 0 1 0 0
2 3 0)—=(f2 3 0]—=1[2 -3 0)]—1[2 -3 0
1 -2 2 1 -2 1 1 0 1 0 0 1

Pomocu drugog stupca dovrsimo postupak

1 0 0 100 1 00
2 -3 0]l—=1210|~10120
0 0 1 0 01 0 01

4.13. Svodenje matrice na trokutastu ili stepenastu formu pri-
mjenom elementarnih transformacija. Kod rjeSavanja niza problema
u linearnoj algebri primijenjivat ¢emo kompozicije elementarnih transfor-
macija tako da konacan rezultat bude donja trokutasta ili donja stepenasta
matrica, kao Sto je kompozicija elementarnih transformacija iz prethodnog
primjera

1 1 2 1 0 2 1 0 0 1 0 O
2 -1 1]l—12 -3 1|—|2 -3 3|—~1|2 -3 0
1 -1 2 1 -2 2 1 -2 0 1 -2 2

Za n X k matricu

a1 192 e a1k

Qo1 Q22 ... Qof
(a17a27"'7ak‘): . .

Qpl  Qp2 Onk

je postupak sljedeé¢i'?:

12Ovdje opisani postupak po stupcima matrice je potpuno analogan postupku
svodenja matrice na stepenasti oblik, ali po recima, opisan u tocki 1.3.10 prethodnog
poglavlja.
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1) Ako je aj; # 0, onda prvi stupac matrice mnozimo s 1/aq; i dobivamo

@11 12 ... Oqk 1 a1 ... A1k
/
Qo1 G922 ... Q9 Qo1 OG22 ... Q9 ,
— . . . :(a‘lva‘Qv"':ak)'
!
anp1 Op2 ... QOpk Q1 Qp2 ... Qnpk

Nakon toga, koristeéi 1 iz prvog stupca, “eliminiramo” redom sve preostale
elemente iz prvog retka dodavanjem —aj2a) drugom stupcu, —aq3a) treéem
stupcu, ..., —aqxa) zadnjem stupcu:

a1 ... a1k 1 0 e 0
/ / / /
Qo1 Q22 ... QoL Qo1 Qoo ... Qo ;. ,
. ~ | . : : = (a},ay,...,a).
o« a o o o
nl n2 .- nk nl n2 - nk

Sada postupak nastavljamo na n x (k — 1) matrici

0o ... 0
/ /
/ _ a22 ... a2k
(ay,...,a;) =1 . .
/ /
by ..o Al
Valja primijetiti da elementarne transformacije na stupcima aj, . .., aj, nece

“kvariti” ve¢ dobivene nule u prvoj koordinati.

2) Ako je a11 = 01 a1 # 0 za neki indeks stupca j, onda zamijenimo prvi i
Jj-ti stupac i nastavimo kao pod 1).

3) Ako je ¢itav prvi redak nula, tj.

0 0O ... 0
(al,GQ,...,ak): . : . )
Qnl Qp2 ... Qpk
onda smo gotovi ako je matrica nula, a ako (a1, as, ..., ax) nije nul-matrica,

onda postupak provodimo za prvi netrivijalni redak kao u 1) ili 2).

Konaéni ée rezultat biti u donjoj stepenastoj formi po stupcima kod koje su
svi nul-stupci desno od svih stupaca koji nisu nula i u svakom stupcu prvi
element razli¢it od nule stoji nize od prvog elementa razli¢itog od nule u
prethodnom stupcu.

Prvi element u stupcu koji je razli¢it od nule zove se ugaoni ili stoZerni
element matrice.
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Na primjer, za proizvoljne brojeve na mjestu zvjezdica imamo 6 x5 donju
stepenastu matricu kod koje su svi ugaoni elementi jednaki 1

0 00 00O
1 0 00 O
*x 00 0 O
*x 1 0 0 O
* x 1 0 0
* x *x 0 0

Na slican nacin elementarnim transformacijama matricu mozemo svesti
na gornju stepenastu formu po stupcima'® zapoéinjuéi postupak sa zadnjim
retkom koji nije nula i zadnjim stupcem.

4.14. Reducirana stepenasta forma matrice. U prethodnoj smo
tocki opisali kako elementarnim transformacijama stupaca matricu mozemo
svesti na donju stepenastu formu po stupcima. Taj postupak mozemo nas-
taviti tako da svaki ugaoni element bude 1 i da onda s tom jedinicom elimi-
niramo sve ostale ne-nul elemente u tom retku. Za dobivenu matricu kazemo
da je u reduciranom stepenastom obliku.

U slucaju 6 x 5 donje stepenaste matrice iz prethodne tocke dobivamo
reduciranu stepenastu matricu

* OO % = O
* O = O OO
* H O O OO
OO O OO
OO O OO

[es}
[an}

4.15. Primjer svodenja 2x4 matrice na donju stepenastu formu.

1215N1000N1000
11 -1 1 1 -1 -2 -4 1 -1 0 0)°

a reducirana stepenasta forma je

1 0 00
010 0/

Matricu smo mogli svesti i na gornju stepenastu po stupcima

12 1 5\ (-4 =365\ (0065
11 -1 1 0 0 01 0 00 1)

a reducirana stepenasta forma je

0 010
00 0 1)°

13U gornjoj stepenastoj formi po stupcima svaki nul-stupac stoji lijevo od svih stupaca
koji nisu nula i u svakom stupcu zadnji element razli¢it od nule stoji vise od zadnjeg
elementa razli¢itog od nule u slijede¢em stupcu. Valja primijetiti da gornja stepenasta
forma po stupcima nije (nuzno) isto §to i gornja stepenasta forma po recima.
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4.16. Primjer svodenja 4 x2 matrice na donju stepenastu formu.

1 1 1 0
2 1 s 2 -1
1 -1 1 =2’
5 6 5 1
a reducirana stepenasta forma je

1 0 1 0

s 2 1 s 0 1
1 2 -3 2
5 —1 7T -1

Matricu smo mogli svesti i na gornju stepenastu po stupcima

11 1 1/6 1/6  1/6
2 1| |2 ye | |76 1/6
1 -1 1 —1/6 11/6 —1/6 |
5 6 5 1 0 1

a reducirana stepenasta forma je

/11 1/6 1/11 12/66
7/11 1/6 7/11 18/66
1 —1/6] 7| 1 0
0o 1 0 1

4.17. Zadatak. Elementarnim transformacijama na stupcima svedite
na reducirani donji stepenasti oblik matricu

1 2 2 1
2 0 1 -1
1 -1 0 1

4.18. Primjedba. Posebno su vazne donje trokutaste matrice (a;;) sa
svim dijagonalnim elementima «;; razli¢itim od nule. Takva je trokutasta
matrica i donje stepenasta, a njenim svodenjem na reducirani donji stepe-
nasti oblik dobivamo tzv. jedini¢nu matricu s jedinicama na dijagonali i s
ostalim elementima jednakim nuli. Raspisano za 4 x 4 matricom imamo

ai; 0 0 0 1 0 0 0 1 0 00
a21 (22 0 0 -~ 0/21 1 0 0 01 00
31 (32 Q33 0 Oé%l aéQ 1 0 001 0]’
Q41 042 043 Q44 ay Ay oz 1 0001

gdje jedinice na dijagonali dobivamo dijeljenjem j-tog stupca s a;;, a potom
eliminiramo redom sve nedijagonalne elemente o, u zadnjem tetku, aj; u
predzadnjem retku, itd.
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4.19. Zadatak. Elementarnim transformacijama na stupcima svedite
na gornji trokutasti oblik matricu

1 1 2
2 -1 1
1 -1 2
4.20. Elementarne transformacije na recima matrice. Bududi da
matricu tipa n X m mozemo shvatiti i kao niz od n vektor-redaka iz R™, to

elementarne transformacije mozemo primijeniti i na retke matrice. Tako,
na primjer, imamo elementarnu transformaciju zamjene prvog i trec¢eg retka

matrice
1 00 1 -2 2 3 V3
0 1 1 0 — 0 1 1 0
-2 2 3 V3 1 00 1
4.21. Pitanje. Dali je

1001 100 %
01 10]=(01T10
1231 123 3

elementarna transformacija redaka matrice? DA NE

4.22. Elementarne transformacije redaka i Gaussove eliminaci-
je. U tocki 1.3.4 prethodnog poglavlja opisane su elementarne transforma-
cije sistema jednadzbi koje koristimo u Gaussovoj metodi rjeSavanja sistema
jednadzbi. Ako kod Gaussovih eliminacija zapisujemo samo koeficijente ma-
trice sistema, kao u tocki 1.3.9 prethodnog poglavlja, onda su elementarne
transformacije sistema jednadzbi upravo elementarne transformacije redaka
matrice sistema.

4.23. Elementarne transformacije prostora R". Elemente od R™
obi¢tno zapisujemo kao vektor-stupce, odnosno n x 1 matrice. Na takvim
matricama mozemo provoditi elementarne transformacije po recima, kao
sto je, na primjer, zamjena i-te i j-te koordinate vektora

aq aq

(673 Oéj
x = — =

Oéj (673

7)) (7))

Znaci da imamo preslikavanje

2, R™ - R"
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koje zovemo elementarnom transformacijom prostora R™. Buduéi da svaka
elementarne transformacija ima inverznu, elementarna transformacija pro-
stora R™ je bijekcija na R™. Primijetimo da za svaku elementarnu transfor-
maciju prostora R™ vrijedi tzv. svojstvo linearnosti

a+b—ad +V, Aa— Aa'.

Na primjer, ako se radi o elementarnoj transformaciji mnozenja i-te koordi-
nate skalarom p # 0, onda je

ar + B a + B aj 631
at+b=|a;i+6i | = | plai+6) | = pei | + | pbi | =d +V,
p + 671 Qp + /371 79 /871

a sliéno se provjeri i svojstvo Aa — Aa’.

5. Linearne kombinacije i sistemi jednadzbi

5.1. Linearne kombinacije vektora u R”. Ako su zadani vektori a1,
as, ..., as u R™igkalari A\, Ao, ..., \s, onda mozemo racunati vektor

Arai + Agag + - + Agas.

Takav izraz ili vektor zovemo linearnom kombinacijom vektora ayi,aq, ..., as
s koeficijentima A1, Ao, . .., As.

5.2. Primjer. Vektor
4 2 1 1 5
(o) =2 () + (4) - (1) +o(6)
je linearna kombinacija vektora
5
6

(5.1) @ ’ (—11> ’ @

u R? s koeficijentima 2, 1, —1 i 0. U ovoj kombinaciji mozemo izostaviti
sumand 0- (2) = 0 1 pisati

N _o(2), (1) (1
0) 1 -1 1)’
a da jos uvijek kazemo da je to linearna kombinacija ¢etiri vektora (5.1).

5.3. Zadatak. Izracunajte linearnu kombinaciju vektora

1) ()0 6

s koeficijentima 0, 0, 2 i 2.
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5.4. Trivijalna linearna kombinacija vektora. Linearnu kombina-
ciju

Oai + - -+ + Oas
vektora ai,...,as u kojoj su svi koeficijenti nula zovemo trivijalnom line-
arnom kombinacijom vektora aq, . ..,as. OCito je trivijalna kombinacija vek-

tora jednaka nuli, tj.
0ay + -+ Oas = 0.

5.5. Netrivijalna linearna kombinacija vektora. Kazemo da je li-
nearna kombinacija vektora

A1ag + Agag + -+ Asag
netrivijalna ako je barem jedan od skalara A; £ 0. Tako je, na primjer,
la; 4+ Oas - - - + Oag

netrivijalna kombinacija vektora ai,as,...,as.

5.6. Pitanje. Da li je linearna kombinacija
0 0 0
0(0) - (0) )

5.7. Primjer. Moze se dogoditi da netrivijalna linearna kombinacija
vektora bude jednaka nuli:

1 1 -1 0
(1) - () () =)
5.8. Racunanje linearne kombinacije elementarnim transfor-

macijema. Za zadane vektore aj, as, ..., as u R™ i skalari A1, Ao, ..., Ag
linearnu kombinaciju

netrivijalna? DA NE

b= Aai + X2ag + - - - + Asas

mozemo racunati koriste¢i elementarne transformacije

(a1,a2,...,as,0)

— (al,ag,...,as,/\lal)

—> (al,ag, . ,as,/\lal + )\Qag)

— (al,ag, e, g, A1a1 + Agag + -+ )\sas)

= (al,ag, . ,as,b).
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Tako bi linearnu kombinaciju iz primjera 5.2 ra¢unali pomocu tri elemen-
tarne transformacije

2 1 150 . 2 1 1 5 4
1 -1 1 6 0 1 -1 1 6 2
o 2 1 1 5 5 . 2 1 1 5 4
1 -1 1 6 1 1 -1 16 0/

Ovdje se prirodno namecée pitanje: mozemo li elementarnim transformaci-
jama stupaca matrice (ay,...,as,b) utvrditi da je zadani vektor b linearna
kombinacija vektora aq,...,as, ili, drugim rije¢ima, utvrditi da postoje ska-
lari &1, ...,&s takvi da je
(52) §rar + -+ &sas =07

Odgovor na to pitanje dajemo u tocki 6.16 nize, a u sljedec¢oj tocki o pro-
blemu (5.2) razmisljamo na drugi naé¢in:

5.9. Linearne kombinacije u R™ i sistemi jednadzbi. Neka je za-
dan sistem jednadzbi

041151 +--+ alnfn = /81 >
(53) 042151 + -+ a2n€n = /82 s

om1él + -+ apnén = Brm -

Oznacimo li s aq,...,a, stupce matrice sistema i s b desnu stranu, onda
sistem jednadzbi (5.3) mozemo zapisati i kao problem nalazenja svih linernih
kombinacija vektora a1, ..., a, koje daju vektor b:

(5.4) §1a1 4+ -+ + &pan = b.

5.10. Primjer. Sistem jednadzbi

381+ &2 — &3 =5,
—&+&=0
istovjetan je problemu nalazenja svih linearnih kombinacija stupaca matrice

sistema koje su jednake desnoj stranu sistema, odnosno problemu nalazenja
svih koeficijenata &1, &2, &3 takvih da je

o o (%) ey re (1) - ()

5.11. Primjer. Pitanje da li je vektor b linearna kombinacija vektora
ai, az i as za

= () m=(2) () = (3)
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svodi se na pitanje da li sistem jednadzbi (5.5) ima rjesenje. Zapisemo li
Gaussove eliminacije na matrici sistema (5.5) dobivamo

3 1—15'_>—10 1 0'_>—1010
-1 0 1 0 3 1 -1 5 0 1 2 5)°
pri ¢emu treé¢a matrica odgovara ekvivalentnom sistemu
- 51 + §3 = 07
§2+263=05
koji ima beskona¢no mnogo rjeSenja, a jedno je rjeSenje, na primjer, &3 = 2,
& =1, & = 2. Znaci da vektor b mozemo zapisati kao linearnu kombinaciju
vektora ai, as, ag na beskonaéno mnogo nacina, a jedan je moguéi nacin

b= 2a1 + as + 2as.

5.12. Zadatak. Da li je vektor b linearna kombinacija vektora ai, ag i
as za

) 3 1 -1
b— 0 o = -1 0 — 0 _ 1
4 | 1 1 ) 2 01’ as 1
3 0 1 1

i, ako jest, koliko razli¢itih na¢ina zapisa ima?

5.13. Zadatak. Nadite bar jednu netrivijalnu linearnu kombinaciju vek-
tora ai, ag, az i a4 koja je jednaka nuli, gdje je

5 3 1 -1
ay = 0 , Qa9 = -1 , az = 0 , Q4 = -1
4 1 2 1
5.14. Svojstvo linearnosti lijeve strane sistema jednadzbi. Neka
je A= (ai,...,a,) matrica tipa m x n. Tada za vektor x u R" s koordina-
tama £1,. .., &, imamo linearnu kombinaciju
u vektorskom prostoru R™. Za sve vektore z,y € R" i skalare A € R vrijedi
(5.7) Az + Ay = Az +y), A(Ax) = A(Ax).
DokAz. Za vektor y u R" s koordinatama 7i,...,7n, imamo linearnu
kombinaciju

Ay =mai + -+ npan, € R™,
Koristec¢i svojstva zbrajanja u vektorskim prostorima R™ i R™ dobivamo
Az + Ay = (§1a1 + -+ + &nan) + (mar + -+ + npay)
= (G +mar+ -+ (& +1m)an = Az + ),
a na slian nacin slijedi i
Adx) = (N)ar + -+ (Nn)an
= A&a1 + -+ &nan) = M(Ax).
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O

5.15. Primjedba. Mozda na prvi pogled formula (5.7) djeluje jedno-
stavno i bezazleno, no ta je formula alfa i omega linearne algebre. Za poce-
tak, upravo zbog tog svojstva sisteme linearnih jednadzbi zovemo linearnim.

6. Linearna ljuska vektora u R"

6.1. Linearna ljuska vektora u R". Za vektore'* vy,...,v; u R”
mozemo promatrati skup svih njihovih linearnih kombinacija

{)\1U1+---+)\kvk|)\1,...,)\kER”}.

Taj skup zovemo linearnom ljuskom vektora vy, ..., v; i oznacavamo ga kao
<'U1, ooy Uk>.
Za svakii=1... k imamo v; € (vy,...,v) jer je

v =001 + -+ 1v; + - - - + Ovg..

6.2. Primjedba. Ako je v # 0 vektor u R", onda je linearna ljuska (v)
pravac kroz ishodiste, a ako vektori v; # 0 i va # 0 nisu proporcionalni,
onda je linearna ljuska (v1,ve) ravnina kroz ishodiste. Zato si geometrijski

linearne ljuske (vy,...,vx) vektora u R™ mozemo zamisljati kao poopéenje
pravaca i ravnina u prostoru R".
S druge strane, linearnu ljusku vektora (ay,...,a,) u R™ mozemo shva-

titi algebarski kao skup svih desnih strana b sistema m x n jednadzbi
§1a1 + -+ &pan =0

koji imaju rjesenje (&1,...,&,) € R™
Geometrijski i algebarski na¢in razmisljanja se plodotvorno dopunjuju.
Tako je, na primjer, geometrjski jasno da elementarne transformacije

(ay,...,an) — (d},....a,)

'

ne mijenjaju linearnu ljusku vektora, a onda kao algebarska posljedica slijedi
da gornji sistem ima rjeSenje ako i samo ako ima rjeSenje sistem

gia’1+...+§;a%:b

!/

s novom matricom sistema (af, ..., al,

) i istom desnom stranom b.

14ponekad nam je zgodno misliti da se radi o skupu vektora {vi,...,v,}, a ponekad
je zgodnije misliti da se radi o nizu vektora (v1,...,vg).
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6.3. Linearna ljuska je potprostor u R". Neka su vy, ..., v, vektori
u R™. Ako je

a,b6<U1,...,Uk>, wE R,
onda su i a+ b i pa opet linearne kombinacije iz (vy, ..., v), tj.
a+b, pa € (vy,...,vg).

Zbog tog svojstva za linearnu ljusku (vy,...,vx) kazemo da je zatvorena za
operacije zbrajanja i mnoZenja skalarom i zovemo je potprostorom od R™.
Takoder kazemo da vektori vy, ..., v razapinju potprostor (vi,...,v).

DokAz. Ako je
a=o1v1+ - +oapvy 1 b= v+ + Brug,
onda zbog svojstava zbrajanja i mnozenja skalarom imamo

a+b = (a1v1+- - -Fagvr)+(Brvi+- -+ Brvg) = (a1+P1)vi+- - -+ (o ~+ Bk ) v,

pa = plarvr + - + agvg) = (pon)vr + -+ + (pog)vg.
O

6.4. Primjer. Neka je zadan vektor e = (1,0) u R2. Taj vektor raza-
pinje potprostor

ey ={xe| AeR}={(}) | e R} C R

Geometrijski interpretirano to je z-os Kartezijevog sustava u euklidskoj rav-
nini. Ta os je oc¢ito zatvorena za zbrajanje vektora i mnozenje vektora
skalarom.

6.5. Primjer. Neka su zadani vektori ej, es u R3,

0
) €2 = 1
0

€1 =

o O =

Tada imamo potprostor u R? razapet vektorima e, es,
A1

(61,62> = {/\161 + Ages | A1, Ao € R} = {(%2) | A, Ao € R}
Geometrijski interpretirano to je zy-ravnina Kartezijevog sustava u euklid-
skom prostoru. Ta ravnina je oCito zatvorena za zbrajanje vektora po pravilu

paralelograma, a oc¢ito je zatvorena i za mnozenje vektora skalarom.
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6.6. Primjer: kanonska baza u R3. Neka su zadani vektori e, 2, e3
u R3,
0
) €2 = 1 ) €3 =

0

€1 =

O O =
_— o O

Tada se potprostor (e, ez, e3) u R3 razapet vektorima ey, e2, e3 sastoji od
svih linearnih kombinacija

Al 0 0 Al
e + Aoeg + Azez = O]+ X]+1]0 = [ X
0 0 A3 A3

No to su svi vektori u R3! Vektore e, e, e3 zovemo kanonskom bazom od
R3, a geometrijski ih interpretirano kao jedini¢ne vektore triju osi izabranog
Kartezijevog sustava u euklidskom prostoru.

6.7. Zadatak. Neka je v; = 1 , Vg = _11> Interpretirajte R? kao

ravninu i nacrtajte linearne ljuske  (v1), (ve) 1 (vy,v9).

6.8. Jednakost linearni ljuski vektora u R™. Neka su aq,...,a, i
b1,...,bs vektori u R™. Prema tockama 6.1 1 6.3 je ay,...,a, € (by,...,bs)
ako i samo ako je (ai,...,ar) C (b1,...,bs).

Znaci da vrijedi jednakost linearnih ljuski (ai,...,a,) = (by,...,bs) ako

i samo ako je
al,...,ap € <b1,...,bs> i by,...,bs € <a1,...,ar>.

Primijetimo da se zadnji uvjet svodi na rjeSavanje r sistema jednadzbi tipa
n X s1i s sistema jednadzbi tipa n x r.

6.9. Zadatak. Koristeé¢i tvrdnju iz prethodne tocke provjerite da li je
(a1,as) = (b1, ba) za vektore

1 2 3 1
ag=\|-1]|, a=\|1], by=(0], by=1|2
1 1 2 0
6.10. Lema. Za vektore vi,...,vm @ p < m vrijeds
(Vi,...,0p) C (U1, .., Um).
Naime, prosirimo linearne kombinacije vektora v1, ..., v, do linearnih kom-
binacija vektora v1,..., v, ‘dodavanjem nule”

ML+ Apup = A+ A + 0vppt + oo+ Oy
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6.11. Lema. (v1,...,0p) = (V1,...,Um,Um+1) ako i samo ako je
VUmt1 € (V1. .., Um).
Naime, vp41 = O0vp + ... 0vp, + 1opy1 € (V1,00 Up, U;mt1), Pa jednakost
linearnih ljuski povlaéi vy,4+1 € (vi,...,vn). Obratno, ako je vektor vy,ii
u (v1,...,Up), 0dNOSNO VUpmy1 = D ioq HiV;, onda za linearne kombinacije
imamo

m
A1 + - 4 AmUm + Amti (Z mw) = Mot + -+ Ao,
i=1
sto povlaci (vi,...,Vm, Vm+1) C (V1,...,Un). Jednakost linearnih ljuski sa-
da slijedi iz prethodne leme.

6.12. Primjer. Neka je zadan niz od tri vektora (e,e,e) u R? e =
(1,0). Bududi da je pie + pze + pze = (1 + p2 + pg)e, to je linearna ljuska
(e, e, e) tih vektora jednaka

(evere) = e | A€ R} = {(3) | A e R},

odnosno
(e,e,e) = (e).

6.13. Pitanje. Neka je dan niz od ¢etiri vektora (0,0,0,0) u R3. Da li
je linearna ljuska tih vektora (0,0,0,0) = {0} C R3? DA NE

6.14. Zadatak. Primjenom leme 6.11 i rjeSavanjem sistema jednadzbi
&1a1 + &2a9 + E3a3 = a4 utvrdite da li su jednake linearne ljuske (aj, ag, as)
i{ai1,a2,as,a4) za vektore

5 3 1 6
ay = 0 , Qg = —1 s as = 0 s ay = —-117?
4 1 2 1
6.15. Linearna ljuska vektora i elementarne transformacije. Ne-
ka je niz vektora v\, ..., v; dobiven elementarnim transformacijama iz niza
V1,...,V. Tada je
(Wi, v = (V1. k).

Dokaz. Pretpostavimo da smo proveli elementarnu transformaciju
V] = vy + pvg, vh=va,. .., V) = V.
Neka je Adjv] + -+ - + Agv, u linearna kombinacija u (v], ..., v;). Tada je
MU+ Al = Aog + (A g+ A)ve + Azvg + -+ Ao € (U1, .., k).

Time smo dokazali (v, ...,v}) C (v1,...,v;). Bududi da je inverzna elemen-
tarna transformacija istoga tipa, slijedii (vi,...,vg) C (v],...,v}). Tvrdnja
leme za ostale slucajeve elementarnih transformacija dokazuje se na slican
nacin. (|



54 2. VEKTORSKI PROSTOR R"

6.16. Pitanje egzistencije rjeSenja sistema jednadzbi. Na pitanje
ima li sistem jednadzbi

(6.1) &Gar+ -+ &wap, =0

rjeSenje mozemo odgovoriti rjeSavanjem sistema Gaussovom metodom eli-
minacija, dakle izvodenjem elementarnih transformacija na recima prosirene
matrice sistema.

S druge strane, elementarnim transformacijama stupaca matricu sis-
tema (ay,...,a,) mozemo prevedesti u reduciranu donju stepenastu matricu

/

(ay,...,al). Prema prethodnoj tocki je linearna ljuska stupaca nove i stare

matrice ista, pa sistem (6.1) ima rjesenje ako i samo ako sistem
(6.2) ay+--+&a,=0b

ima rjeSenje. Pretpostavimo da su u reduciranoj stepenastoj matrici ugaoni
element na mjestima (i1, 1), (i2,2), ..., (ir,7). Tada elementarnim transfor-
macijama na stupcima matrice

(a,aly,...,al,b) — ... (a},adb,..., a,,b),

» sy R )

eliminiramo koordinate u b na mjestima 41,2, ...,%, i dobijemo
/ / / /
b'=b—c=b-3ia, — Bi,ay — -+ — Bi,a,.
/

Ako je V' = 0, onda je b = c linearna kombinacija vektora a},d),...,a, i
sistem (6.2) ima rjesenje. Ako je b’ = b — ¢ # 0, onda b nije linearna kom-
binacija vektora a},al,...,al jer je ¢ jedinstvena kombinacija tih vektora

koja na mjestima 41, %2, ..., %, ima koordinate 3;,, Bi,, ..., Bi,, a ipak nije b!

6.17. Primjer. Neka je

1 1
1
11
-1

ay = ag = as —

N = NN
o>
Il

w N D -

1
21>
1

Elementarnim transformacijama stupaca matricu (ai,ag,as) mozemo pre-
vesti u reducirani stepenasti oblik (a}, a, as): Prvo je svodimo na stepenasti
oblik

1 1 2 1 0 2 1 0 0 1 0 0
1 1 2 . 1 0 2 . 1 0 0 . 1 0 0
2 -1 1 2 -3 1 2 -3 -3 2 =3 0}’
1 -1 2 1 -2 2 1 -2 0 1 -2 2
a onda i na reducirani stepenasti oblik
1 0 0 1 0 0 1 0 0 1 00 1 00
1 0 0 . 1 0 0 o 1 0 0 . 1 00 o 1 00
2 -3 0 2 -3 0 2 -3 0 210 010
1 -2 1 1 0 1 0 0 1 0 0 1 0 01
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Prema tocki 6.15 su linearne ljuske od ay, az, ag i a}, af, a% jednake, pa sistem
s matricom sistema

1 1 2 1
1 1 2 8
(a17a27a37b): 2 -1 1 2
1 -1 2 3

ima rjeSenje ako i samo ako sistem s matricom sistema

(a/h a/27 a/37 b) =

S O = =
o= OO
o o O
w N o -

ima rjeSenje. Jasno je da je drugi sistem lakse rijesiti: jedina kombinacija
vektora al, ab, a% za koju je prva koordinata 1, treéa koordinata 2 i cetvrta
koordinata 3 je

c=a) + 2a + 3ah =

W N = =

pa ako je § =1 onda sistem ima rjeSenje, a ako je 8 # 1 onda sistem nema
rjeSenje. To smo mogli izracunati i eliminacijom koordinata u b na mjestima
ugaonih elemenata reducirane stepenaste matrice

1 0 0 1 1 00 0
o |1 00 8 100 g-1
(a17a27a37b) - 01 0 2 = 01 0 2
001 3 0 01 3
1 00 1 0 0 0
1 00 ﬁ 100 =1 _ ., , /.
= 01 0 01 0 0 - (CLI,CLQ,CL3,b)
0 01 0 01 0
i zakljuciti da sistem ima rjeSenje ako je b’ = 0 i nema rjeSenje ako je b’ # 0.

6.18. Zadatak. Elementarnim transformacijama na stupcima utvrdite
da li sistem jednadzbi s proSirenom matricom sistema

ima rjesenje.
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6.19. Primjer. Neka su vy, v, v3 vektori iz R? kao u primjeru 4.12

1 1 2
v = 2 , U2 = -1 , U3 = 1
1 -1 2

Bududi da niz vektora (vy,vs,v3) elementarnim transformacijama mozemo
prevesti u kanonsku bazu (e, ez, €3), to je prema tocki 6.15

(v1,v2,v3) = (€1, €2,€3).

No linearna ljuska (e1, e2, e3) vektora kanonske baze je ¢itav prostor R?, pa
imamo

<U17 v2, U3> = Rg'

6.20. Zadatak. Pokazite da je linearna ljuska vektora

1 1 0
v=|1], v=10 i vg=1[1
0 1 1

¢itav prostor R3.

7. Potprostori vektorskog prostora R"

7.1. Definicija potprostora vektorskog prostora R™. Neka je W
neprazan podskup od R”. Kazemo da je W potprostor vektorskog prosto-
ra R™ ako je zatvoren za operacije zbrajanja vektora i mnoZenje vektora
skalarom, tj. ako vrijedi:

(1) zasvea,be Wijea+beW,
(2) zasvea € Wisve A€ R je ae W.

7.2. Nul-potprostor. Neka je W = {0}, tj. skup ¢iji je jedini element
nula u R”. Buduéi da je 0+ 0 =01 A0 =0 za svaki A € R, to je W = {0}
potprostor vektorskog prostora R™. Potprostor {0} zovemo nul-potprostorom
vektorskog prostora R™ i oznacavamo ga s 0.

7.3. Trivijalni potprostori. Ocito je W = R" potprostor od R™. Pot-
prostore 0 i R zovemo trivijalnim potprostorima vektorskog prostora R".

7.4. Primjer. Skup W svih vektora u R? oblika
&1
&2
0

je potprostor. Interpretiramo li R? geometrijski, onda je potprostor W ra-
vnina u prostoru koja sadrzi prve dvije koordinatne osi.
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7.5. Primjer. Skup

W:{<§1>6R2]§1>0}
&a

nije potprostor u R2. Doduse, za a,b € W vrijedi a +b € W, ali (—1)a nije
u W, pa opéenito ni Aa nije u W (nacrtajte sliku).

7.6. Pitanje. Da li je skup

W:{Gl) 6R2\£120,§220}
&2

potprostor u R?? DA NE

7.7. Svojstva operacija zbrajanja i mnozenja skalarom eleme-
nata potprostora. Po definiciji potprostora W vektorskog prostora R,
na W imamo definirane operacija zbrajanja i mnozenja skalarom. Operacija
zbrajanja je asocijativna i komutativna. Ako je w vektor iz W, onda je po
pretpostavei 0 = 0 - w iz W, pa potprostor W ima i element 0 za operaciju
zbrajanja. Bududi da je —w = (—1)-w, to zajedno s elementom w potprostor
W sadrzi i suprotan element —w. Znaci da operacija zbrajanja vektora iz
W ima sva algebarska svojstva zbrajanja vektora u R” popisana u tocki 2.3.
Ocito je da i operacija mnozenja vektora iz W skalarom ima sva algebarska
svojstva popisana u tocki 2.3.

7.8. Linearna kombinacija elemenata potprostora. Ako je W pot-
prostor i aq, ..., a; vektori u W, onda iz definicije neposredno slijedi da je i
svaka linearna kombinacija A\ja; + - - - + Agay element potprostora W.

7.9. Linearna ljuska vektora je potprostor od R". Veé smo vidjeli
da je linearna ljuska vektora vq,...,v; u R

(U1, .. vk) = { v + -+ Aok | A, -, A € R}
vektorski potprostor od R™.

7.10. Svi netrivijalni potprostori od R3. Geometrijska nam intu-
icija kaze da su, osim skupa {0} i samog R3, pravci i ravnine kroz ishodiste
jedini podskupovi od R® zatvoreni za zbrajanje vektora po pravilu paralelo-
grama 1 mnoZenje vektora skalarom. Da bismo to i dokazali pretpostavimo
da je W potprostor od R? i da je W # 0. Tada postoji vektor v # 0
u W i, buduéi da je W zatvoren za mnozenje skalarom, W sadrzi pravac
p ={A\v | A € R}. Ako W nije taj pravac p, onda postoji w # 0 u W koji
nije proporcionalan v i, buduéi da je W zatvoren za zbrajanje i mnozenje
skalarom, W sadrzi ravninu IT = {\v 4+ pw | A\, u € R}. Ako W nije ni ta
ravnina II, onda je W = R3. Naime, ako W nije II, onda postoji vektor b u
W koji nije linearna kombinacija vektora v i w. To znaci da sistem jednadzbi

SLuv+bbw=D
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nema rjesenja. No onda nema rjeSenja ni sistem
! ! !,
(Sl'l) + ggw =b

kojemu je matrica sistema reducirana stepenasta forma (v/, w’) matrice (v, w).
Buduéi da v # 0 1 w # 0 nisu proporcionalni, reducirana stepenasta matrica
(v',w') je oblika

ili ili

* O =
* = O
S ¥ =
= o O
O = O
= o O

Ako na mjestima ugaonih elemenata u matrici (v’,w’,b) eliminiramo koor-
dinate od b, kao u tocki 6.16, dobivamo

1 00 1 00 00 p
01 0 ili x 0 0 ili 1 00
x x f 01 0 01 0

Buduéi da b nije linearna kombinacija v' i w’, to u svakom od tri slucaja
mora biti 8 # 0, i svaku od tih matrica mozemo svesti na matricu (eg, ea, €3)
vektora kanonske baze u R3. Buduéi da za linearne ljuske imamo

<v,w,b) = <v',w',b> = <Ulaw/7b/> = <61762763> = R37

to W sadrzi sve vektore iz R?, pa je W = R3.

7.11. Primjedba. Gornji dokaz je malo dug i nespretan, ali koristi
samo ono §to smo dosada naucili. U idué¢em ¢emo poglavlju nauciti pojmove
i rezultate iz kojih ¢e puno lakse slijediti opis svih potprostora, ne samo u
R3, nego i opéenito u R™.

7.12. Zadatak. Pokazite da su svi netrivijalni potprostori u R? pravci
kroz ishodiste.

7.13. Zadatak. Pokazite da je skup svih rjeSenja x = (§1, &2) homogene
jednadzbe

§1—35 =0

vektorski potprostor u R2. Interpretirajte taj skup geometrijski u euklidskoj
ravnini.

7.14. Zadatak. Pokazite da je skup svih rjesenja z = (&1,&2,&3) ho-
mogenog sistema jednadzbi

§1—&&=0, &—-&=0

pravac kroz ishodiste u R3.
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7.15. Teorem. Skup svih rjesenja homogenog sistema jednadzbi
a1ty + -+ apéy =0,
181+ + a2 =0,

am1é1 + -+ b =0
je vektorski potprostor u R™.

Dokaz. Oznac¢imo li s aq, ..., a, stupce matrice sistema A, onda ho-
mogeni sistem jednadzbi mozemo zapisati kao

Az =&ar + -+ + &pan = 0.
Za dva rjesenja x iy iz svojstva linearnosti (5.7) slijedi
Alz+y) =Az+Ay=04+0=0 1 A(Az)=A(Az) =X0=0.
Zmaci da je skup svih rjeSenja zatvoren za zbrajanje i mnozenje skalarom. [

7.16. Dva vazna pitanja o potprostorima u R”. Iz svega $to smo
u ovoj tocki rekli nameéu se dva pitanja:

(1) Da li je svaki potprostor u R™ linearna ljuska (vi,...,vg) za neke
vektore vy,...,v, € R" ?

(2) Da li je svaki potprostor u R™ skup svih rjesenja homogenog sistema
jednadzbi &1ay + -+ &pan, =0 za neke vektore aq,...,a, € R™ ¢

Na prvo pitanje odgovorit ¢emo u sljede¢em poglavlju, a na drugo u
poglavlju o skalarnom produktu u R™!°,

15Na oba je pitanja odgovor potvrdan.
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Baza vektorskog prostora

U ovom poglavlju uvodimo pojam baze u R™ i pokazujemo da svaka baza
ima n elemenata, a da li su dani vektori baza provjeravamo koristenjem
elementarnih transformacija. Uvodimo pojam linearno nezavisnog skupa
vektora u R" i dokazujemo da se svaki linearno nezavisni skup moze nado-
puniti do baze. Zatim definiramo kona¢no dimenzionalne vektorske prostore
i pokazujemo da navedena svojstva baze vrijede i opéenito. Posebno je
vazna posljedica razmatranja opéih vektorskih prostora da je svaki realni
n-dimenzionalni vektorski prostor izomorfan R™.

1. Baze u R”
1.1. Kanonska baza u R". Skup vektora u R" oblika
1 0 0
0 1 0
€1 = . ) €2 = . ) s €n =
0 0 1

zovemo kanonskom bazom vektorskog prostora R™. Primijetimo da vektor
kanonske baze e; ima j-tu koordinatu 1, a sve ostale 0. Na primjer, skup
vektora

1 0 0
e1=10], e=[|1], e3=10
0 0 1

je kanonska baza vektorskog prostora R3.
Svaki vektor x u R™ moZemo na jedinstveni nacin prikazati kao linearnu
kombinaciju vektora kanonske baze

T = flel +€262 4 +£n€n

Koeficijente &1, &2 . .., &, u toj linearnoj kombinaciji — zapravo koordinate od
x — zovemo jo§ i koordinatama vektora x u kanonskoj bazi. Kraée kazemo
da smo vektor x prikazali ili zapisali u kanonskoj bazi, pri cemu je & prva
koordinata vektora x u kanonskoj bazi, €2 druga koordinata, itd. Na primjer,
vektor  u R? mozemo zapisati u kanonskoj bazi kao

&1 &1 0 0 1 0 0
r=&|=[0]+[&]|+[0|=&|0]+&[1]+&|0
&3 0 0 &3 0 0 1

61
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1.2. Primjer.

1 1 0 0 0
—2 0 1 0 0

a=|, =1 0 +(-2) 0 +0 1 +2 0 = e1 — 2eg + Oez + 2ey,
2 0 0 0 1

pa je u kanonskoj bazi ey, es, e3, e4 od R* prva koordinata vektora a jednaka
1, druga koordinata je —2, tre¢a koordinata je 0 i ¢etvrta koordinata je 2.

1.3. Zadatak. Prikazite vektor

u kanonskoj bazi prostora R5.

1.4. Jediniéna matrica. Kvadratnu n x n matricu

I=(e1,...,en)

Ciji su stupci e, ...,e, elementi kanonske baze prostora R™ zovemo je-
dini¢nom matricom i obi¢no je oznacavamo s I. Na primjer,

1000

10 0100
1=1 <o 1>_I’ 001 0]="

0001

gdje je redom [ jedini¢na matrica tipa 1 x 1, tipa 2 x 2 i tipa 4 x 4.

1.5. Pitanje. Da li su

111 10 00
111 i 01 00
111 0 010
jedini¢ne matrice? DA NE
1.6. Definicija baze u R". Kazemo da je skup vektora aj,as,...,as

baza od R™ ili baza u R™ ako svaki vektor x u R"™ mozemo na jedinstveni
nacin prikazati kao linearnu kombinaciju

Aar + Asas + -+ Agas, A1, Aa,..., Ay €R.

Pokazat ¢emo (teoremi 1.12 1 3.15) da svaka baza u R™ ima n elemenata, tj.
da mora biti s = n.
Ocito kanonska baza e, es, ..., e, od R" jest baza u R".
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1.7. Napomena. Mozda nije na odmet posebno istaknuti da se u de-
finiciji baze zahtijevaju dva svojstva: 1) da za svaki vektor z u R" postoji
prikaz u obliku linearne kombinacije od aq,...,as i 2) da je za svaki vektor
x takav prikaz jedinstven. Ako vrijedi prva tvrdnja, onda obi¢no kazemo
da vektori ay, ..., as razapinju R™.

1.8. Primjer. Vektori

() e

¢ine bazu u R%. Naime, za vektor z € R? uviet x = Ara; + A2as mozemo

zapisati kao
&) _ 1 LY _ (At A
<£2 =g )t = -

Kao sto smo veé¢ u tocki 2.5.9 primijetili, zapisano po koordinatama to je
sistem jednadzbi

A1+ A2 =&, A=A =§
s nepoznanicama A i Ae koji za svaki izbor koordinata £; i £ ima jedinstveno
rjeSenje
M =G +8)/2,  X=(E-8&)/2
Znaci da svaki vektor x mozemo na jedinstveni nacin prikazati kao line-

arnu kombinaciju vektora aj, as. Tako, na primjer, imamo jedinstveni zapis

vektora (_32) = %al + %ag.

1.9. Baze u R" i sistemi jednadzbi. Tocka 2.5.9 i prethodni primjer
pokazuju da opcenito mozemo provjeriti da li je skup vektora ai,as, ..., as
baza u R"™ provjeravajuéi da li sistem jednadzbi

Arar + A2ag + -+ Asas =T
sa zadanom matricom sistema A = (a1, as,...,as) i desnom stranom z ima
jedinstveno rjesenje (A1, Ag, ..., \s) za svaki vektor z € R™.

1.10. Zadatak. Pokazite da su vektori by = (}) i b2 = (1) baza u R?.

1.11. Primjer. Da bismo pokazali da vektori
1 -1 2
al = 1 ,  ag = 2 ,  asz = -1
-1 1 1
¢ine bazu u R? trebamo pokazati da za svaki vektor z iz R3 sistem jednadzbi
Atar + Aoag + Azaz =@

s nepoznanicama A1, A, A3 i desnom stranom z ima jedinstveno rjesenje.
Taj ¢emo sistem rjesavati Gaussovom metodom. Buduéi da nas ne zanima
Sto je rjesenje (A1, A2, Ag), ve¢ samo tvrdnja da postoji jedinstveno rjesenje
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za svaku desnu stranu z, to ne¢emo ra¢unati desnu stranu sistema — pisat
¢emo samo zvjezdice:

1 -1 2 % 1 -1 2 =« 1 -1 2 %
1 2 -1 x|—=10 3 -3 x|—10 3 -3 =«
-1 1 1 -1 1 1 0 0 3

Sada je jasno da primjenom obratnog hoda u Gaussovoj metodi dobivamo
jedinstveno rjesenje (A1, A2, A3) za svaku desnu stranu x.

Da smo u ovom primjeru nastavili postupak eliminacijom elemenata u
gornjem trokutu matrice sistema, kao rezultat bismo dobili

1 0 0 =«
01 0 x|,
0 01

odakle je sasvim oCito da pocetni sistem jednadzbi ima jedinstveno rjesenje.

Valja primijetiti da je bilo sasvim suvisno u Gaussovim eliminacijama
pisati zvjezdice umjesto desne strane x sistema — dovoljno je bilo vidjeti da
elementarnim transformacijama na jednadzbama matricu poc¢etnog sistema
mozemo prevesti u matricu ¢iji su stupci elementi kanonske baze

(al,ag,ag) [ S e 4 (61,62,63).

1.12. Teorem o bazi u R" i elementarnim transformacijama re-

daka matrice. Neka je n x p matrica (vy,...,v,) dobivena elementarnim
transformacijama redaka iz matrice (vi,...,vp). Tada su stupci matrice
(/P v,) baza od R™ ako i samo ako su stupci matrice (v, ..., vp) baza od
R™,

Stovise, ako su stupci V1,...,Vp baza od R™, onda je p = n i postoji
niz elementarnih transformacija redaka koji matricu (vq,...,v,) prevodi u
jedini¢nu matricu I = (eq,...,ep).

DokAz. Dokaz teorema je u sustini ponavljanje argumenata iz prethod-
nog primjera: Po definiciji 1.6 vektori vq,...,v, ¢ine bazu od R" ako za
svaki vektor x sistem jednadzbi

(1.1) Avr + s AUy = @
S nepoznanicama Af,...,As; i desnom stranom z ima jedinstveno rjeSenje.
Ako je

(U1, 0p) = (V.. 0p)

elementarna transformacija redaka n x p matrice, onda za proSirenu matricu
sistema (1.1) imamo pripadnu elementarnu transformaciju
/ / /
(V150 vp, ) = (V1,005 0, @)
i novi sistem jednadzbi

(1.2) Ay + -+ Ay, = 2
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ima isti skup rjesenja. Posebno, sistem (1.2) ima jedinstveni rjesenje za svaki
«'. Buduéi da je elementarno preslikavanje! z — ' bijekcija na R™, to sistem
(1.2) ima jedinstveni rjesenje za svaku desnu stranu i vektori (v, ...,v;,) su
baza od R™.
Ako su vektori v, ... ,v;, baza od R"”, onda je prema upravo dokazanoj
tvrdnjiivi,...,v, baza od R" jer postoji inverzna elementarna transforma-
/

cija redaka koja matricu (vy,...,v,) prevodi u matricu (v, ..., vp).

Dokazimo? da je p = n ako su vektori vy, . .. ,vp baza od R"™. Naime,
0=0v1+---+0v

i da je p > n imali bismo, prema teoremu 1.4.3, neko netrivijalno rjesenje
(A1,...,Ap) sistema

0=Mv1+ -+ Ay,
suprotno pretpostavci o jedinstvenosti zapisa svakog vektora u bazi vy, . . ., vp.

S druge strane, da je p < n, svodenjem sistema jednadzbi (1.1) Gaussovom
metodom na stepenastu formu, recimo

(1.3) A+ Ay, = 2,

dobili bismo u matrici sistema (1.3) zadnji redak jednak nuli jer ima vise
jednadzbi nego nepoznanica. No tada za ' = e, sistem (1.3) ne bi imao

rjeSenja, suprotno ve¢ dokazanoj tvrdnji da vf, ... ,1); mora biti baza od R".
Znaci da je p = n.
Neka su vektori vy, ...,v, baza od R™. Svodenjem n x n sistema jed-

nadzbi (1.1) Gaussovom metodom na stepenastu formu, recimo (1.3), dobi-
vamo gornju trokutastu matricu sistema kojoj je svaki element na dijagonali
razli¢it od nule. Naime, da je u postupku svodenja na stepenastu formu neki
od elemenata dijagonale bio nula, onda bi na kraju postupka imali zadnji
redak nula — $to je nemoguce. No trokutasti sistem kojemu je svaki element
na dijagonali razli¢it od nule obratnim hodom Gaussove metode mozemo
svesti na sistem kojemu je matrica sistema jedini¢na matrica

I=(e,...,en).

O

1.13. Pitanje. Moze li R” imati bazu od devet elemenata ili R? bazu
od sedam elemenata? DA NE

1.14. Primjedba. Iz zadnjeg dijela dokaza vidimo da za vektore vy,
.., U koji nisu baza svodenjem matrice na gornju stepenastu formu Ga-

ussovim eliminacijama dobivamo matricu (v}, ...,v},) kojoj je barem zadnji

e n
redak nula. Znaci da elementarnim transformacijama na recima za pro-

tzvoljnu n X n matricu mozZemo ustanoviti jesu li stupct matrice baza od R™

1yidi tocku 2.4.23 u prethodnom poglavlju
2Opc’enitiju tvrdnju teorema 3.15 dokazujemo na sli¢an nacin.
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ili ne. Na primjer, elementarnim transformacijama na recima dobivamo

1 2 1 1 21 1 21 1 21
-2 -1 1]—=10 3 3]—={0 3 3]—=10 3 3],
-1 1 2 -1 1 2 0 3 3 0 00

pa zakljuéujemo da stupci pocetne matrice nisu baza u R3.

1.15. Zadatak. Dokazite da vektori vy, vs, v3,

1 1 2
v = 2 s Vo = -1 5 V3 = 1
1 -1 2

¢ine bazu vektorskog prostora R3.

1.16. Zadatak. Dokazite da vektori vy, vo, v3,

1 —2 -1
v=\12], wvu=\|-1], vs=1]1
1 1 2

nisu baza vektorskog prostora R3.

1.17. Teorem o bazi u R” i elementarnim transformacijama stu-
paca matrice. Neka je niz vektora vy,...,vl, u R™ dobiven elementarnim
transformacijama iz niza vq,...,v,. Tada je v, ...,v) baza od R™ ako i
samo ako je vy, ...,v, baza od R™.

Stovise, ako je vi,. .., v, baza od R"™, onda postoji niz elementarnih tran-
sformacija koji tu bazu prevodi u kanonsku bazu ey, ..., ey.

DokAz. Pretpostavimo da su vektori vq,...,v, baza od R"” i da smo
proveli elementarnu transformaciju oblika

/ / /
V] = V1 + Uv2, V9 =V2,..., Uy = Up.
Tada za proizvoljan vektor v iz R™ imamo jedinstveni zapis

V= A1 + Aovg + - - + AUy,

i vrijedi

(1.4) v=Nv] + Novh + -+ Al
' = Nv1 + N+ Ny)ve + Nyvs + -+ + N oy,

za

(1.5) No=A, MNp+XNy=X, N, =\,

Relacije (1.5) mozemo shvatiti kao sistem jednadzbi s nepoznanicama A,
b, ..., Al i zadanom desnom stranom A1, Ag,...,\,. No taj sistem ima

jedinstveno rjesenje
)\/1:)\1, )\'2:)\2—)\1,u, )\;l:)\n,

pa zato i vektor v ima jedinstveni prikaz (1.4). Znaci da je vf,...,v] baza
od R™.
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Na slican nac¢in dokazujemo i za druge elementarne transformacije da
je vj,...,v), baza ako je vi,...,v, baza. Buduéi da svaka elementarna
transformacija ima inverznu, to su vektori vy, ..., v, dobiveni elementarnim
transformacijama iz niza v},...,v),, pa je v1,...,v, baza ako je v|,..., v,
baza.

Neka je vy,...,v, baza od R™. Primjenom niza elementarnih transfor-
macija na stupcima n X n matricu (vy, ..., v,) mozemo svesti na donju tro-

kutastu matricu (v],...,v),) kojoj su svi dijagonalni elementi razli¢iti od

rrn
nule. Naime, u suprotnom bi na kraju procesa stepenasta matrica imala

zadnji stupac nula, odnosno v}, = 0, pa bi za svaki A # 0 imali

0=00v] + -+ 0v),_; + A0.

No to je u suprotnosti s ve¢ dokazanom tvrdnjom da je v}, ..., v], baza i da,
shodno tome, svaki vektor u toj bazi ima jedinstveni zapis.
Iz donje trokutaste matrice (vf,...,v)) kojoj je svaki element na dija-
gonali razli¢it od nule lako je dobiti jediniénu matricu
I=(e1,...,en)

primjenom elementarnih transformacija stupaca: prvo “eliminiramo” ele-
mente u zadnjem retku koristeé¢i zadnji stupac, zatim elemente u predzad-
njem retku koristeéi predzadnji stupac, itd. ([l

1.18. Primjer. Da vektori

1 1 2
v = |2 , VU2 = -1 , VU3 = 1
1 -1 2

¢ine bazu u R? mozemo utvrditi i koristenjem elementarnih transformacija
na stupcima matrice, pri ¢emu prvo dobijemo donju trokutastu matricu koja
na dijagonali ima elemente razli¢ite od nule:

1 1 2 1 0 0 1 0 O 1 0 0
2 -11]—=12 -3 -3|—=1[2 -3 0|—1{|2 -3 0],
1 -1 2 1 -2 0 1 -2 2 1 -2 1

a potom trokutastu matricu svedemo na jedini¢énu matricu:

1 0 0 1 00 1 00
—12 -3 0]—=1(210]—=1{010)]=1
0 0 1 0 01 0 01
1.19. Primjedba. Iz zadnjeg dijela dokaza teorema 1.17 vidimo da
za vektore vy, ..., v, koji nisu baza svodenjem matrice na gornju ste-
penastu formu elementarnim transformacijama stupaca dobivamo matricu
(v, ...,v)) kojoj je barem zadnji stupac nula. Znaci da elementarnim tran-

sformacijama za proizvoljnu n X n matricu mozemo ustanoviti jesu li stupci
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matrice baza od R™ ili ne. Na primjer, elementarnim transformacijama na
stupcima dobivamo

1 2 1 1 01 1 00 1 00
2 -1 1| (-2 3 1|~[-23 3]=>[-2 3 0],
1 1 2 ~1 3 2 ~1 3 3 -1 30

pa zaklju¢ujemo da stupci poéetne matrice nisu baza u R3.

1.20. Zadatak. Koristeéi elementarne transformacije stupaca matrice

utvrdite jesu li vy,...,vs baza u R?* za vektore
1 1 2 2
N ! 11 -1,
U]. - 1 ) U2 - _1 Y /U?) - 2 9 U4 - _1
1 0 —2 2

2. Linearna nezavisnost vektora u R"

2.1. Definicija linearne nezavisnosti vektora u R". KaZemo da su
vektori vy, ..., v, uR"™ linearno nezavisni ako je samo trivijalna kombinacija
tih vektora jednaka nuli, tj. ako

Avp 4o+ Apvp =0

povlaci

A =0,...,2,=0.
Kazemo da su vektori vi,...,v, u R" linearno zavisni ako nisu linearno
Nezavisni.

2.2. Linearna nezavisnost u R" i homogeni sistemi jednadzbi.
Svojstvo linearne nezavisnosti vektora u R™ mozemo izreéi i u terminima

sistema jednadzbi: wvektori vi,...,v, su linearno nezavisni ako © samo ako
homogeni n X p sistem jednadzbi

(2.1) Sivp + -+ &, =0

ima jedinstveno rjeSenja & = --- =&, = 0.

2.3. Primjer. Prema prethodnoj primjedbi pitanje da li su vektori

1 1 2

I -1 11

Ul - 1 9 U2 - _1 9 7)3 - 2

1 1 -2

linearno nezavisni svodi se na pitanje da li homogeni sistem jednadzbi

1 1 2 0

2 -1 1 0

A 1 + Ao 1 + A3 9 0

1 1 -2 0
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ima jedinstveno rjesenje A\; = A2 = A3 = 07 Sistem rjesavamo Gaussovom
metodom

1 1 2 0 1 1 2 0 1 1 2 0
2 -1 1 0 0 -3 —3 0 0 -2 0 0
1 -1 2 of7lo =2 0o o]l o 0o —4o0f™
1 1 -2 0 0 0 —4 0 0 -3 -3 0
1 1 2 0 1120 102 0 100 0
o 1 0 ofl _|o1oo] [o1oo] o100
00 1 0 0010 0010 001 0]
0 -3 -3 0 0000 000 0 000 0

pa na kraju zaklju¢ujemo da homogeni sistem zaista ima jedinstveno rjesenje
A1 = A2 = A3 = 0. Primijetimo da je u ovom postupku bilo suvisno pisati
desnu stranu homogenog sistema i da odgovor ovisi samo o matrici sistema
(v1,v2,v3) na kojoj smo izvodili elementarne transformacije po recima.

2.4. Zadatak. Koristeéi elementarne transformacije redaka matrice
utvrdite jesu li vektori

1 1 2
2 -1 1
2 —1 1

linearno nezavisni?

2.5. Pitanje. Ocito su stupci matrice

1 1 2
0 -1 1
0 0 2

linearno nezavisni. Mozemo li odavle zakljuciti da su onda linearno nezavisni
i stupci matrice

1 1 2
0o -1 1
0 0 2
ar f1om
az P2 72
az B3 73

za sve a;, Bi,vi u R, i =1,2,37

2.6. Neposredne posljedice definicije linearne nezavisnosti. Ve-
zano uz definiciju primijetimo sljedece:
1. Ako je v # 0, onda je v linearno nezavisan. Naime, Av = 0 za
netrivijalnu linearnu kombinaciju, tj. A # 0, daje
v=1-v=(3Av=3(\)=30=0,

S§to je suprotno pretpostavei v # 0.
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2. Ako su vektori vy, ..., Um linearno nezavisni, onda onda su i vektori
v1,...,Up linearno nezavisni za p < m. Treba samo provjeriti da

A1+ -+ Apup =0
povlaci Ay = 0,...,\, = 0. No iz gornje jednakosti “dodavanjem nule”
dobivamo
A1+ -4 Apup + 0vpr1 4 - 4 Ovgy = 0,

pa sad iz pretpostavke da su vektori vy, ..., v,, linearno nezavisni slijedi da
su svi koeficijenti u kombinaciji nula, posebno A\ =0,..., A, = 0.

3. Vektori 0,v1,...,vy nisu linearno nezavisni. Naime, imamo netrivi-
jalnu kombinaciju

1-0+0vy+ -+ Ovp, =0.

Posebno, ako su vy, ..., v, linearno nezavisni, onda je v; # 0 za sve j =
1,....,m.

2.7. Zadatak. DokazZite da su vektori v1 i vy linearno nezavisni ako i
samo ako misu proporcionalni.

2.8. Pitanje. Da li su vektori (1) i (%) linearno nezavisni? DA NE

2.9. Pitanje. Da li su vektori vy, v9, 0 linearno nezavisni ako su vektori
v1, U9 linearno nezavisni? DA NE

2.10. Pitanje. Da li su vektori vz, v4 linearno nezavisni ako su vektori
v1, V9, V3, U4 linearno nezavisni? DA NE

2.11. Pitanje. Da li su vektori vy, v, v3,v4 linearno nezavisni ako su
vektori v3, v4 linearno nezavisni? DA NE

2.12. Lema o linearnoj nezavisnosti vektora i elementarnim

transformacijama. Neka je niz vektora vi,.. .,1)1’0 u R™ dobiven elemen-
tarnim transformacijama iz niza vy, ..., vp. Tada je vy, ... 7”1/2 linearno ne-
zavisan ako 1 samo ako je vi,...,vp linearno nezavisan.
DokAz. Pretpostavimo da su vektori vy, ..., v, linearno nezavisni i da
smo proveli elementarnu transformaciju oblika
/ / /
V] = V1 + U2, Uy =V2,..., Up = Up.
Neka je
/ / /
A0y + Agvy + -+ Apuy, = 0,
odnosno
A1 + ()‘LU' + )\2)1)2 + Azvg + -+ )\p’Up =0.
Sada linearna nezavisnost vy, ..., v, povlaci
/\1:)\1M—|—/\2:)\3:-":)\p:0.
No tada je Ay = A2 = --- = X\, = 0, Sto dokazuje linearnu nezavisnost
vektora vy,...,v,. Na slican nacin i za druge elementarne transformacije
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dokazujemo da linearna nezavisnost vektora vi,...,v, povlaci linearnu ne-
zavisnost vektora v, ... ,U;). Buduéi da svaka elementarna transformacija
ima inverznu, to su vektori v, ..., v, dobiveni elementarnim transformaci-
jama iz niza vj,...,v,, pa linearna nezavisnost vi,...,v, povlaci linearnu

nezavisnost v1,...,vp. [l

2.13. Primjer. NapiSimo vektore vi,vo,vs iz primjera 2.3 kao stupce
u matrici i provedimo elementarne transformacije na stupcima

1 1 2 1 0 2 1 0 0 1 0 0
2 -1 1 2 -3 1 2 -3 -3 2 -3 0
1 -1 271 =2 2|71 =2 o7 |1 =2 2
1 1 -2 1 0 -2 1 0 -4 1 0 -4

Za vektore stupce na desnoj strani lako je ustanoviti da, pri utvrdivanju
njihove linearne nezavisnosti, odgovarajuéi sistem jednadzbi

A= 07
2M1 —3X2 =0,
A —2X 0 +2X3 =0
A1+ 0y —4X3 =0,
ima jedinstveno trivijalno rjeSenje Ay = 0, Ay = 0, A3 = 0. Znaci da su
vektori stupci na desnoj strani linearno nezavisni. Iz leme 2.12 slijedi da su
vektori vy, v2, v3 U naSem primjeru 2.3 linearno nezavisni.
Postupak nismo trebali prekinuti kod homogenog sistema jednadzbi (2.2),

ve¢ smo mogli nastavit s elementarnim transformacijama stupaca svodedi
matricu na reduciranu donju stepenastu formu

(2.2)

1 0 0 1 0 0 1 0 0
2 -3 0 2 -3 0] |2 -3 0]
1 -2 2 1 -2 1 0 0 1
1 0 -4 1 0 -2 3 -4 -2
1 0 0 1 0 0
Lz oo oo
0 0 1 0o 0 1
3 4/3 —2 1/3 4/3 -2

dobivsi na kraju sistem
A1=0, X=0, X3=0, %)\1 + %)\2 —2X3 =0.

2.14. Provjera nezavisnosti svodenjem na stepenastu matricu.
Gornji nam primjer pokazuje kako i opéenito mozemo provjeriti linearnu ne-

zavisnost vektora vi,...,v, u R™: elementarnim transformacijama stupaca
n x p matricu (vq,...,vp) svedemo na donju stepenastu matricu

(Cl, N ,Cp).
Ako matrica (c1,...,¢p) ima nul-stupac, onda vektori nisu linearno neza-

visni, pa prema lemi 2.12 nisu nezavisni ni vektori vy,...,v,. Ako su pak
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svi vektori u donjoj stepenastoj matrici (¢, ..., ¢p) razliciti od nule, onda
imaju ugaone elemente u recima i1, ...,7,. Tada u sistemu jednadzbi
(2.3) Aeg + -+ )\pCp =0

prvo gledamo koordinatu na i;-tom mjestu. Tu vektor ¢; ima ugaoni element
ci;1 # 0, a ostalim vektorima ca,. .., ¢, je i1-ta koordinata nula. Znaéi da
imamo jednadzbu

)\161'11 =0
koja ima jedinstveno rjesenje A\; = 0. Tada sistem (2.3) postaje
/\202—|—---+)\pcp:0.

U tom se sistemu ne javlja vektor ci, pa gledamo koordinatu na io-tom
mjestu. Tu vektor cp ima ugaoni element cj,2 # 0, a ostalim vektorima

c3,...,Cp je ta-ta koordinata nula. Znaci da imamo jednadzbu

)\QCiQQ =0
koja ima jedinstveno rjeSenje Ao = 0. Nastavljajuéi postupak zakljuc¢ujemo
da sistem (2.3) ima samo trivijalno rjeSenje. Znaci da su vektori ci,...,¢,
linearno nezavisni, a prema lemi 2.12 su onda nezavisni i vektori vy, ..., vp.

2.15. Zadatak. Koristeéi elementarne transformacije stupaca matrice
utvrdite jesu li vektori iz zadatka 2.4 linearno nezavisni?

2.16. Druga (ekvivalentna) definicija baze prostora R™. Skup

vektora v1, . ..,vs je baza vektorskog prostora R™ ako i samo ako
(1) wvektori vy, ...,vs razapinju R™ i
(2) v1,...,vs je linearno nezavisan skup.

Doxkaz. Ako vrijedi (1), onda svaki vektor v € R” mozemo zapisati kao
neku linearnu kombinaciju

v =&+ -+ &s,
a zbog pretpostavke (2) je taj prikaz jedinstven. Naime,
v =101+ -+ Nsvs = E1v1 + -+ s

povlaci
(m —&)vr+ -+ (s — &)vs = 0,

pa pretpostavka da su vektori linearno nezavisni daje 1 = &1, ...,1ns = &s.
Obrat. Po definiciji baza razapinje R™. No baza je i linearno nezavisan
skup jer iz relacija

MU+ -+ Avs=0 1 Ovy+---+0v,=0

i jedinstvenosti zapisa vektora 0 u bazi slijedi Ay =0,..., s =0. U
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2.17. Nadopunjavanje nezavisnog skupa u R" do baze. Ako je

Vi,...,V, k < n, linearno nezavisan skup vektora u R™, onda postoji baza
oblika

U1y Vks Vk+15 -+ -5 Un.
Obicno kazemo da smo tu bazu vektorskog prostora R™ dobili nadopunjava-
njem linearno nezavisnog skupa vi, ..., Vg.

Zadani linearno nezavisan skup vektora vq,...,v; u R” mozemo nado-
puniti do baze tako da elementarnim transformacijama matricu (vy, ..., vg)
prevedemo u donju stepenastu matricu (v, .. .,v}) kojoj su ugaoni elementi
u recima ji,...,jg. Ako je

{jl:"'ajk}U{ila---vin—k} = {17"'>n}7

onda umetanjem n — k elementa kanonske kanonske baze e;,,...,e; , utu
matricu dobivamo donju trokutastu matricu kojoj su svi dijagonalni elementi
razli¢iti od nule. Na primjer, ako je donja stepenasta matrica (v],...,v},)
oblika

(v1, vy, v5) =

NN
W wH—oOo
- o oo

s ugaonim elementima u recima 1, 3 i 4, onda dodavanjem vektora eg, e5 € R?
dobivamo

1 00 00
21000
(v],e2,vh,v5,e5) =12 0 1 0 0
20310
2 0 3 41
Vektori dobivene donje trokutaste matrice
Ull,.. . ,v;,eil,. R &

¢ine bazu od R”. Buduéi da svaka elementarna transformacija ima inverz,
te vektore mozemo prevesti u niz

(24) Vlyeoo s Vs €iq5 - -, 64

izvodedi elementarne transformacije samo na prvih k vektora. Prema lemi
2.12 vektori 2.4 ¢ine bazu od R”.

2.18. Primjer. Buduéi da za vektore vi,vo,vs iz primjera 2.3 i 2.13
imamo

1 1 2 1 0 0
2 1 1 2 -3 0
1 -1 2|71 -2 2
1 1 -2 1 0 -4
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i da dodavanjem vektora kanonske baze e4 dobivamo donju trokutastu ma-
tricu

1 0 0 O
2 =3 0 0
1 -2 2 0’
1 0 -4 1

to je v1,va, v3, e4 baza od R*

2.19. Pitanje. Neka je v = (0,0,2,2,2) € R%. Dali je e1,e2,v, 4,65
baza u R°? DA NE

2.20. Zadatak. Nadopunite do baze od R? linearno nezavisne vektore

3. Konaé¢no dimenzionalni vektorski prostori

Osim baze vektorskog prostora R™ nama ¢e biti vazan i pojam baze
vektorskog potprostora prostora R”. Buduéi da pojmovi i razmatranja koja
¢emo provoditi ne ovise o “prirodi” vektora, ve¢ samo o svojstvima operacija
zbrajanja i mnozenja skalarom?, to je korisno uvesti opéi pojam vektorskog
prostora.

3.1. Definicija vektorskog prostora. Kazemo da je skup V' vektorsk:
ili linearni prostor nad poljem realnih brojeva R ako na V' imamo zadanu
binarnu operaciju zbrajanja

+:VxV =V, (fg—f+y,
i operaciju mnoZenja skalarom
S RxV =V, N f)—= A f,
za koje vrijede sljedeca svojstva za sve f,g,h € Vi u€eR:
(1) (f+9g)+h=f+(9+h) (asocijativnost zbrajanja),
(2) postoji element 0 € V takav da je
f+0=0+ f = f (neutralni element za zbrajanje),
(3) za svaki f postoji element —f € V takav da je
f+(=f)=(=f)+ f =0 (suprotni element za zbrajanje),
(4) f+g9=g+ f (komutativnost zbrajanja).

(6) A (u- f) = (Au) - f (kvazi-asocijativnost),

3Kao primjer dokaza koji ovisi o “prirodi” vektora mozemo uzeti dokaz o nadopunja-
vanju linearno nezavisnog skupa u R™ do baze u tocki 2.17 gdje se bitno koristi ¢injenica
da su vektori v1,...,vr n-torke realnih brojeva. S druge strane u tocki 4.6 dokazujemo
opcéenito da u svakom kona¢no dimenzionalnom vektorskom prostoru svaki linearno neza-
visan skup vektora mozemo nadopuniti do baze.
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(A (f+g)=A-f+Xrg9, QA+p)-f=A-f+pf
(distributivnost mnoZenja prema zbrajanju).

Elemente vektorskog prostora zovemo wvektorima, a brojeve skalarima.
Kao i u slu¢aju n-torki brojeva, vektore ¢emo oznacavati malim latinskim
slovima, a skalare malim grékim slovima. U daljnjem (uglavnom) neéemo
pisati mnozenje vektora skalarom kao A - f, veé uobic¢ajeno Af. Mnozenje
skalarom uvijek piSemo tako da je vektor na desnoj strani, pa Ov nedvosmi-
sleno znaci da vektor v mnozimo skalarom 0, a A0 znaci da vektor 0 mnozimo
skalarom A. Relacija Ov = 0 znaci da vektor v pomnozen skalarom 0 daje
vektor 0.

3.2. Svojstva zbrajanja i mnozZenja skalarom. U paragrafu 2.2
prethodnog poglavlja nabrojili smo niz svojstava operacija zbrajanja i mno-
zenja skalarom i primijetili da s vektorima ra¢unamo “kao s brojevima”. Sva
navedena svojstva vrijede i u slu¢aju opcenitog vektorskog prostora, premda
ih nismo naveli u definiciji. Tako, na primjer, u vektorskom prostoru V vri-
jedi

0a=0, (-l)a=—-a i AN=0
za svaki vektor ¢ u V' i svaki skalar A u R. Da bismo, na primjer, dokazali
prvu tvrdnju Oa = 0 stavimo b = Oa. Zbog svojstva skalara 0 imamo 0+0 = 0
i, koriste¢i distributivnost (7), imamo O0a = (04 0)a = 0a+ 0a, tj. b =b+b.
Dodamo li objema stranama vektor —b, koji prema (3) postoji, dobivamo
0=b+(-b)=(0b+b)+(-b)=b+ (b+ (=b)) = b+ 0= b (ovdje u prvoj
jednakosti koristimo svojstvo suprotnog vektora (3), u trec¢oj asocijativnost
zbrajanja (1), u ¢etvrtoj ponovo (3) i u petoj jednakosti (2)). Dakle b = 0.

3.3. Zadatak. Dokazite da je u vektorskom prostoru neutralni element

za zbrajanje jedinstven?.

3.4. Skup izvodnica vektorskog prostora. Za skup vektora S C V
kazemo da razapinje vektorski prostor V, ili da je S skup izvodnica ili skup
generatora vektorskog prostora V', ako je svaki vektor v # 0 iz V linearna
kombinacija nekih vektora vi,...,v, iz skupa S. Jo§ ¢emo reéi da skup
S razapinje vektorski prostor V., ili da je V' linearna ljuska skupa S. Po
definiciji je prazan skup () skup izvodnica nul-prostora’.

3.5. Definicija linearno nezavisnog skupa vektora. Neka je V vek-
torski prostor. Kazemo da je skup vektora S C V' linearno nezavisan ako je
za proizvoljan konacan podskup vektora

{vi,...,9} CS

4Uputa: da je 0’ neki drugi neutralni element, imali bismo 0’ = 0’ + 0 = 0.

5“Op1ravdanje’7 za takav dogovor je da prazan skup @ zadovoljava definiciju skupa
izvodnica za nul-prostor 0 jer u nul-prostoru nema vektora v # 0 kojeg bi trebali napisati
kao linearnu kombinaciju nekih vektora iz (.
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samo trivijalna kombinacija tih vektora jednaka nuli, tj. ako

Avr + -+ Apvp =0

povlaci

AM=0,...,0, =0
Cesto kazemo da su vektori vy, ..., v, linearno nezavisni ako je skup vektora
{v1,...,vp} linearno nezavisan.

3.6. Primijetimo da je svaki podskup linearno nezavisnog skupa linearno
nezavisan skup.

3.7. Definicija baze vektorskog prostora. Za skup vektora S C V
kazemo da je baza vektorskog prostora V ako
(1) skup S razapinje V' i ako je
(2) S linearno nezavisan skup.

Prazan skup 0 je baza nul-prostora 0 = {0}.

3.8. Definicija kona¢tno dimenzionalanog vektorskog prostora.
Kazemo da je vektorski prostor V' konacno dimenzionalan ako ima neku
kona¢énu bazu® S = {v1,...,v,}. Ako V nije kona¢no dimenzionalan, onda
kazemo da je beskonacéno dimenzionalan vektorski prostor.

3.9. Teorem. Neka je vektorski prostor V' razapet vektorima by, ..., by,
i neka su ai,...,a, linearno nezavisni vektori u V. Tada je

m > p.

Dokaz. Ako je V razapet vektorima bq,...,b,, onda su svi vektori
njihove linearne kombinacije, pa posebno i vektori aq,...,a,. Neka su to
linearne kombinacije

m
a1 = aiiby + -+ b = Y b,
i=1

m
az = a12by + -+ + maby, = E aiob;,
=1

m
a,p = Oélpbl + -+ Oémpbm = Z Oéipbi
i=1

6prazan skup 0 je konac¢an skup s nula elemenata pa je nul-prostor 0 konaéno dimen-
zionalan vektorski prostor.
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za neke koeficijente ;. Pretpostavimo da je m < p. Tada prema te-

oremu 1.4.3 imamo neko netrivijalno rjeSenje (A1,...,A,) homogenog sis-
tema od m jednadzbi

p
E )\jaij:O, i:1,...,m,
Jj=1

a onda i netrivijalnu linearnu kombinaciju

p m m p
Aal + Asag + -0+ Apap = Z )\j ZOéijbi = Z )\jOé@'j b; =0,
j=1 =1 i=1 \j=1
suprotno pretpostavci da su vektori aq, ..., a, linearno nezavisni. Znaci da
pretpostavka m < p vodi do kontradikcije i da mora biti m > p. O
3.10. Teorem.
(1) Ako vektori by, ..., by, razapinju R™, onda je m > n.
(2) Ako su ay,...,ap linearno nezavisni vektori u R", onda je p < n.

DokAz. Obje su tvrdnje posljedica teorema 3.10 i ¢injenice da kanonska
baza u R” ima n elemenata. Naime, u prvom slucaju usporedujemo m s bro-
jem n nezavisnih vektora kanonske baze, a u drugom slucaju usporedujemo
p s brojem n vektora kanonske baze koji razapinju R™. O

3.11. Pitanje. Moze li biti 7 linearno nezavisnih vektora u R>? DA NE
3.12. Pitanje. Moze li biti 7 izvodnica u R°? DA NE
3.13. Pitanje. Moze li biti 5 izvodnica u R7? DA NE
3.14. Pitanje. Moze li biti 5 linearno nezavisnih vektora u R”? DA NE

3.15. Teorem. Svake dvije baze u konacéno dimenzionalnom vektor-
skom prostoru imaju jednak broj elemenata.

Dokaz. Neka su aq,...,ap i b1,...,b, dvije baze vektorskog prostora
V. Bududi da je V razapet vektorima b1,...,b,, i da su aq,...,a, linearno
nezavisni vektori u V', to je prema teoremu 3.10 m > p. No buduéi da je V'
razapet vektorima aq,...,a, i da su by,..., by, linearno nezavisni vektori u
V', to je prema teoremu 3.10 p > m. Znaci da je p = m. [l

3.16. Definicija dimenzije vektorskog prostora. Broj elemenata
baze kona¢no dimenzionalnog prostora V zovemo dimenzijom prostora i
oznacavamo s dimV. Ako je dimV = n, onda jos kazemo da je V n-
dimenzionalni vektorski prostor. Nul-prostor 0 je 0-dimenzionalan vektorski
prostor.

3.17. Dimenzija vektorskog prostora R". 1z teorema 3.15 i ¢injenice
da kanonska baza od R™ ima n elemenata slijedi da je dimenzija vektorskog
prostora R" jednaka n, tj.

dimR" = n.
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3.18. Teorem. Neka je V n-dimenzionalni vektorski prostor i neka su
V1,...,U, vektori u V. Tada je ekvivalentno:
(1) v1,...,v, razapingu V i
(2) v1,...,v, su linearno nezavisan vektori.

DoxkaAz. (1) povlaci (2): Neka su vektori vy, ..., v, izvodnice od V. Tada
pretpostavka da ti vektori nisu linearno nezavisni vodi do kontradikcije: ako
postoji netrivijalna linearna kombinacija

A1v1 + Agvg + -+ -+ Ay, = 0,

recimo da je A1 # 0, onda je
1

V1 = 71(—)\2’02 — e — )\n’l)n).

Izrazimo li proizvoljan vektor x kao linearnu kombinaciju izvodnica
v1, V9, ..., U, dobivamo

1
€T = 517)1 +£27)2+"’+§nvn = 51)\71(_)\27)2_” : _)\nvn)+€2v2+"'+€nvn-

1z tog izraza vidimo da se vektor x moze izraziti kao linearna kombinacija
vektora vo, ..., vy, pa slijedi da n — 1 vektora razapinje V, suprotno tvrdnji
teorema 3.10 da je broj izvodnica uvijek veéi ili jednak broju n linearno
nezavisnih vektora neke baze od V.

(2) povlaci (1): Neka su vektori vy,...,v, linearno nezavisni. Tada
pretpostavka da ti vektori nisu izvodnice od V vodi do kontradikcije: ako
postoji vektor v u V koji nije linearna kombinacija vektora vy, ..., v,, onda
su vektori

V,V1y...,Upn
linearno nezavisni. Naime, ako je
Av 4+ Ao+ -+ Ao, =0,

onda mora biti A = 0, jer bi u suprotnom imali da je v linearna kombinacija

)\1 )\n
U= Tv T S n
No A =0 daje
A101+"'+/\nvn207

pa zbog linearne nezavisnosti vektora vy, ..., v, slijedi Ay = --- = A, = 0.
Znaci da imamo n + 1 linearno nezavisnih vektora v,vq,...,v,, suprotno
tvrdnji teorema 3.10 da je broj linearno nezavisnih vektora uvijek manji ili
jednak broju n vektora neke baze koji su onda i izvodnice od V. (]

4. Nadopunjavanje nezavisnog skupa do baze

Argumente iz dokaza prethodnog teorema 3.18 ¢esto koristimo u line-
arnoj algebri na razne nacine. Tako malom izmjenom dokaza tvrdnje (1)
povlaci (2) dobivamo:
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4.1. Redukcija skupa izvodnica do baze. Neka je S = {vi,...,v,}
skup izvodnice od V. Tada postoji podskup od S koji je baza od V.

Dokaz. Ako je skup izvodnica S linearno nezavisan, onda je S baza od
V' i na8a tvrdnja vrijedi. Ako skup S nije linearno nezavisan, onda postoji
netrivijalna linearna kombinacija

A1 + Agvg + -+ - + A, = 0.

Ako je, recimo, A1 # 0, onda vektor v; mozemo izraziti kao linearnu kombi-

naciju preostalih vektora va, ..., vn:
1
V1 = f(—)\gvg — = )\nvn).
A1
Izrazimo li proizvoljan vektor x kao linearnu kombinaciju izvodnica vy, ..., v,

i u tu kombinaciju uvrstimo dobiveni izraz za v, onda za x imamo
1
z =& v +8§u2t -+ Epup = 5171(_)\2'02 — )\nvn) +&v2 + -+ Epun.

Iz tog izraza vidimo da se vektor z moze izraziti kao linearna kombina-
cija preostalih vektora vs,...,v,. Zna¢i da podskup S\{vi} = {va,...,vn}
skupa S razapinje V. Ako je S\{v;} linearno nezavisan skup, onda je to baza
od V i nasa tvrdnja vrijedi, a ako nije, onda nastavljamo opisani postupak
i u konaé¢no koraka dolazimo do baze koja je podskup od S. O

4.2. Zadatak. Dokazite da vektori

1 -1 2 1
a; = 1 s as = 2 N a3 — -1 y a4 = 1
-1 1 1 1

razapinju R3 i reducirajte taj skup do baze od R3.

4.3. Konaéno generirani vektorski prostori. Ako vektorski pros-
tor V ima konacan skup izvodnica, onda kazemo da je V konacno generirani
vektorski prostor. 1z prethodne tocke 4.1 slijedi da je svaki konacéno generi-
rani vektorski prostor konacno dimenzionalan.

4.4. Primjedbe. Slijedimo li postupak opisan u tocki 4.1, za zadani
skup izvodnica {v1, . .., v, } vektorskog prostora V mozemo u kona¢no koraka
nadéi podskup koji je baza od V — Cesto kazemo da skup izvodnica vy, ..., v,
reduciramo do baze izbacivanjem linearno zavisnih elemenata v;. Pritom u
svakom koraku trebamo utvrditi da li je dobiveni skup linearno nezavisan i,
ako nije, trebamo naci vektor koji je linearna kombinacija preostalih vektora.
U slucaju V = R™ to mozemo utvrditi koristeéi elementarne transformacije
niza vektora.

Koristeéi tvrdnju 4.1 na drugi na¢in mozemo dokazati da (1) povlagi (2)
u teoremu 3.18. Naime, da izvodnice vy, ..., v, n-dimenzionalnog prostora
V' nisu linearno nezavisne, njihovom redukcijom dobili bismo bazu koja ima
manje od n elemenata, suprotno tvrdnji teorema 3.15 da svaka baza u V
ima n elemenata.
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Malom izmjenom dokaza tvrdnje (2) povlaci (1) teorema 3.18 dobivamo:

4.5. Lema. Neka je S linearno nezavisan skup u vektorskom prostoru
V. Ako S ne razapinje V, onda postoji vektor v u V takav da je

SuU{v}
linearno nezavisan skup.
Dokaz. Bududi da S ne razapinje V', to postoji vektor v koji nije line-

arna kombinacija elemenata iz S. Tvrdimo da je za svaki izbor vy, ..., v, iz

S skup
{v,v1,..., 0}
linearno nezavisan. Naime, ako je
Av 4+ Ao+ -+ Ao, =0,
onda mora biti A = 0, jer bi u suprotnom imali da je v linearna kombinacija

A1 An
V= ——V — +or — —
A )
vektora vy, ...,v, iz .S. No A =0 daje

Un

A1vr + -+ Ay = 0,

pa zbog linearne nezavisnosti vektora vy, ..., v, slijedi Ay = --- = A\, = 0.
Znaci da je skup

{vi,...,vp,v}
linearno nezavisan. Time smo pokazali da je svaki konacan podskup od
S U {v} linearno nezavisan, pa je onda po definiciji i skup

SuU{v}

linearno nezavisan. O

4.6. Nadopunjavanje linearno nezavisnog skupa do baze. Neka
je S = {vi,...,v,} linearno nezavisan skup u konacéno dimenzionalnom
vektorskom prostoru V. Tada postoji nadskup od S koji je baza od V.

Dokaz. Ako skup S = {v1,...,v,} razapinje V, onda je S baza od V'
i naa tvrdnja vrijedi. Ako pak S ne razapinje V, onda prema prethodnoj
lemi 4.5 postoji vektor v u V takav da je skup

SU{v}={v1,...,vp,v}

linearno nezavisan skup. Ako S U {v} razapinje V', onda je to baza od V i
nasa tvrdnja vrijedi, a ako nije, onda nastavljamo opisani postupak. Buduci
da je po teoremu 3.10 u kona¢no dimenzionalnom vektorskom prostoru V'
broj linearno nezavisnih vektora uvijek manji ili jednak dimenziji od V, to
u konacno koraka dolazimo do baze koja je naddskup od S. U
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4.7. Teorem. Ako je V potprostor konacno dimenzionalnog vektorskog
prostora W, onda je V konacno dimenzionalni vektorski prostor i

dimV < dim W.

Stovise, dimV = dim W ako i samo ako je V =W.

DoxkAz. Ako je V' # 0 potprostor konaéno dimenzionalnog vektorskog
prostora W, onda postoji vektor v1 # 0u V' i S = {v;} je linearno nezavisan
skup u V. Bududi da su linearno nezavisni vektori u V' ujedno i linearno
nezavisni vektori u W, to je njihov broj uvijek manji ili jednak dim W = m.
Eventualnim dopunjavanjem linearno nezavisnog skupa 5, kao u dokazu
prethodnog teorema, dobivamo bazu od V.

Ako u V imamo bazu vq,...,v,; od m = dim W elemenata, onda je to
i linearno nezavisan skup u W, pa je prema teoremu 3.18 to ujedno i baza
od W. No ako V i W imaju istu bazu, onda je to jedan te isti prostor
V=Ww. O

4.8. Odgovor na prvo vazno pitanje o potprostorima u R”. U
tocki 2.7.16 prethodnog poglavlje postavili smo dva pitanja o obliku pot-
prostora od R™. Teorem 4.7 daje potvrdan odgovor na prvo pitanje: Svaki
potprostor u R™ je k-dimenzionalan za neki 0 < k < n i moZe se napisati
kao linearna ljuska neke svoje baze (v, ..., vg).

4.9. k-dimenzionalne ravnine u R". Iz definicije pravaca i ravnina u
R™ je ocito da su pravci kroz ishodiste 1-dimenzionalni potprostori, a ravnine
kroz ishodiste 2-dimenzionalni potprostori od R™. Zato k-dimenzionalne
potprostore u R™ zovemo i k-dimenzionalnim ravninama kroz ishodiste. Op-
¢enito za dani vektor b i k-dimenzionalni potprostor V' u R"™ skup oblika

Y=b+V={b+v|veV}

zovemo k-dimenzionalnom ravninom ili kraée k-ravninom kroz tocku b. Za
dvije razlic¢ite k-ravnine oblika

b+V={b+tv|veV} i c+V={ct+v|veV}

kazemo da su paralelne’. Ako je v, ..., v, baza potprostora V, onda imamo
parametarski prikaz k-ravnine ¥ kroz tocku b paralelne ravnini V,

2=b+<1)1,...,1)k>Z{b+/\101+"'+Akvk‘Al,...,)\kER}.

7Opc’enitije, neka je Z C V k'-dimenzionalni potprostor od V. Akojec+Z C b+ V,
onda kaZemo da k’-ravnina c + Z leZi u k-ravnini b+ V. Ako ¢+ Z ne lezi u b+ V, onda
kazemo da je k'-ravnina c + Z paralelna k-ravnini b+ V. Dokazite da paralelene ravnine
nemaju zajednickih tocaka!
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5. Koordinatizacija

5.1. Izomorfizam vektorskih prostora. Neka su V i W dva vektor-
ska prostora. Ako je preslikavanje

V=W
bijekcija, onda mozemo identificirati elemente skupova V' i W, na primjer
x+— f(x) 1 y+— f(y).

Kazemo da je bijekcija f izomorfizmam vektorskih prostora ako zajedno s
identifikacijom elemenata mozemo identificirati i operacije na tim skupo-
vima, tj. ako je®

(5.1) r+y+— flz)+ fly), ax+— af(z)

za sve vektore x,y € V i sve skalare o € R.

5.2. Izomorfni vektorski prostori. Kazemo da su dva vektorska pros-
tora V i W izomorfna ako postoji neki izomorfizam vektorskih prostora
f:V — W. Tada pisemo

Vew.

5.3. Baza i uredena baza. Neka je V realan n-dimenzionalni vektor-
ski prostor. Reéi ¢emo da je niz vektora (vi,...,v,) uredena baza od V ako
je skup vektora {vi,...,v,} baza od V. Tako od kanonske baze {ei,ea}
u R? mozemo dobiti dvije uredene baze koje zapisujemo kao dvije razlicite

matrice
1 0 01
I = (61,62) = (0 1) y H = (62,61) = (1 0> .

5.4. Baza i koordinatizacija n-dimenzionalnog prostora. Neka
je u n-dimenzionalnom vektorskom prostoru V dana uredena baza B =
(v1,...,v,). Tada za svaki vektor x imamo jedinstveni prikaz

$:£1Ul+"'+£nvn-

Koeficijente &1, ...,&, u prikazu vektora x zovemo koordinatama vektora x
u uredenoj bazi vi,...,v, 1 kazemo da je koeficijent & uz prvi vektor baze
prva koordinata, koeficijent & uz drugi vektor baze druga koordinata, itd.
Koordinate vektora x obi¢no zapisujemo kao vektor-stupac xp u R",
&1
rp =
&n

8Buduéi da je = +y «— f(z+y), ax +— f(az), to formula (5.1) u stvari znadi
tako zvano svojstvo linearnosti preslikavanja f(z +y) = f(z) + f(y), f(az) = af(z).
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Preslikavanje f: V — R” koje svakom vektoru x € V pridruzi njegove koor-
dinate xp u bazi B je o¢ito bijekcija pa mozemo identificirati elemente u V'

iR™,

&

r«— f(z)=zp=|:

&n

Stovise, za y = muv1 + - +pvp 1 a € R imamo
r+y=(E+mot-+ (Ent e, ar=(ad)vr+ -+ (ap)vn,

pa je zbog jedinstvenosti zapisa vektora u bazi i-ta koordinata od z+y suma
i-tih koordinata od x i od ¥, a i-ta koordinata od ax je umnozak broja « i
i-te koordinata od x. Buduéi da su operacije zbrajanja i mnozenja skalarom
na R" definirane po koordinatama, to je

(r+y)p=zp+yp i (ax)p=axp,
odnosno
fe+y)=fl@)+fly) 1 floz)=af(z).
Znagi da je f: x +— xp izomorfizam vektorskih prostora i
V2R

Preslikavanje f zovemo koordinatizacijom od V' u uredenoj bazi vy, ..., vy,
ili samo koordinatizacijom od V. Grubo govoreéi, pomocu koordinatizacije
svaki realni n-dimenzionalni vektorski prostor nad poljem realnih brojeva
“izgleda isto” kao R™!

5.5. Primjer. Za dvije uredene baze I = (e1,e3) i H = (eg,e1) u R?
imamo dvije razlic¢ite koordinatizacije. U bazi I = (e1, e3) imamo

T = <g> =&ie1 + e — ar = <g>

jer je u uredenoj bazi I prva koordinata od x jednaka &1, a druga &». S druge
strane, u bazi H = (eg, e1) imamo

= (g) =&oex +&1€1 = T = <Z>

jer je u uredenoj bazi H prva koordinata od z jednaka &, a druga &;.
5.6. Zadatak. Napisi koordinatizaciju za bazu B = (}1) uR2

5.7. Koordinate vektora u novoj bazi od R"™. Neka je dana uredena
baza B = (v1,...,v,) od R". Tada su koordinate xp = (&1,...,&,) vektora
x u bazi B koeficijenti u jedinstvenom prikazu

(5.2) =&+ + &uvn,

ili, drugim rijec¢ima, koordinate xp = (&1,...,&,) vektora x uw bazi B su
jedinstveno rjesenje n X n sistema jednadzbi s desnom stranom x i matricom
sistema B.
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3 1 1 2
5.8. Primjer. Koordinateod x = [ 3 | uuredenojbaziB= (|2 -1 1
3 1 -1 2

u R3 iz primjera 1.18 dobivamo rjesavajuéi sistem jednadzbi s prosirenom
matricom

1 1 2 3 1 1 2 3
2 -1 1 3]—...~(0 -3 -3 -3
1 -1 2 3 0 -2 0 0
Znaci da je & =0, &3 =1, & =1, odnosno xp = (1,0, 1).
2 1 2 1
5.9. Zadatak. Nadite koordinateod x = | 1| ubazi B=|1 -1 -1
1 2 1 2
5.10. Primjer. Vektori v; = (1,1,2) i vo = (2, —1,—1) u R3 ¢ine bazu

2-dimenzionalnog potprostora
Y ={A\v1 + Ava | A1, A2 € R}
pa je preslikavanje
frE =R F(Avn + Aava) = (A1, Mo)
koordinatizacija. Tako, na primjer, f pridruzje vektoru (3,0,1) € ¥ njegove
koordinate (1,1) € R2.

5.11. Zadatak. Pokazite da je vektor x = (—1,2,3) u ravnini ¥ iz
prethodnog primjera i nadite njegove koordinate f(z).

5.12. Zadatak. Dokazite da su vektori w; = vi+wve i wo = v1—v9 druga
baza potprostora 3 iz prethodnog primjera. Nadite vezu izmedu koordinata
vektora x € ¥ u bazi (v1,v2) 1 bazi (wy,ws).



POGLAVLJE 4
Egzistencija rjesenja sistema jednadzbi

U ovoj se poglavlju vraéamo opéim pitanjima vezanim za sisteme jed-
nadzbi, posebno pitanjima egzistencije i jedinstvenosti rjesenja. Odgovori
na ta pitanja dani su u terminima ranga i defekta matrice sistema.

1. Rang matrice

1.1. Rang matrice. Neka je je A = (ay,...,a,) matrica tipa m X n.
Tada je prema tocki 2.6.3 linearna ljuska stupaca matrice A

(a1, ...,an) ={&a1+ -+ &an | (&1,-..,&) € R}

vektorski potprostor od R”. Prema teoremu 3.4.7 je taj potprostor konacno

dimenzionalan. Dimenziju linearne ljuske (a1, ..., a,) zovemo rangom ma-
trice (ay,...,a,) i piSemo
rang A = rang (aq,...,a,) = dim{ay, ..., ay).

Ponekad se linearna ljuska stupaca matrice zove podrucjem vrijednosti od A
i oznacava s

R(A) = (a1,...,an).
1.2. Primjer. Za jedini¢nu n X n matricu I imamo
rang I = rang (e, ..., e,) = dim(ey,...,e,) = dimR" = n.

S druge strane je dimenzija nul-potprostora od R™ jednaka nuli, pa za m xn
nul-matricu 0 imamo

rang 0 = rang (0, ...,0) = dim(0,...,0) = dim 0 = 0.

1.3. Primjedba. Prema teoremu 3.4.7 dimenzija svakog potprostora u
R manja je ili jednaka m = dim R™, pa za m X n matricu A imamo

rang A < m.
Prema teoremu 3.3.10 broj generatora vedéi je ili jednak dimenziji prostora,
pa za linearnu ljusku (ay,...,a,) imamo

rang A < n.

85
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1.4. Rang i elementarne transformacije. Prema tocki 2.6.15 ele-
mentarne transformacije ne mijenjaju linearnu ljusku, pa to svojstvo kori-
stimo za raCunaje ranga: elementarnim transformacijama svedemo vektore
A= (ai,...,a,) na oblik

(c1,...,¢r,0,...,0)
gdje su cy,...,c, linearno nezavisni vektori, obi¢no u trokutastoj ili ste-
penastoj formi'. Tada su ti vektori baza potprostora (a1,...,an), pa je

rang A = r. Na primjer, svodenjem matrice na donje stepenasti oblik dobi-
vamo

1 -1 0 2 1 0 0 2 10 0 0
A 12 3 -1 1 3 3 -1 . 1 3 3 =3
12 -1 1 3 2 1 1 3 2 1 1 -1
-1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 1
1 0 0 0 1 0 00
1 3 0 -3 1 3 00
12 1 01|72 1 0 o] (Le00,
-1 -1 0 1 -1 -1 0 0
pa zaklju¢ujemo da je rang A = 2.
1 -1 0 2
1.5. Zadatak. Nadite rang matrice {2 —1 1 3
1 2 3 -1

1.6. Pitanje. Dali je rang(1,—1,0,2) =37 DA NE

1.7. Kronecker-Capellijev teorem. Neka je zadana m x n matrica
(a1,...,ayn) 1 vektor b u R™. Tada sistem jednadzbi
§1a1 + -+ &uan =0

ima rjesenje ako i samo ako je rang matrice sistema jednak rangu prosirene
matrice sistema, tj. rang (ai,...,a,) =rang(ai,...,an,b).

Dokaz. Sistem jednadzbi ima rjeSenje ako i samo ako je b linearna kom-

binacija vektora aq,...,a, s nekim koeficijentima &q,...,&,, tj. ako i samo
ako je

(1.1) be (al,...,an).

To je, prema lemi 2.6.11, ekvivalentno

(1.2) (a1,...,an) = {a1,...,an,b).

No buduéi daje (aq,...,a,) C {ai,...,an,b), prema teoremu 2.4.7 jednakost

(1.2) ekvivalentna je jednakosti

dim(ay,...,a,) = dim(ay,...,an,b).

Widi totku 3.2.14.
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O

1.8. Primjedba. U tocki 3.6.16 pitanje egzistencije rjesenja sistema
jednadzbi sveli smo na pitanje da li je (a1,...,a,) = (ai,...,an,b) i kako
to mozemo provjeriti koristeéi elementarne transformacije. U Kronecker-
Capellijevom teorem idemo korak dalje i pitanje svodimo na provjeru jed-
nakosti dimenzija tih prostora.

1.9. Primjer. Sistem jednadzbi
§1—&+26=-1,
§1+26 — & =2,
=&+ &+ 8 =0,
=1+ & +23=2
iz primjera 1.3.7 nema rjeSenja. To smo u tocki 1.3.9 vidjeli Gaussovom me-

todom izvodenjem elementarnih transformacija na recima proSirene matrice
sistema:

(1.3)

1 -1 2 -1 1 -1 2 -1
1 2 -1 2 0 3 -3 3

Ao=13 1 1 o770 0o 3 -1|
-1 1 2 2 oo o 1

pa sistem (1.3) nema rjesenja jer jednadzba
061 + 06 + 06 = £

nema rjeSenja. S druge strane, elementarnim transformacijama na stupcima
prosirene matrice sistema dobivamo

1 -1 2 -1 1 0 0 0
1 2 -1 2 1 3 -3 3
(A, b) = 11 1 ol ol 0 5 4l
-1 1 2 2 -1 0 4 1
1 00 0 1 00 0 1 000
1 30 0f  f1 30 0 f1 300
-1 0 3 -1 -10 1 -1 -10 10
-1 04 1 -1 0 3 1 -10 3 %

i zakljucujemo da je rang A = 3irang (A4, b) = 4, pa iz Kronecker-Capellijevog
teorema slijedi da sistem (1.3) nema rjesenja.

1.10. Zadatak. Primjenom Kronecker-Capellijevog teorema utvrdite
ima li sistem jednadzbi
§1+26 — & =2,
&1+ &+ =0,
—& +&+20G=2
rjeSenje?
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2. Defekt matrice

2.1. Defekt matrice. Neka je je A = (ay,...,ay,) matrica tipa m X n.
Prema teoremu 2.7.15 skup svih rjeSenja homogenog sistema jednadzbi

N(A):{(é.l:agn)eRn‘glal"i’+an§n:0}

je potprostor vektorskog prostora R"™ — zovemo ga nul-potprostorom ma-
trice A. Prema teoremu 3.4.7 potprostor N(A) je kona¢no dimenzionalan,
a njegovu dimenziju zovemo defektom matrice A i piSemo

defekt A = dim N(A) = dim{(&1,...,&,) € R" | &1a1 + -+ - + ané, = 0}

2.2. Primjer. Za jedini¢nu n X n matricu I homogeni sistem ima je-
dinstveno rjesenje 0 € R™ pa imamo

defekt I = dim0 = 0.

S druge strane za m x n nul-matricu 0 je svaka n-torka brojeva rjeSenje
homogenog sistema pa imamo

defekt 0 = dimR" = n.

Na primjer,

00 00
defekt (0 0 0 O>—4

2.3. Pitanje. Mora li za m x n matricu A biti m > defekt A? DA NE

2.4. Primjedba. Prema teoremu 3.4.7 dimenzija svakog potprostora u
R™ manja je ili jednaka n = dim R"™, pa za m X n matricu A imamo

defekt A < n.

2.5. Reducirana gornja stepenasta forma matrice. U tocki 1.3.10
smo vidjeli kako elementarnim transformacijama redaka matricu mozemo
svesti na gornju stepenastu formu po recima. Taj postupak mozemo na-
staviti tako da svaki ugaoni element bude 1 i da onda s tom jedinicom
eliminiramo sve ostale ne-nul elemente u tom stupcu. Za dobivenu matricu
kazemo da je u reduciranom gornjem stepenastom obliku.

U slucaju 5 x 7 gornje stepenaste matrice (u kojoj umjesto * moze biti
bilo koji broj) elementarnim transformacijama redaka dobivamo reduciranu
gornju stepenastu matricu

1 % % % % % % 1 0 0 « 0 % =
0 2 % % % % % 01 0 % 0 % =
00 3 x *x * x|~||0 0 1 %x 0 % =
00005+ *|"l0o000 1 % x
00 0 O0O0O0OTO 0 00 00 OO

kod koje su svi ugaoni elementi jednaki jedan i oni su jedini elementi razli¢iti
od nule u svojim stupcima (prvom, drugom, treéem i petom).
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2.6. Defekt i elementarne transformacije redaka. Buduéi da je
defekt matrice po definiciji dimenzija prostora rjesenja pripadne homogene
jednadzbe, to defekt m x n matrice A odredujemo rjeSavanjem homogenog
sistema Az = 0 Gaussovim eliminacijama. Mozda je najjednostavniji nac¢in
da elementarnim transformacijama redaka matricu sistema svedemo na re-
duciranu gornju stepenastu matricu

0... 1 Qlji4+1 .- 0 Aljo+1 - - 0 a1j34+1
0... 0 0 . 1 A2jp4+1 - - 0 Q25341
(2.1) 0... 0 0 ... 0 0 ... 1 agjps1 ...|>

pri ¢emu su indeksi 1 < j; < jo < j3 < --- < Jr < n indeksi stupaca u
kojima se nalazi r ugaonih elementa. Zadnji redak matrice koji nije nula je
r-ti redak oblika

(O, ey 0, 1, g4y ,Oérn)
(ako je j» < n) i homogeni sistem Az = 0 pocinjemo rjeSavati s pripadnom
r-tom jednadzbom
gjr + 6j’r+1a7'jr+1 + -+ & = 0.

Tu jednadzbu mozemo rijesiti po nepoznanici §j,

tako da vrijednosti nepoznanica &j, 41, ..,&, biramo po volji. U narednom
koraku rjesavamo (r — 1)-tu jednadzbu po nepoznanici &j, _,
§joor = = (G115, 41+ -+ &1, -1)
— (&1 441+ F&nar_1n)
tako da vrijednosti nepoznanica &;,_,y1,...,;,—1 biramo po volji. Na ta]
nac¢in u r koraka odredimo vrijednosti nepoznanica
§j17€j27’ .. 7§j7-

(koje ponekad zovemo vezanim nepoznanicama) ovisno o izboru vrijednosti
preostalih nepoznanica

éj’ jg{j17j27"‘?j7"}
(koje ponekad zovemo slobodnim nepoznanicama). Opée rjeSenje homogenog
sistema mozemo zapisati kao vektor

(2.2) v= (&, 7§j1—1,,§j1+1, e 7€jT—1aa§jr+1a ooy én)

koji ovisi o n — r parametara (tj. slobodnih nepoznanica), a zaokruzene
vrijednosti su funkcije tih parametara (tj. vezane nepoznanice). Bazu nul-
potprostora matrice A mozemo dobiti tako da biramo za jednu slobodnu
varijablu vrijednost 1 i sve ostale slobodne varijable vrijednost 0:

vn:(O,...,O,,07...,0,,0,...,1) za &, = 1, ostali & = 0,
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vj 1= (o,...,o,,o,...,o, &1 1,...,0) za &, 11 =1, ostali £ = 0,
vj, 1= (o,...,o,,o,...,1,,o,...,o) za &, 1 = 1, ostali & = 0,

Ocito su dobiveni vektori linearno nezavisni, a lako je vidjeti i da je vektor
v dan formulom (2.2) oblika

v =o€ 15 -1+ v 1t 10,11V Un.
Znaci da smo dobili bazu od N(A) od n — r vektora, pa je

rangA=n—r.
Valja primijetiti da smo na isti na¢in mogli zakljucivati i da stepenasta

matrica nije bila reducirana.

2.7. Primjer. Za homogeni sistem jednadzbi stepenastog oblika

§1+ 282 — &3+ 264 + 265 — 466 = 0,

3+ 284 + 265 — 486 = 0,

& — 46 =0
odmah vidimo da matrica sistema ima 3 ugaona elementa, pa je defekt ma-
trice sistema jednak 6 — 3 = 3. Bazu prostora rjesenja dobivamo birajuci

vrijednosti slobodnih nepoznanica na gore opisani nacin i odredujuéi odgo-
varajuce vrijednosti vezanih nepoznanica:

1)§6:1754:07gQZOdaje€5:47§3:_47§1:_87
2)§6:0754:1752:0daje§5:07§3:_27§1:_47
3)56:0754:0752:1daje§5:07§3:0751:_2-

Time smo dobili bazu nul-potprostora matrice sistema
Vg = (7 077 07 7 1)7

(=4} 0,[=2],1,[0],0),

V2 = (> 17@7 07@7 0)7

pri ¢emu smo vezane varijable zaokruzili kao u prethodnoj tocki. Istirezultat
dobijamo ako napiSsemo rjeSenje sistema pomocu tri parametra &g, £4 1 &9,

= 26, — 464 — 8&

Vg

S =&
= =284 — 46
Ea=6&

BISES

&6 = &6
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i onda te parametre “izlu¢imo” iz vektora opceg rjesenja v koji o tim para-
metrima ovisi

&1 =28 — 484 — 886 -2 —4 -8
&2 & 1 0 0

_ & —2&4 — 486 B 0 -2 —1
U= {4 - 54 - 52 0 + 54 1 + 56 0
&5 486 0 0 4
&6 &6 0 0 1

2.8. Zadatak. Svedite matricu sistema iz gornjeg primjera na reduci-
ranu gornju stepenastu matricu i nadite na opisani nacin bazu potprostora
rjeSenja homogenog sistema. U ¢emu je razlika?

2.9. Zadatak. Odredite defekt matrice A i bazu od N(A) za

1 -1 0 2
1 2 3 -1
A= 2 -1 1 3

1 0 -1 -1
2.10. Pitanje. Da li je defekt (1,-1,0,2) =3? DA NE

3. Teorem o rangu i defektu

3.1. Svojstvo linearnosti lijeve strane sistema jednadzbi. Neka

je A= (ai,...,a,) matrica tipa m x n. Tada za vektor x u R™ s koordina-
tama &1, ...,&, imamo linearnu kombinaciju

(3.1) Az =&ar+ -+ &pan € R(A) = (a1,...,an)

U tocke 2.5.14 dokazali smo svojstvo linearnosti

(3.2) A+ Ay=A(x+y) i A(\x) =\ Azx)

za sve vektore z,y € R™ i skalare A € R

3.2. Teorem o rangu i defektu. Neka je A = (ay,...,a,) matrica
tipa m x n. Tada je
rangA + defekt A = n.

DoxkAz. Za n vektora vy, ..., v, u R"” po formuli (3.2) imamo n vektora
Avy, ..., Av, u R™, pa mozemo gledati (m + n) x n matrice
Avy Avy ... A
(3.3) ( v A ”") :
U1 V2 e Un

Na takvim éemo matricama provoditi elementarne transformacije i, zbog
svojstva linearnosti, dobit éemo matrice istog oblika. Naime, zbog jednakosti
AAv; = A(Av1) mnozenjem prvog stupca matrice (3.3) dobivamo matricu

(A()\vl) Avy ... Avn>'

AU Vo ... Up
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Isto tako zbog jednakosti Avy + Avy = A(ve + v1) dodavanjem prvog stupca
matrice (3.3) drugom stupcu dobivamo matricu

(Avl A(?}Q + 1)1) ... A’Un>

(4] Vo + V1 Un

Takoder primijetimo da je j-ta koordinata vektora kanonske baze e; jednaka
1, a sve ostale su nula, pa formula (3.2) daje

A€j = aj.

Znaci da je

Aey Aey ... Aey,\ (a1 ax ... ay

e1 es ... e, ) \e1t e ... e,/
Elementarnim transformacijama stupaca

!/ /
(a1,...,an) — ... = (ay,...,a,,0,...,0)

mozemo matricu A = (aq, ..., a,) prevesti u donju stepenastu matricu ¢iji su
linearno nezavisni stupci af, . . ., al. baza linearne ljuske R(A) = (a1, ..., ay).

Paralelnim izvodenjem istog niza elementarnih transformacija na matricama
oblika (3.3) dobivamo

A61 A€2 e Aen Afl e Afr 0 e 0
= ,
<e1 er ... e fioe fe e o
pri ¢emu su, zbog teorema 3.1.17, vektori fy,..., f, baza u R™. Po kons-
trukciji su fr41,..., fn linearno nezavisni vektori u N(A). Zbog linearne
nezavisnosti vektora a} = Afy,...,a. = Af, slijedi da su vektori
f7”+17 Tty f?’b

baza od N(A). Naime, za vektor z zapisan u bazi
=M+ +Mr+tMrfrmat o+ Afa
relacija Az = 0 i svojstvo linearnosti povlaci

)\1Afl+"'+)\7"Afr :07

a onda zbog linearne nezavisnosti Afy,..., Af, slijedi \y = --- = A\, = 0.

Znaci da je
rang A + defekt A=r+ (n—7r) =n.
]

Opisanim postupkom mozemo za danu matricu A istovremeno traziti
baze od R(A) i N(A). Tako, na primjer, elementarnim transformacijama



3. TEOREM O RANGU I DEFEKTU 93

dobivamo
1 -1 0 2 1 0 0 0 1 0 0 0
1 2 3 -1 1 3 3 -3 1 3 0 0
2 -1 1 3 2 1 1 -1 2 1 0 0
-1 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0
[ T
1 0 0 0 1 1 0 -2 1 1 -1 -2
0 1 0 0 0 1 0 0 0 1 -1 0
0 0 1 0 0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1

Odavle vidimo ne samo bazu
(1,1,2,-1), (0,3,1,-1)
od R(A), nego i bazu
(-1,-1,1,0), (-2,0,1,1)

od N(A)
3.3. Zadatak. Nadite baze od N(A) i R(A) za matricu
2 2 —4
A=12 3 -5
4 5 -9

3.4. Zadatak. Nadite opisanim na¢inom bazu prostora rjesenja homo-
genog sistema jednadzbi

§1+ 28 — &3+ 264 + 265 — 466 = 0,
§3 + 260 + 26 — 466 = 0,
& — 46 = 0.
3.5. Pitanje. Da li je defekt 2 x 4 matrice barem 27 DA NE
3.6. Pitanje. Da li je rang 4 x 2 matrice barem 27 DA NE
3.7. Pitanje. Da li je defekt 4 x 2 matrice barem 27 DA NE

3.8. Rang i elementarne transformacije redaka. Ako smo m xn
matricu B dobili iz A uzastopnim elementarnim transformacijama redaka,
piSemo

B~ A,
T
onda su homogeni sistemi jednadzbi Az = 01 Bx = 0 ekvivalentni, tj.
N(B)=N(A).
No onda zbog teorema o rangu i defektu imamo jednakost rangova
rang B=n —dim N(B) =n —dim N(A) = rang A.

Znaci da elementarne transformacije redaka ne mijenjaju rang.
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3.9. Rang matrice “po recima i stupcima”. Iz gornjeg razmatra-
nja slijedi da pri racunanja ranga matrice mozemo “istovremeno” koristiti
elementarne transformacije i na stupcima i na recima matrice. Na primjer,
postupak na primjeru iz tocke 1.4 mogli smo nastaviti izvodenjem elemen-
tarnih transformacija na recima

1 0O 0 O 1 0 0 O 1 0 0 O
A~ 1 3 0 0 N 0 3 00 N 0 3 00
2 1 0 0f » 2 1 0 0 » 0 1 00
-1 -1 0 0 -1 -1 0 O -1 -1 0 O
1 0 0 0 1 0 0 0 1 0 0 0
0 3 00 0 1 00 0 1 00
10 1 0 O0] 10 1 O O] ~10 O OO
0 -1 0 0 0 -1 0 0 0 -1 0 0
1 0 0 0
01 0 0
’7\: 00 0 0 _(617627070)7
00 00

pri ¢emu je rang zadnje matrice ocito 2.
Opcéenito m x n matricu A moZemo elementarnim transformacijama na
stupcima ¢ recima svesti na oblik

(3.4) (e1,...,€r,0,...,0)

iz kojeg ocitavamo rang A = r.

Naime, ako matrica A tipa m X n nije nula, onda eventualnom zamjenom
stupaca i/ili redaka problem svedemo na slucaj ag; # 0. Sada podijelimo
prvi stupac s aq1 i “eliminiramo” sve preostale elemente u prvom retku, a
potom i u prvom stupcu. Znaci da smo dobili matricu

1 0 A 0

0 of ol
22 - on
/ /

0 appe -0 apy

i problem sveli na matricu tipa (m — 1) x (n — 1).

3.10. Transponirana matrica. Za matricu A tipa m X n matrica tipa
n X m kojoj su stupci jednaki recima matrice A zovemo transponiranm ma-
tricom od A i ozna¢avamo je s A'. Na primjer

1 2 3 4\’ 110 Ll 1 2 3 4
2 2 9 2 2 9

1 23 4| = , =112 3 4

1 2 3 4 3 33 3.3 3 1 2 3 4
4 4 4 4 4 4
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3.11. Osnovni teorem o rangu matrica. rang A’ = rang A.

DokAz. Primijetimo da je prvih r stupaca ey,...,e, u matrici (3.4) u
stvari prvih r elemenata kanonske baze u R™. Transponirana matrica ima
“isti oblik”

(3.5) (e1,...,er,0,...,0)" = (e1,...,e.,0,...,0),

“jedino” §to je tipan x miey,..., e, na desnoj strani je prvih r elemenata
kanonske baze u R™. Na primjer

t

OO =
O = O
o o O
S O O
|

S O O

0
1
0
0

OO O

0

Buduéi da su stupci transponirane matrice A? reci matrice A, a reci od A’
stupci od A, to elementarnim transformacijama mozemo “paralelno” svesti
A na oblik (3.4), a A! na oblik (3.5), te zakljuciti da je u oba sluéaja rang
matrice jednak r. O

4. Jedinstvenost rjeSenja sistema jednadzbi

4.1. Pitanje jedinstvenosti rjeSenja sistema jednadzbi. Pretpo-
stavimo da sistem jednadzbi
Az =10

ima rjeSenje, oznacimo ga s Tpart 1 zovimo ga partikularnim rjesenjem siste-
ma. Sistem
Ax =0
zovemo pripadnim homogenim sistemom. Po definiciji je nul-potprostor
N (A) skup svih rjesenja pripadnog homogenog sistema.
Teorem. Skup svih rjeSenja sistema Az = b je
Tpart + N(A) = {$part +y | Ay = 0}
Posebno, xpq je jedinstveno rjesenje sistema Ax = b ako i samo ako je
N(A) =0.
DoxAz. Po pretpostavci je Axpart = b. Ako je Az = b za neki x, onda
zbog svojstva linearnosti (3.2) za y = & — Zpayt imamo
Ay = A(x — zpart) = Az — Azpary =b— 0 =0.
To znaci da je svako rjeSenje sistema Ax = b oblika
T = Tpart +y, Ay=0.
Obratno, zbog svojstva linearnosti za vektor x tog oblika imamo
Az = A(xpart + y) = Al’part +Ay=b+0=0,

tj. = je rjeSenje sistema. [l
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4.2. Primjedba. Primijetimo da “odstupanje od jedinstvenosti rjese-
nja” sistema Ar = b “mjeri” defekt matrice A: ako je defekt A = d i
v1,...,vq baza u N(A), onda opée rjeSenje sistema ovisi o d proizvoljnih
parametara:

x:xpart‘i')\lvl“‘"'"i‘)\dvda AL, .., A ER.

Grubo receno, s§to je veéi defekt matrice sistema, to je vise rjeSenja sistema.
No s druge strane, po teoremu o rangu i defektu, veéi defekt od A znaéi
manji rang od A, a to po Kronecker-Capellijevom teoremu znaéi da rjeSenje
Tpart Sistema Ax = b postoji za “manje desnih strana 0" !

4.3. Primjer. Ocito sistem jednadzbi
261 + 28 — 483 =4,
(4.1) 261 + 38 — 583 =4,
481 + 58 — 9€3 = 8
ima jedno rjeSenje
2
Lpart = 0
0
Rjesavanjem pripadnog homogenog sistema jednadzbi
261 + 28 — 483 =0,
(4.2) 261 + 382 — 583 =0,
481+ 58 — 983 =0

dobivamo
2 2 -4 0 11 -2 0 1 0 -1 0
23 50]—...~101 -1 O0)]+...~|0 1 =1 0],
4 5 -9 0 01 -1 0 00 0 O

pa su sva rjeSenja pripadnog homogenog sistema

G=AER, H=&=)\ &G=§=A\

Znaéi da su sva rjesenja x sistema jednadzbi (4.1) oblika

2 1 24 A
c=[o]l+x[1]=] X |, AeR
0 1 A

4.4. Zadatak. Nadite sva rjeSenja sistema jednadzbi

§1+26 — &3+ 284 + 2865 — 486 = 2,
§3 + 284 + 285 — 486 = 1,
&5 — 486 = —3.



4. JEDINSTVENOST RJESENJA SISTEMA JEDNADZBI 97

4.5. Primjedba. Ako je defekt m x n matrice A jednak d, onda je za
c € R™ skup rjesSenja sistema

(4.3) Az = Ac
d-ravnina ¥ u R™ kroz toc¢ku ¢ oblika
Y=c+N(A).

Znadi da je d-ravnina ¥ zadana sistemom (4.3) od m jednazbi. Prirodno
se namecée pitanje da li je svaka k-ravnina u R™ zadana nekim sistemom
jednadzbi? Naravno, to je u stvari drugo pitanje iz tocke 2.7.16, a na koje
¢emo odgovoriti potvrdno u sljedeéem poglavlju.






POGLAVLJE 5

Skalarni produkt

U ovom poglavlju uvodimo pojmove skalarnog produkta, norme i orto-
normirane baze. Kao posljedicu Gram-Schmidtovog postupka ortogonaliza-
cije linearno nezavisnog skupa vektora dobivamo egzistenciju ortonormiranih
baza potprostora kona¢no dimenzionalnih unitarnih prostora. Dokazujemo
teorem o ortogonalnoj projekciji vektora na dani potprostor i teorem o naj-
boljoj aproksimaciji vektora elementima danog potprostora, a kao posljedicu
dobivamo metodu najmanjih kvadrata za priblizno rjeSavanje sistema jed-
nadzbi koji koji nemaju toctnog rjesenja. Iz teorema o projekciji slijedi da se
svaki potprostor od R™ moze zadati kao skup rjeSenja homogenog sistema
jednadzbi.

1. Norma i skalarni produkt vektora u R"

1.1. Duljina vektora u R2. Zamislimo si elemente z = ({1, &) iz R?
kao koordinate tocaka euklidske ravnine u zadanom Kartezijevom sustavu, a
elemente kanonske baze e, e2 kao jedini¢éne vektore na koordinatnim osima.
Prema Pitagorinom poucku za pravokutni trokut s vrhovima

A:(070)7 B:(glvo)v C:(£1a52)
kvadrat duljine hipotenuze AC jednak je sumi kvadrata duljina kateta
&+

Ako usmjerenu duzinu fﬁ poistovjetimo s tockom x = (£1,&2), onda je
intuitivno opravdano kad kazemo da je

o]l = /&1 + &

duljina (ili norma) vektora x u R?. Primijetimo da za svaki vektor z imamo
€2 4+ ¢2 > 0 i da u definiciji mislimo na nenegativan drugi korijen

\E+ &> 0.

Ako su x = (£1,&2) 1y = (n1,m2) koordinate dviju toc¢aka euklidske rav-
nine u zadanom Kartezijevom sustavu, onda je prema Pitagorinom poucku
udaljenost d(z,y) izmedu tih tocaka jednaka

d(z,y) = |lz = yll = V(€1 —m)? + (&2 — 12)*

99
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1.2. Primjer. Duljina vektora x = (1,2) je

|z|| = V12 4 22 = V/5.

Za dvije tocke z = (1,2) i y = (2,1) je njihova udaljenost jednaka
d(z,y) = |lz—yll = VI -22+(2-1) =2

1.3. Duljina vektora u R?. Zamislimo si elemente z = (&1, &2,&3)
iz R3 kao koordinate to¢aka euklidskog prostora u zadanom Kartezijevom
sustavu, a elemente kanonske baze e, eo, e3 kao jedini¢ne vektore na koordi-
natnim osima. Prema Pitagorinom poucku za pravokutni trokut s vrhovima

A=(0,0,0), B=(£,0,0), C=(&,60),
kvadrat duljine hipotenuze AC jednak je sumi kvadrata duljina kateta
& +é
Sada, primjenom Pitagorinog poucka na pravokutni trokut s vrhovima
A=(0,0,0), C=(&,8,0), D=(£1,£,8),

dobijamo da je kvadrat duljine hipotenuze AD jednak sumi kvadrata duljina
kateta

(G +8) +6.
Ako usmjerenu duzinu E poistovjetimo s tockom = = (&1, &2,&3), onda je
intuitivno opravdano kad kazemo da je

|zl = \/€2 + &3 + &3

duljina (ili norma) vektora x u R3.

Ako su x = (&1,£2,&3) 1 y = (n1,12,m3) koordinate dviju tocaka euklid-
skog prostora u zadanom Kartezijevom sustavu, onda je prema Pitagorinom
poucku udaljenost d(x,y) izmedu tih tocaka jednaka

d(z,y) = [l = yll = V(& —m)? + (& — m2)? + (& — m3)?-
1.4. Primjer. Duljina vektora z = (1,2, —2) u R? je
el = VIT+ 2 4 (-2 =
Za dvije tocke = (1,2, —-2) i y = (2,1,1) je njihova udaljenost jednaka
dy) = llr—yll = VI =22+ @— 12+ (—2— 12 = VIL

1.5. Norma vektora uR". Za vektor z = ({1, ...,&,) u R" definiramo
normu (ili duljinu) vektora x kao

lzll = /& +- -+ &

1.6. Udaljenost tocaka u R". Za dvije tocke x = (&1,...,&,) iy =
(M1, ...,mn) uR™ definiramo njihovu medusobnu udaljenost d(x,y) kao

d(z,y) = [l —yll = V(€& —m)? + - + (& — )%
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1.7. Pitagorin pouéak i okomitost vektora u R?. Zamislimo si ele-
mente z = (£1, &) iz R? kao koordinate tocaka euklidske ravnine u zadanom

Kartezijevom sustavu. Po Pitagorinom poucku su vektori z = (£1,&2) i
y = (m,n2) okomiti ako i samo ako je
(1.1) llz +y|[* = [l|* + [ly]]*.

Bududi da je
|z +yll® = (€1 4+m)? + (Co+m2)* = & + &+ 2(&am + Eamp) + 717 + 713,
2|+ llyl* = & + & + 0% +n3,
to je uvjet okomitosti (1.1) vektora x i y ekvivalentan

(1.2) &im + o = 0.
Opéenito za dva vektora x,y € R? skalar (broj)
(z |y) =&m + Eame
zovemo skalarnim produktom vektora x i y.
1.8. Pitagorin pouéak i okomitost vektora u R3. Zamislimo si R?
kao koordinate tocaka euklidskog prostora u zadanom Kartezijevom sustavu.

Po Pitagorinom poucku su vektori x = (£1,&2,&3) i y = (1,72, 713) okomiti
ako i samo ako je

(1.3) llz +y|[* = [l|* + [ly]]*.
Kratkim ra¢unom kao u prethodnoj tocki vidimo da je to ekvivalentno
(1.4) (x| y) = &m + &na + &nz = 0.

1.9. Kanonski skalarni produkt na R". Za vektore xz = ({1,...,&,)
iy=(n,...,mn) uR" stavimo
(@ ]y) =&m +&m+ -+ &
Funkciju
(1):R*XR" =R, (z,y)~ (z]y)
zovemo kanonskim skalarnim produktom na R™. Kanonski skalarni produkt
na R" ima sljedeca svojstva:

(1) skalarni produkt je bilinearan, tj. za sve vektore z, 2’ 2" y € R™ i
skalare \ € R vrijedi linearnost u prvom argumentu

(@ +a2"[y)=@"[y)+ @ [y), (Az|y)=Az]|y)
i linearnost u drugom argumentu
(2" +2") =y l2)+(yl2), (y|r2)=A\a|y),
(2) simetrican, tj. za sve z i y vrijedi
(z|y) = (y|x),
(3) 1 strogo pozitivan, tj. za svaki vektor x vrijedi

(x]z)>0 i (z|xz)=0 akoisamo akoje x=0.
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DokAz. Bilinearnost i simetri¢nost skalarnog produkta vrijedi zbog al-
gebarskih svojstava realnih brojevas:

Az |y) = Z(Afl i = AZm = Az | y),

=1 =1

n

(@ 42" |y) =D (&+E&m = Z&nﬁZE”m— | y) + (2" | ),

=1

(x|y) = Zﬁmz Zm&—ylm

Ocito je (x| z) = &3 + &3 + - + €2 > 0 i jednakost vrijedi ako i samo ako
jeli=86==&=0. O

1.10. Primjer. Skalarni produkt vektora x = (1,0,1) i y = (1,2,—1)
uR3je (z|y)=1-1+0-24+1-(-1)=0.

1.11. Napomena. Ponekad skalarni produkt (x | y) vektora iz R3 za-
pisujemo kao “mnozenje” x -y, a svojstva linearnosti u prvom i drugom ar-
gumentu zovemo svojstvima distributivnosti skalarnog mnozenja u odnosu
na zbrajanje

(x/+x//) 'y:x/'y+x/’~y, y'(l'/+l'/l) :y'ﬂz’—ky'x”
i homogenosti skalarnog mnozenja u odnosu na mnozenje vektora skalarom
(Ax) -y =Xz -y) =2 (\y).

Zbog tih svojstava u slucaju skalarnog mnozenja linearnih kombinacija pri-
mjenjujemo, kao i za brojeve, pravilo mnozenja “svakog sa svakim”:

(Ara1 + -+ Apap | b + -+ + pmbpm) = ZZ)\i,uj(az’ | bj).
i1 j=1

1.12. Kanonski skalarni produkt i norma vektora u R”. Ocito je
|zl = V(@ | 2).

1.13. Okomiti vektori u R"” i Pitagorin poucak. Kazemo da su
vektora x i y u R™ okomiti ili ortogonalni ako je

(@ly)=&m+&En+-+&n, =0,

¢esto pisemo z L y. Primijetimo da je tadai (y | z) = (z |y) =0, tj. y L x.
Ako je x 1 y, onda zbog bilinearnosti i simetri¢nosti skalarnog produkta
vrijedi Pitagorin poucak

[l + yl* = |l + llyl*.
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1.14. Kanonski skalarni produkt na R. U slu¢aju R = R! skalarni
produkt vektora (brojeva) £ in u R je

(& 1n)=¢&n,

a norma |||| je apsulutna vrijednost || broja &:

&l =llgll = vE-¢€

Primijetimo da u polju R relacija (£ | n) = &n = 0 povlaéi da je bar jedan
od brojeva £ i i jednak nula.

2. Skalarni produkt vektora u C"

2.1. Kanonski skalarni produkt na C. Polje kompleksnih brojeva
C je skup R? ¢ije elemente z = (z,y) obicno zapisujemo kao z = x + iy.
Apsolutna vrijednost |z| = /22 + y? je u stvari norma ||z|| elementa z € R2.
Koristimo li konjugiranje i mnozenje u polju C, imamo formulu

2] = |lz]] = Vz - 2.
Za kompleksne brojeve z i w kazemo da je

(zlw)=z-w

skalarni produkt vektora (brojeva) z i w u C, a apsolutnu vrijednost kom-

pleksnog broja
2] = |lzll = V(2 | )

zovemo 1 normom vektora z u kompleksnom vektorskom prostoru C.

Primijetimo da u polju C relacija (z | w) = z - w = 0 povlaci da je bar
jedan od brojeva z i w jednak nula. Za razliku od realnih brojeva, skalarni
produkt na C ima svojstvo hermitske simetrije

Zlw=zw=w-z=w-z2=w-2=(w| 2).
2.2. Kanonski skalarni produkti na C i na R?. Primijetimo da je
za kompleksne brojeve z =z + iy i w = u + iv
(z|w) =2 -W=2u+yv+i(—zv+ yu)

pa je skalarni produkt xu + yv vektora (z,y) i (u,v) u 2-dimenzionalnom
realnom vektorskom prostoru R? jednak realnom dijelu skalarnog produkta
(z | w) vektora z = = + iy i w = u + v u 1-dimenzionalnom kompleksnom
vektorskom prostoru C.

2.3. Kanonski skalarni produkt na C”. Funkciju
([):C"xC"=C, (2,y) = (z]y) = &7 + Tl + -+~ + Eallns

gdje je x = (&1,...,&) 1y = (M,...,Mn), zovemo kanonskim skalarnim
produktom na C". Kanonski skalarni produkt na C" ima sljedeca svojstva:
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(1) skalarni produkt je linearna funkcija u prvom argumentu, tj.

(@ +a"y)=@"1y)+ " y), (xly)=Azly)
i antilinearna funkcija v drugom argumentu, tj.
@]y +y") =@ ]y)+(=]y"), (@]ry)=Xaz|y),
(2) hermitski simetrican, tj. za sve x iy vrijedi

(@ [y) = (y]2),
(3) 1 strogo pozitivan, tj. za svaki vektor x vrijedi
(x]z)>0 i (z|z)=0 akoisamo akoje x=0.

DokAz. Linearnost i hermitska simetrija skalarnog produkta vrijede
zbog algebarskih svojstava kompleksnih brojeva:

Az ly) =D A)m=A>_ &m=Az|y),

i=1 =1

(2’ +2" | y) = st ZSmﬁZfzm— ly)+ (" | y),
=1

x|y 252771 Zg"?z angz— y|$
i=1

Antilinearnost u drugom argumentu slijedi iz hnearnostl u prvom argumentu
i hermitske simetrije:

(@ |y+X )= (y+v|z)=(y|z)+Av]|z)
=Wlz)+A-(wlz)=(z]y) +A(x]v).

Ocito je (x| ) = |&1]? + &>+ - -+ |€a]? > 0 jednakost vrijedi ako i samo
akoje g =& ==&, =0. g

2.4. Primjer. Za vektore
r=(2,—1) i y=_(i,1+1)
u C? kanonski skalarni produkt je
(x|y)=2i+ (=) 1+i=2-(=i)+(=i) - (1—i)=—-2i—i—1=—1-3i,

2.5. Norma vektora u C". Norma vektora x = ((1,...,(n) je po
definiciji

2]l = V(@ | 2) = VIGPR + G+ + |Gl

2.6. Primjer. Norma vektora z = (2, —i) u C? je ||z|| = /|2|> + | — i|?
=V4+1=+/5.
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2.7. Norme vektora u C” i R?". Napisemo li koordinate ¢ = a;+ifs
vektora

x:(Cl,...,Cn)

kao parove (ag,f)) realnih brojeva, onda vektor x mozemo shvatiti kao
element

r= (0517517" . 7an>6n)

iz R?", a norma je u oba slucaja ista:

lell = V(@ [2) = VIGR + -+ 1Gal? = Ve + 81 + - + an? + [Bal>.

3. Unitarni prostori

3.1. Skalarni produkt na vektorskom prostoru. Neka je K polje
realnih brojeva R ili polje kompleksnih brojeva C. Neka je V vektorski
prostor nad poljem K. Funkciju

([): VXV =K (z,y)=(z]y)

zovemo skalarnim produktom na vektorskom prostoru V ako vrijede sljedeca
svojstva:

(1) funkcija je linearna u prvom argumentu, tj.
(@ +a" |y) =" [y)+@@" |y), Axly)=Az|y),
i funkcija je antilinearna u drugom argumentu, tj.
@]y +y") =@ ]y)+ (= ]y"), (a]ry)=Xaz|y),

(2) funkcija je hermitski simetri¢na, tj. za sve z i y vrijedi

(z|y) = (y [ ),
(3) i strogo pozitivna, tj. za svaki vektor x vrijedi
(x]x)>0 1 (x]|x)=0 akoisamo akoje x=0.
Vektorski prostor sa zadanim skalarnim produktom zovemo unitarnim pro-

storom. U ovom paragrafu pretpostavljamo da je V unitaran.

3.2. Napomena. Zbog linearnosti skalarnog produkta u prvom argu-
mentu za svaki vektor z imamo (0 | z) = (0+0 | z) = (0 | ) + (0 | =),
odnosno

(3.1) (0] z) = 0.

Isto tako je (x| 0) = (0| z) = 0.



106 5. SKALARNI PRODUKT

3.3. Napomena. Za nas su najvazniji primjeri unitarnih prostora vek-
torski prostori R™ i C™ s kanonskim skalarnim produktima. U matematickoj
analizi su vazni primjeri unitarnih prostora vektorski prostori funkcija, kao
Sto je, na primjer, realni vektorski prostor neprekidnih funkcija

f:[-L,1]—-R

sa skalarnim produktom
1
(F19)= [ s@gle)ds.

3.4. Potprostor unitarnog prostora je unitaran. Neka je V' uni-
taran prostor sa skalarnim produktom ( | ) i W vektorski potprostor od V.
Tada je W unitaran prostor s naslijedenim skalarnim produktom

([):WxW=K, (z,y)=(z]y),

jer su za vektore iz W o¢ito zadovoljena sva svojstva (1) — (3) u definiciji
skalarnog produkta. Posebno je svaki potprostor od R™ ili C" unitaran
prostor. Na primjer, ako je W = (a1, az) potprostor od R3 razapet vektorima

ap=(1,1,1) i a2=(1,1,2),

onda kanonski skalarni produkt na R3 daje skalarni produkt na potprostoru
W, u bazi (a1, az) zadan formulom

(32) (§1a1 + &2a2 | may + m2az) = 3§1m + 48102 + 4821 + 6572
3.5. Zadatak. Dokazite da je za sve (£1,&2) € R?
36 +8&16 +6£5 >0

ne koristeéi ¢injenicu da je formulom (3.2) zadan skalarni produkt.

3.6. Napomena. Ako je V kompleksan vektorski prostor, onda je ska-
larni produkt vektora (x | y) kompleksan broj. No zbog hermitske simetrije

je (x | x) = (x| x), pa je za svaki vektor  u V skalarni produkt (z | x)
realan broj. Buduéi da u definiciji skalarnog produkta za taj realni broj
zahtijevamo (z | x) > 0, to postoji drugi korijen +/(z | ) > 0.

3.7. Norma vektora. Norma vektora x u unitarnom prostoru V je po

definiciji
|zl = v/ (2 [ ) = 0.

Zbog svojstva (3) skalarnog produkta imamo i da je
(3.3) l|z|| =0 ako isamo ako je x =0.

Zbog linearnosti skalarnog produkta u prvom argumentu i antilinearnosti u
drugom, za svaki vektor x u V' i svaki skalar A € K vrijedi

(34)  |Ixl] = V(A [ Az) = /M@ [ 2) = VIAP(@ | 2) = [A] - [J]]
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3.8. Normirani vektori. Kazemo da je vektor # u unitarnom prostoru
V' normirani ili jedini¢ni' vektor ako je

[|f| = 1.

Za svaki vektor x # 0 “dijeljenjem” s normom ||z|| # 0 dobijamo normirani
vektor

el = rypllall =

Kazemo da smo normirani vektor ﬁx dobili normiranjem vektora x # 0.

Cesto pisemo

3.9. Okomiti vektori. Kazemo da su vektora x i y u unitarnom pro-
storu V' okomiti ili ortogonalni ako je

(y) =0,
¢esto pisemo x L y. Primijetimo da je tadai (y |z) = (z |y) =0, tj. y L z.
3.10. Okomiti skupovi. Kazemo da je vektor x okomit na skup vek-
tora A, pisemo x 1 A, ako je x L a za svaki vektor a iz skupa A. Kazemo
da je skup vektora B okomit na skup vektora A ako je svaki vektor b iz B

okomit na svaki vektor a iz A, piSemo B 1 A. Primijetimo da je tada i
A1l B.

3.11. Teorem. Ako je x L x, onda je x = 0. Posebno, ako je x LV,
onda je x = 0.

DokAz. Po definiciji skalarnog produkta (z | ) = 0 povlaéi z = 0.
Posebno, ako je x okomit na sve vektore iz V', onda je okomit i na sebe, pa
mora biti nula. O

3.12. Pitagorin pouéak. Ako je z L y, onda je
2 2
llz +yl* = [l|* + [lyl]*.
DoKAZ. Zbog bilinearnosti skalarnog produkta imamo

@t+ylzty)=@lz)+ @y +lz)+yly),

pa zbog pretpostavke (z | y) = (y | ) = 0 slijedi tvrdnja teorema. O

ly engleskom se za jedini¢ni vektor kaze unit vector, odakle i dolazi naziv “unitarni
prostor”.
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3.13. Teorem o projekciji vektora na pravac. Neka su x i e vektori
u unitarnom prostoru, |le|| = 1. Tada je
(1) x — (z | e)e Le,
(2) ©=(z|e)e+ (z = (x]e)e),
3) ll=[]* = (= [ &) + [lz — (| e)el”.

Vektor (z | e)e zovemo ortogonalnom projekcijom vektora x na pravac (e).

DokAz. Tvrdnja (1) slijedi iz linearnosti skalarnog produkta u prvom
argumentu i pretpostavke da je e jedini¢ni vektor:

(z—(x]e)efe)=(x]e)—(x]e)(e]e) =0.

Tvrdnja (2) je ocita, a tvrdnja (3) slijedi iz Pitagorinog teorema. O

3.14. Kosinus kuta izmedu dva vektora. Neka je e jedini¢ni vektor.
Prema tvrdnji (2) prethodnog teorema vektor x # 0 mozemo rastaviti na
sumu dva vektora, pri ¢emu je prvi vektor

a=(xz]e)e
proporcionalan jediniénom vektoru e duljine ||a|| = |(z | €)|, a drugi je
vektor
b=xz—(z|e)e
okomit na vektor e. Da su vektori z i e u prostoru R? ili R3, onda bi rastav
vektora
r=a+b

geometrijski mogli shvatiti kao rastav vektora na dvije komponente, pri cemu
je komponenta a na pravcu (e) = Re, a komponenta b okomita na pravac

Re. Stovise, vektor z je u tom slu¢aju hipotenuza pravokutnog trokuta sa
katetama a i b, a kosinus kuta ¢ izmedu vektora x i e je

(3.5) cosp = (x| ¢)/||z|

(nacrtajte sliku za slucajeve (z | e) > 01 (z | e) < 0). U slu¢aju unitar-
nog prostora nad poljem R relacijom (3.5) definiramo kosinus kuta izmedu
vektora e i x, ili opéenitije, kosinus kuta izmedu vektora y # 01 z je

(z | y)

(3.6) Cosp = ———.
(1]l

3.15. Primjer. Kosinus kuta izmedu vektora (1,0) i (1,1) je 1/v/2.

3.16. Primjer. Kosinus kuta izmedu vektora (0,0,1,0,0)1(1,1,1,1,3)
u R? je 1/4/13.

3.17. Zadatak. Nadite kosinus kuta izmedu vektora a) (1,0) i (1,0),
b) (1,0) i (1/2,4/3/2), c¢) (1,0) i (—=1/2,/3/2), d) (1,0)i (—=1/2,—/3/2) i
e) (1,0) i (=1/2,1/3/2). Nacrtajte sliku.
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3.18. Cauchy-Bunjakovskij-Schwarzova nejednakost. Za vektore
x 1y vrijedi nejednakost

(3.7) (@ | y)] < [l=]| 1]l

pri cemu jednakost vrijedi ako i samo ako su vektori x 1y linearno zavisni.

DoxkaAz. Ako je desnastrana ||z|| ||y|| = 0, onda je jedan od vektora nula.
Tada je zbog (3.1) i lijeva strana jednaka nuli i u (3.7) vrijedi jednakost, a
vektori x i y su linearno zavisni.

Ako je desna strana ||z||||y|| # 0, onda su oba vektora razli¢ita od nule.
Stavimo li e = y/||y||, onda nejednakost (3.7) glasi

(@ [e)] = (= | y/llyIDI = [(z [ 9)I/llyl] < ll=[|

i slijedi iz tvrdnje (3) teorema 3.13:
(@) <|(@]e)l’ +lz = (x| e)ell* = [|]*

Stovise, ako u (3.7) vrijedi jednakost, onda zbog stroge pozitivnosti skalar-

nog produkta ||z — (x | e)e|| = 0 povlaci z — (x| e)e =0, tj. x = (x| e)e =
(x| yv)y/||ly||>. Na kraju, ako je x = \y za neki skalar )\, onda su obje strane
(3.7) jednake |A| ||y]|?. O

3.19. Nejednakost trokuta. Za proizvoljne vektore x iy vrijedi tzv.
nejednakost trokuta

(3.8) [z 4yl < [l=]| + [yl
DokAz. Zbog svojstava skalarnog produkta imamo

lz+yll?=(@+ylz+y)
=(@|2)+ @y +ylz)+yly)
= [[z]* + (= | y) + (v | 2) + ||y|]”
= [|z]> + (= | y) + (= [ y) + |ly|]®
= [[«|]* + 2Re (z | y) + ||yl
<zl + 21z [ y)| + [yl
< la|* + 2 ]| ||yl + [ly|]?
= (ll=ll + Ilyl1)?,

pri ¢emu prva nejednakost vrijedi jer je realni dio kompleksnog broja manji
ili jednak apsolutnoj vrijednosti, a druga nejednakost vrijedi zbog Cauchy-
Bunjakovskij-Schwarzove nejednakosti. Sada nejednakost trokuta slijedi
vadenjem drugog korijena. O
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3.20. Udaljenost tocaka u unitarnom prostoru. Za dvije tocke x i
y u unitarnom prostoru V' definiramo njihovu medusobnu udaljenost d(z,y)
kao
d(z,y) = ||z —yll.

Iz dokazanih svojstava norme (3.3), (3.4) i (3.8) za sve z,y,z € V slijedi

(1) pozitivnost d(x,y) >0 i d(z,y) =0 ako i samo ako je x =y,

(2) simetricnost d(z,y) = d(y,z) i

(3) relacija trokuta d(x,y) < d(x,z) + d(z,y).

4. Ortonormirani skupovi vektora
4.1. Teorem. Skup vektora vy, ..., v je okomit na skup A ako i samo
ako je (vi,...,v) L A.

DokAz. Buduéi da je vi,...,vx € (v1,...,0%), to (vi,...,v5) L A
povlaéi v1,...,vx L A. Obratno, ako je v1,...,vx L Aia € A, onda
linearnost skalarnog produkta u prvom argumentu za linearnu kombinaciju
daje

Mo+ v | a) =M(v1 |a)+- -+ (v |a) =A1-04+---+X-0=0

Znaci da je linearna kombinacija Ajv; + - - - + Apvr okomita na a za svaki a
iz A. O

4.2. Ortonormirani skupovi i ortonormirane baze. Kazemo da
je skup vektora wi,...,vr ortonormirani skup ako su vektori medusobno
okomiti i ako je svaki od njih normiran. To mozemo zapisati formulom

(vi |vj) =0i5 zasve i,j=1,... k.

Ortonormirani skup vektora vy, . . ., v, koji razapinje prostor zovemo ortonor-
miranom bazom prostora.

4.3. Teorem. Neka je vy, ...,v, ortonormirani skup. Ako je
k
r=> &,
i=1
onda je & = (x| v;) za sve i =1,...,n, odnosno
k
(4.1) x = Z(w | vi)v;.
i=1

Posebno, ortonormirani skup je linearno nezavisan.

DokAz. Skalarnim mnozenjem

k
T = Z &ivi
i=1
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s v; i koriStenjem linearnosti skalarnog produkta u prvom argumenti dobi-
vamo

k k k
(@ o) =0 &Guilv) = &vilv)=> &by =¢.
=1 =1 =1

Posebno za x = 0 slijedi & = --- = & = 0, pa je skup vektora vq,...,v;
linearno nezavisan. [l
4.4. Fourierovi koeficijenti. Ako je vi,...,v, ortonormirana baza

prostora, onda koordinate
i = (z|v)
vektora x zovemo Fourierovim koeficijentima od x.

4.5. Primjer. Vektori v; = (1/v2,1/v2) i va = (1/v/2,-1/4/2) su

ortonormirana baza u R?. Koordinate vektora z = (2,1) u toj bazi su
f=(lm)=2- 5 +1-5=3/V3
b= (r]m)=2 +1- (- =1/VE
4.6. Zadatak. Izracunajte koordinate vektora x = (2,1) u ortonormi-
ranoj bazi v1 = (1/2,v/3/2) i va = (—/3/2,1/2) od R2.
4.7. Pitanje. Da li su Fourierovi koeficijenti vektora = € C™ u orto-
normiranoj bazi vy, ..., v, dani formulom
f,:(vl\x)“? DA NE

4.8. Ortonormirane baze u R2. Ortonormirane baze u R? lako je
konstruirati. Za svaki vektor f # 0 je

ke 11 = bl 1] = 1,
pa je vektor f1 = ﬁf norme 1. Ako je f1 = (o, ), onda je vektor fo =
(=B, ) takoder norme 1 i vrijedi
(fi| f2) = —aB+ Ba=0.

Ocito je i vektor — fo norme 1 i okomit na fi, pa imamo dvije ortonormirane
baze

(f17f2)a (fla_f2)7
ili zapisano po stupcima kao matrice
a p
g —a)’

(57)

4.9. Zadatak. Pokazite geometrijski i algebarski da su

(Cf)SgD —sincp) ’ <C9890 sin ¢ > , 0 ER,
singp  cos sinp —cosyp

sve ortonormirane baze u R2.
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4.10. Zadatak. Pokazite da su stupci kompleksnih matrica?

(5 7). tarsise=

ortonormirane baze u C2. Pokazite da su

~)\B
(5 %) laP+lsf=1 MW=L asircc

sve ortonormirane baze u (C2.

5. Gram-Schmidtov postupak ortogonalizacije

5.1. Teorem. Ako je vy, ...,v; ortonormirani skup vV ix € V, onda
je
k

Qz) =z - (z]v)vi L (vr,...,vg).

i=1
Stovige, Q(z) # 0 ako i samo ako z & (vy,...,vs).

DoxAz. Skalarnim mnoZenjem vektorom v; dobivamo

k k
Q@) [ v)) = (2 = S (@ | wvi | o)) = (& | v)) = 3 (& | vi)(wi | vy)
i=1 =1
k
= (@ |v) = Y [v)dy = (@ | o)) — (@] v)) = 0.
i=1
Znacidaje Q(x) L vy,..., v, ato je prema teoremu 4.1 ekvivalentno Q(z) L
(v1,...,v;). Ako je x € (v1,...,v), onda zbog (4.1) imamo Q(z) = 0.
Obratno, ako je Q(z) = 0, onda je ocito x € (v1,...,vg). O
5.2. Gram-Schmidtov postupak ortogonalizacije. Ako jeaq,...,a,
linearno nezavisan skup vektora u unitarnom prostoru V', onda postoji orto-
normairani skup vektora vy, ..., v, takav da je
(V1,...,0n) = (a1,...,ap).

Nadalje, ako je V' konacéno dimenzionalan unitaran prostor, onda se svaki
ortonormirani skup moze dopuniti do ortonormirane baze od V.

Dokaz. Konstruktivni dokaz provodimo u koracima koje zovemo Gram-
Scmidtov postupak ortogonalizacije:

Za n = 1 stavimo v; = Ha—llnal. Ocito je v; normiran i (vy) = (ay).
Pretpostavimo sada da ve¢ imamo ortonormirani skup v1,...,v; za k <
n takav da je

(5.1) (V1,...,05) = {a1,...,ak).

2Kompleksne matrice tog oblika zovemo kvaternionima norme jedan.
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Bududéi da je po pretpostavci aq, ..., ak,ar+1 linearno nezavisan skup vek-
tora, to agy1 nije u linearnoj ljusci (v1,...,vg) = {(a1,...,ax), pa iz te-
orema 5.1 slijedi da je

k
bhi1 = ar1— Y (akt1 | vi)vi # 0.

i=1

Tada imamo normirani vektor
_ 1
Vk+1 = ku+1||bk+1 Loy, v,
pa je vi,..., Uk, k41 ortonormirani skup vektora. Iz relacije
[Okr1|| Vrs1 — Qr1 = brg1 — agq1 € (U1, ..., vg)
i pretpostavke indukcije (5.1) slijedi
(U1« Uy V1) = (@1« ooy Ay V1) = Q14 -+, Ak, ARy 1)-

O

5.3. Primjer. Neka je ¢ = (1,0) i d = (1,1). Primijenimo li Gram-
Schmidtov postupak ortogonalizacije na vektore ¢, d, dobivamo ortonormi-
ranu bazu vy, vy € R?

v = H%Hc = (1,0),

bQZd—(d’?)l)’Ul:d—vlz(l,l)—(l,O):(O,l),

1
v2 = b2 = (0, 1).

Primijenimo li pak Gram-Schmidtov postupak ortogonalizacije na vektore
d, ¢, dobivamo ortonormiranu bazu uq, us

D=

by=c—(clmum =c— Jpu = (1,0 - J5- 75 (1,1) = (3,-3),

5.4. Zadatak. Gram-Schmidtov postupkom ortogonalizacije ortonor-
mirajte baze u R3:

(1) a1 = (17070)7 a2 = (17 170)7 a3
(2) al = (1, 1, 1), ag = (1, 1,0), az — ( s
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5.5. Koordinatizacija n-dimenzionalnog unitaranog prostora.
Neka je V' n-dimenzionalni unitarni prostor nad poljem K = R ili C. Prema
teoremu 5.2 postoji uredena ortonormirana baza B = (vi,...,v,) prostora
V. Ako je eq, ..., e, kanonska baza u K", onda je koordinatizacija

n n
Kp:V — K", Kp: xzz&'vi'_)xB:Z&ei
i=1 i=1

izomorfizam vektorskih prostora V i K™. Stovise, za

n n
x = E &uvi 1 y= E Vs,
=1 i=1

imamo

(z[y) Zfﬂ’z | 277]”] ZZ&% (vi | v5) ZZ&U] ij = mez

=1 j=1 i=1 j=1

Znaci da koordinatizacija Kp cuva skalarni produkt u smislu

(z |y) = (Kpz | Kpy) = (x5 | yB),

gdje je (z | y) skalarni produkt vektorau V, a (xp | yp) je kanonski skalarni
produkt vektora u K™.

Znact da svaki n-dimenzionalni unitarni prostor nad poljem R izgleda
isto kao R"™ s kanonskim skalarnim produktom, a svaki n-dimenzionalni uni-
tarni prostor nad poljem C izgleda isto kao C" s kanonskim skalarnim pro-
duktom.

5.6. Parsevalova jednakost. Buduéi da su koordinate vektora u or-
tonormiranoj bazi Fourierovi koeficijenti dani formulom (4.1), formulu za
skalarni produkt (z | y) iz prethodnog dokaza mozemo zapisati kao tzv.
Parsevalovu jednakost

n

(5.2) (@]y) = (@ | vy o),

=1

a za normu vrijedi
(5:3) l]|* = ZI ( [ v

5.7. Besselova nejednakost. Ako je vy,...,v; ortonormirani skup u
V., vektor x wV i Q(z) kao u teoremu 5.1, onda je

(5.4) ll]* = [|Q(x) H2+Z\ (@ [ vi)?
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Posebno, vrijedi Besselova nejednakost

k
(5:5) Dol va)l? < [lalf?,
i=1

a jednakost vrijedi ako i samo ako je x € (vy,...,vL).

DokAz. Stavimo
k

P(z)=2-Q(z) =Y (z]v)u

i=1
Tada je po definiciji i teoremu 5.1
r=P()+Qx), P() L Q)

pa je po Pitagorinom poucku

(5.6) le|* = [[P(@)]]” + [lQ()|[*
Bududi da je vy, ..., v, ortonormirana baza od (vq,...,v), to prema (5.3)
za P(z) € (vy,...,v) imamo

k
I1P@)IP = I | vl
i=1

pa jednakost (5.4) slijedi iz (5.6).

Ako u (5.5) vrijedi jednakost, onda iz (5.4) slijedi ||Q(z)|| = 0. No onda
jeQ(x) =0iz = P(x) € (v1,...,v). Obratno, ako je x € (v1,...,vg), onda
prema (4.1) imamo = = P(x), pa zbog (5.3) imamo jednakost u (5.5). O

5.8. Potpunost ortonormiranog skupa. Neka je vy,..., v, ortonor-
mirani skup vektora u unitarnom prostoru V. Tada je ekvivalentno:

(1) v1,...,vy, je ortonormirana baza od V.
(2) Za svex u'V je

n

x = Z(l’ | v;)v;.

i=1

(3) Za sve x u 'V wvrijedi Besselova jednakost

n
][> = I ] vl
=1

(4) Za sve x iy u 'V wrijedi Parsevalova jednakost

n

(@]y) = (@] v)ly o)

=1
Ortonormirani skup vi,...,v, za koji vrijedi jedno od ova cetiri svojstva
zovemo potpunim ortonormiranim skupom.
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Doxkaz. (1) povlaci (4) jer vrijedi (5.2). (4) povlaci (3) zbog definicije
norme. (3) povlacéi (2) zbog teorema 5.7 i (4.1). (2) povlaci (1) jer po
pretpostavci v, ..., v, razapinje prostor, a ortonormirani skup jest linearno
nezavisan. [l

6. Metoda najmanjih kvadrata

6.1. Teorem o projekciji. Neka je V wunitaran prostor i neka je Y
konacéno dimenzionalni potprostor. Tada za vektor x w 'V postoje jedinstveni
vektori P(z) wY i Q(x) LY takvi da je

z = P(x) + Qx).
DoxkAz. Po pretpostavci je Y kona¢no dimenzionalni potprostor, pa pre-
ma teoremu 5.2 postoji ortonormirana baza v, ...,v; od Y. Stavimo
k
P(z)=> (z|v)vi, Qx)=2z— P(x).
i=1
Tada je x = P(z)+ Q(x) trazeni rastav jer je prema teoremu 5.1 Q(x) LY.
Dokazimo jedinstvenost. Ako je x = P(z) +Q(x) =y+uzanekiy €Y
iulY,ondaje P(z) —y =u—Q(y) i vrijedi
Pz)—yeY i u—Q(z) LY.
Odavle slijedi
u—Q(z) Lu—Q(x),
sto povlaéi u — Q(x) = 0, odnosno v = @Q(x). No onda mora biti i y =
P(z). O

6.2. Teorem o najboljoj aproksimaciji. Neka je V unitaran prostor
i neka je Y konacno dimenzionalni potprostor. Tada za vektor x uw'V postoji
jedinstveni vektor P(x) u'Y takav da je
lz — P@)|| < lle—yll 20 svaki yeY,

a jednakost vrijedi ako i samo ako je y = P(x).
KazZemo da je od svih vektora iz potprostora Y wektor P(x) nagjbolja
aproksimacija od x.

Dokaz. Po pretpostavci je Y kona¢no dimenzionalni potprostor, pa pre-

ma teoremu 5.2 postoji ortonormirana baza v1,...,v; od Y. Stavimo
k

P(z) =) (z|v)vi, Qz)==— Px)

i=1
Tada je po teoremu 5.1
Q) L P(x)—y Y,
pa je po Pitagorinom poucku
lz—yll* = lla—P(a)+P(z)~yl]* = [[z—P(@)|[*+]|P(z)~yl]* > [lz—P(z)|],
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a jednakost vrijedi ako i samo ako je ||P(z) —y|| = 0, odnosno P(x) —y = 0.
Bududi da je ||z — P(x)|| < ||z —y|| za y # P(x), vektor P(z) € Y mora

biti jedinstven. Stoga P(x) ne ovisi o izboru ortonormirane baze vy, ..., vy
uY. u
6.3. Primjer. Vektori
v =5(1,-1,0), v =z(1,1,1)

¢ine ortonormirani skup u R? i razapinju 2-dimenzionalni potprostor ¥ =
(v1,v2). Za vektor
b=(-1,-2,1)
je tocka
P(b) = (b ’ Ul)vl + (b ‘ v2)vg = %(L _170) - %(17 1,1) = (_%7 _%> _%)
najbolja aproksimacija od b tockama iz ravnine Y jer je za sve y iz Y

Vektor Q(b) = b— P(b) = (—1,-2,1) — (—%,—%,—%) interpretiramo kao
vektor-okomicu na ravninu Y sa hvatistem u tocki ravnine P(b) i zavrsetkom
u tocki b = Q(b) + P(b), a duljinu % = ||Q(b)|| tog vektora interpretiramo
kao udaljenost tocke b od ravnine Y.

6.4. Zadatak. Nadite udaljenost tocke b od ravnine (v1,v2), gdje je
v = (1, 1,1)/V3, w2 =(1,1,-2)/v6, b=(1,0,1).

6.5. Metoda najmanjih kvadrata. Neka su dani vektori ai,...,an,
u R™ i vektor b koji nije u linearnoj ljusci Y = (a1, ..., a,). Tada sistem od
m jednadzbi s n nepoznanica

nema rjesenja, a najbolje §to mozemo traziti su takvi z = (§1,...,&,) € R”
za koje je

m
||a1£1 + - +an£n - bH2 = Z |O‘i1£1 + - +Oéin£n - ﬁ1|2
i=1

najmanje moguce. Ponekad taj problem zapisujemo kao
||a1£1 + -+ ankn — b”2 — min.

Prema teoremu o najboljoj aproksimaciji rjeSenje tog problema su oni x €
R™ za koje je

(6.1) Az = P(b),
gdje je P(b) najbolja aproksimacija od b vektorima iz Y. Buduéi da je
P) € Y = (a1,...,an), sistem (6.1) uvijek ima rjesenje x. RjeSavanje

sistema (6.1) zovemo metodom najmangih kvadrata.
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6.6. Sistem jednadzbi za metodu najmanjih kvadrata. Neka V
unitaran prostor, b vektor u V1Y = (aq,...,a,) potprostor u V razapet
vektorima aq, ..., a,. Prema teoremu 6.1 postoji jedinstveni

Pb)=&ai+ -+ &an €Y
takav da je
b—P(b) LY.
To je, prema teoremu 4.1, ekvivalentno
(&1a1+ -+ &ap—bla;)=0 zasve i=1,...,n,

ili, zapisano kao sistem jednadzbi,

(a1 | a1)é1 + (a2 | a1)éa + -+ + (an | @1)én = (b | a1),
(6.2) (a1 | a2)&1 + (a2 | a2)éa + -+ + (an | a2)én = (b | a2),

(a1 [ an)ér + (a2 [ an)éa + -+ + (an | an)én = (b ] an).
Zmaci da koeficijente &1, .. ., &, za najbolju aproksimaciju &1a1+- - -+ &pay, =

P(b) mozemo traziti rjesavanjem sistema jednadzbi (6.2).

6.7. Primjer. Vratimo se primjeru 6.3: zadan je ortonormirani skup

v = %(1, —1,0), wy= %(1,1, 1)

u R? i vektor
b=(—-1,-2,1),

a trazi se najbolja aproksimacija od b u 2-dimenzionalnom potprostoru ¥ =

a1 = V2u1 + V3v = (2,0, 1),
as = V3vy = (1,1,1),
as = \/i'l}l - \/§U2 = (0, —2, —1),
pa jo$ uvijek imamo isti Y = (vi,v2) = (a1, az,a3). Sada trazimo
P(b) = &1a1 + &aa2 + &3a3

rjeSavanjem sistema jednadzbi (6.2):

561 + 38 — & = —1,

381 + 382 — 383 = -2,

— &1 — 38 + 583 = 3.

Rjesavanjem ovog sistema Gaussovom metodom eliminacija vidimo da sis-
tem nema jedinstveno rjesenje. Lako se provjeri da je x = ( % —%, 0) jedno
rjeSenje, pa je

P(b) =2a1 — fap = 2(2,0,1) — 2(1,1,1) = (-, —

I

[N BN
OO~

).
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6.8. Zadatak. Nadite udaljenost tocke b od ravnine (a1, as), gdje je

a1 = (1,1,1), az=(2,2,—1), b=(1,0,1).

6.9. Primjer. Zamislimo si da eksperimentalno mjerimo veli¢ine x i y
koje su vezane “zakonom”

y = Azx + B,

a na nama je odrediti koeficijente A i B. Recimo da smo za (x,y) redom
dobili (1,2), (2,3) i (3,5). Tada sistem

A+ B=2,
24+ B =3,
34+ B =5,

nema rjeSenja i najbolje sto moZemo je da nepoznanice A i B odredimo
metodom najmanjih kvadrata. Sistem prvo zapiSemo kao Aa; + Bas = b,
tj.

1 1 2
A(1,2,3)+ B(1,1,1) =(2,3,5) ili A[2|+B|1|=|3
3 1 5

a odgovarajudi sistem (6.2) kao

(a1 | a)A+ (a2 | a1)B = (b| a1),
(a1 ’ ag)A + (az | CLQ)B = (b | CLQ).

To je u naSem primjeru sistem

144 + 6B = 23,
64+ 3B = 10,

a rjeSenje tog sistema je A = %, B = % Zmaci da je za taj izbor A i B suma
kvadrata

A+ B—2*+|2A+B -3+ 34+ B —5?

najmanja moguéa. Nacrtajte pravac y = 3z + % i tocke (1,2), (2,3) 1 (3,5)
“dobivene mjerenjem”.

6.10. Zadatak. Metodom najmanjih kvadrata odredite koeficijente A
i B u “zakonu”

y = Azr + B,
gdje smo “mjerenjem” za (z,y) redom dobili (3,7), (4,10), (5,11) i (6, 12).
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7. Teorem o projekciji

7.1. Ortogonalni komplement potprostora. Neka je V unitaran
prostor i Y potprostor od V. Tada je zbog linearnosti skalarnog produkta
u prvom argumentu

Yi={zeV|(z|y)=0zasveycY}

potprostor od Y. Potprostor Y1 zovemo ga ortogonalnim komplementom
odY.

7.2. Suma potprostora. Neka su W i U potprostori od V. Skup svih
vektora

W4+U=A{w+u|weWueU}
zovemo sumom potprostora. Suma potprostora W + U je vektorski prostor.
DoKAz. Za vektore w,w’,w” € W iwu,u,u" € U i skalar A imamo
(W' +u")+ (0" +u") = (W + ")+ (W +u"), MNwtu) = w+IueW+U.
O

7.3. Ortogonalna suma potprostora. Neka su W i U potprostori od
V. Ako je W L U, onda W + U zovemo ortogonalnom sumom potprostora
1 piSemo
WeU.

U tom slucaju tmamo jedinstveni prikaz svakog elementa x € W & U kao
sumu

r=w+u, weW, uel.
DokAz. Ako je w+u = w’' +u' za neke w' € W iu € U, onda je
w—w =u —u
element iz W i U, pa okomitost W 1 U povlaci
llw—w'|?=(w-—w|w-w)=(w-uw|u—u)=0.

No tada zbog svojstva norme (3.3) mora biti w—w’ = 0, §to povladi v’ = w,
aondaiu = u. O

Uz uvedenu terminologiju teorem 6.1 mozemo iskazati na sljedeéi nacin

7.4. Teorem o projekciji. Neka je V wunitaran prostor i neka je Y
konacno dimenzionalni potprostor. Tada je

V=YaY"t
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7.5. Teorem. Neka je V wunitaran konacéno dimenzionalni prostor i
neka je Y potprostor. Tada je

dimY +dim(Y+t) =dimV i (YDHi=V
DokAz. ([

Neka je vi,...,v; ortonormirana baza u Y i uy,...,u, ortonormirana
baza u Y. Tada je vi,...,v%, u1,...,u, ortonormirani skup u V. Bududi
da je po teoremu o projekciji svaki vektor x iz V suma vektora iz Y i Y+,
to je x linearna kombinacija vektora vy, ..., v, i vektora ui,...,u,. No to
onda znaci da je skup

Viyeo oy Uy Uly e ooy Uy
ortonormirana baza od V', pa je k + r = dim V. Nadalje, vektor

k T
T = Z(CB | vi)vi + Z(l‘ | uj)u;
1 Jj=1

1=
je okomit na Y+ = (ug,...,u,) ako i samo ako su mu Fourierovi koeficijenti
(z|uy) =--+= (x| u) =0, odnosno ako i samo ako je x € (vy,...,v5) =Y.
Znaéi da je (Y1)t =Y.

7.6. Primjedba. Iz gornjeg teorema slijedi da se svaki potprostor W C
R"™ moze napisati kao skup rjeSenja nekog homogenog sistema jednadzbi.
Naime,

W= (WHt,
pa ako ortonormiranu bazu eq,...,e; od W nadopunimo do ortonormirane
baze ey, ..., €k, €k+1,- .-,y od R™ onda je
W={zeR"|(z|egt1) == (x|e,) =0}

7.7. Zadatak. Napisite potprostor W = (a1, a2) kao skup rjesenja ne-
kog homogenog sistema jednadzbi, pri ¢emu je

a; = (1,1,0,1), a2 =1(0,1,1,0).






POGLAVLJE 6
Povrsina, volumen i determinante

U ovom poglavlju prou¢avamo osnovna svojstva determinanti kvadrat-
nih matrica. Nakon induktivne definicije dokazujemo da je determinanta
multilinearna alternirajuca funkcija stupaca matrice i da je svaka multiline-
arna alternirajuca funkcija stupaca matrice proporcionalna determinanti. Iz
tog svojstva determinante slijedi Cramerovo pravilo o rjeSsavanju kvadratnih
sistema jednadzbi, kao i raCunajne determinate pomocu elementarnih tran-
sformacija. Sva su razmatranja provedena za sluc¢aj realnih brojeva, no osim
geometrijskih argumenata u prva dva paragrafa i geometrijske interpretacije
determinante kao volumena, sve ostale tvrdnje i dokazi vrijede jednako i za
kompleksne brojeve. Na kraju poglavlja pomoc¢u determinante na 3 x 3 ma-
tricama definiramo vektorski produkt u R3 i dokazujemo njegova osnovna
svojstva.

1. Povrsina paralelograma

1.1. Povrsina pravokutnika. Zamislimo si R? kao euklidsku ravninu,
a kanonsku bazu ey, es kao jedini¢ne vektore u Kartezijevom sustavu. Tada
je jedini¢ni kvadrat (s vrhovima (0, 0), (1,0), (0,1), (1,1)) skup svih vektora

{z € R? | = Aieg + Ageg, 0 < A, A\ < 1},

a povrsina P(ep,e2) tog jedinicnog kvadrata je 1. Sliéno, pravokutnik s
vrhovima (0,0), («,0), (0,5)), (a, B) je skup svih vektora

(1.1) {z € R® |z = A\aer + AaBez, 0< A\ < 13,
a povrsina tog pravokutnika
(1.2) P(aer, Bez) = aff

(baza a puta visina ). Ovdje pretpostavljamo «,5 > 0. Za povrsinu
pravokutnika ocito vrijede formule:

(1.3) P(aje; + ager, fea) = Plajer, Bea) + Plazer, Bea),
(paey, Bea) = pP(aeq, Pea),
(
(

i)

P
P

aer, Brea + Baez) = P(aeq, frez) + P(aer, faez),
aet, pfes) = pP(aer, Bes).

123
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To su, za ay, a9, B1, B2, 1 > 0, samo komplicirano zapisane formule

(1.4) (1 + a2)B = an S + a2f3,
(pa) B = p(apB),
a(B1 + B2) = af + afs,
a(uB) = p(aB).

Ako formulom (1.2) definiramo povrsinu pravokutnika za proizvoljne «, 5 €
R, onda jos uvijek vrijedi (1.3) jer vrijedi (1.4) za sve aq, ag, B1, B2, 1 €
R. Naravno, u tom slucaju dozvoljavamo i negativne povrsine, na primjer,
P(—el, 62) = —1.

Primigetimo da sama definicija (1.1) pravokutnika ne igra nikakvu ulogu
u ovom razmatranju, bitna je samo definicija povrsine pravokutnika (1.2)!

1.2. Povrsina paralelograma. Ako su a,b € R?, onda definiramo
paralelogram razapet vektorima a i b kao skup svih vektora

(1.5) {z €R? |2 = Xa+ Aob, 0 < A, N <1},

Naravno, dozvoljavamo i slu¢aj a = b kada je “paralelogram” razapet vek-
torima a i a zapravo duzina

(1.6) {reR? |z =MXa, 0 < X< 2L

Iz euklidske geometrije znamo racunati povrsinu paralelograma: to je baza
puta visina. Zato je razumno pretpostaviti da svakom paru vektora (a,b) €
R? x R? mozemo pridruziti povrinu P(a,b) € R tako da vrijedi
(1.7) P(aj + az,b) = P(a1,b) + P(az,b), P(ua,b) = puP(a,b),
P(CL, b1 + b?) = P(CL, bl) + P(CL7 62)7 P(avub) = [,LP(G, b)

Naime, jasno je da p puta duze stranica daje p puta veéu povrsinu, a geome-
trijski mozemo interpretirati i jednakost P(a; + a2,b) = P(a1,b) + P(az,b)
(nacrtajte sliku!).

Te su formule u potpunosti u skladu s formulama za povrs$inu pravokut-

nika (1.3). Medutim, povrsine duzine (1.6) u euklidskoj ravnini mora biti
nula, tj.

P(a,a) =0,

§to ne slijedi iz svojstava (1.7).

1.3. Definicija. KaZemo da je funkcija

P:R*xR? >R, (a,b)— P(a,b),
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povrdina paralelograma ako za sve a,ay, as,b,b1, by € R? iy € R vrijedi
(1) P(ay + az,b) = P(a1,b) + P(ag,b), P(ua,b) = pP(a,b),

(2) P(a,b; + b)) = P(a,b1) + P(a,b2), P(a,ub) = puP(a,b),

(3) P(a,a) =0,

(4) P(e1,es) = 1.

U ovoj definiciji relacije (1) zovemo linearnost od P u prvom argumentu,
a relacije (2) zovemo linearnost od P u drugom argumentu. Buduéi da je P
linearno u oba argumenta, kazemo da je P bilinearno.

1.4. Linearnost u prvom argumentu funkcije P povlaci (dokazite
indukcijom!)

P (zn: /\iai, b> = Zn: )\Z—P(ai, b)7
=1 =1

pa imamo formulu koja sli¢i distributivnosti mnozenja s desna (ele-
mentom b) u odnosu na zbrajanje (elemenata \;a;). Naime, ako piSemo
aeb= P(a,b), onda imamo:

(Zn: )\Z-ai) = Zn: )\i(ai ® b)

i=1

1.5. Linearnost u drugom argumentu funkcije P povlaci

Pa,y ubi| = P (ab))
=1 j=1

pa imamo formulu koja sli¢i distributivnosti mnozenja s lijeva (ele-
mentom a) u odnosu na zbrajanje (elemenata j;b;). Naime, ako piSemo
aeb= P(a,b), onda imamo:

=1 j=1

1.6. Bilinearnost funkcije P povlaci

P Z/\iai,Zujbj = Z)\’P ai,z,ujbj
i=1 J=1 i=1 J=1
=> N> P (aiby) = ) Nipi P (ai, by),
=1 j=1

j=1 i=1

pa imamo formulu koja sli¢i pravilu mnozenja “svaki sa svakim” ele-
menta A;a; s elementima fp;b;. Naime, ako piSemo a ¢ b = P(a,b), onda
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imamo:

n

(Zn: )\Za,> ° i /'ijj i )\Z;,L] a; ® b
i=1 Jj=1

7j=11i=1

1.7. Lema. Za bilinearno preslikavanje P je ekvivalentno®
(1) P(a,a) =0 za svaki a € R?,
(2) P(a,b) = —P(b,a) za sve a,b € R2.
DoxkaAz. (1) = (2). Zaista, zbog (1) i bilinearnosti imamo
0= P(a+b,a+b)=P(a,a)+ P(b,a) + P(a,b) + P(b,b) = P(b,a) + P(a,b).

(2) = (1). Zaista, za a = b relacija P(a,b) + P(b,a) = 0 povlaci 2P(a,a) =
0, pa imamo P(a,a) = 0. O

Zbog svojstva P(a,b) = —P(b,a) bilinearnu funkciju P zovemo alterni-
raju¢om ili antisimetriénom.

1.8. Teorem. Poursina paralelograma P: R? xR? — R postoji i jedins-
tvena je.

DokAz. Pretpostavimo da povrsina paralelograma postoji. Tada za
a=arer +agez 1 b= prer + Paen
imamo

P(a,b) = P(aier + agez, fre1 + Bze2)
= a151P(e1,e1) + a1BaP(er, e2) + aaB1Pez, e1) + azf2P(e2, e2)
= a132P(e1,e2) + azB1P(ez, e1)
= a132P(e1,e2) — agB1P(e1, e2)
= a1z — azf.
Ovdje druga jednakost slijedi mnozenjem svakog sa svakim, tre¢a jednakost
vrijedi zbog P(e1,e1) = P(eg,ea) = 0, ¢etvrta zbog P(ea,e1) = —P(e1, e2),
peta zbog P(e1,e2) = 1. Bududi da je prikaz vektora a i b u kanonskoj bazi
jedinstven, to imamo jednu jedinu moguénost za povrsinu P:

(1.8) P(a,b) = a1z — afy.

Da bismo dokazali egzistenciju povrsine, jednostavno je definiramo for-
mulom (1.8) i provjerimo da tako definirana funkcija ima trazena svojstva.
Na primjer,

INase polje je R. Tvrdnja leme vrijedi i za polje K = C i bilinearnu funkciju P: C? x
C? — C, ali ne i za polje K = Z/27 i bilinearnu funkciju P: K? x K? — K! Zasto?
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P(Aa,b) = (Aa1)f2 — (Aaz)B1 = AP(a, b),
a,b) = ai1fs — aoffy = —(Braz — frar) = —P(b,a),
61,62):1~1—O‘0=0.

O

1.9. Determinanta 2 x 2 matrice. Jedinstvenu povrsinu paralelo-
grama zovemo determinantom 2 X 2 matrice i piSemo

det (a,b) = a1 fr — 21

det <Z; g;) = det <<z;> N <g;)> = alﬂg — 04251.

1.10. Primjer paralelograma iste povrsine. Nacrtajte u ravnini,
za razne A € R, paralelograme s vrhovima (0,0), (2,0), (A, 1), (2+ A, 1). Ti
paralelogrami imaju iste baze duljine 2 i iste visine 1, pa i iste povrsine 2- 1.
Funkcija det “rac¢una”

2 0 2 A
det (0 1>—det (O 1)-2.

Interpretirajte geometrijski formule?

det 2 0) _ det 203 2, det cosp TP
01 J7 sing  cos g
1.11. Slucaj nul-stupca. Geometrijski je jasno da je det(a,0) =

det(0,0) = 0. Prva formula slijedi algebarski iz linearnosti funkcije det u
drugom argumentu. Naime,

det(a,0) = det(a, 0+ 0) = det(a, 0) + det(a, 0),

ili

a to povlaci det(a,0) = 0. Formula det(0,b) = 0 vrijedi zbog linearnosti
funkcije det u prvom argumentu.

2. Volumen paralelepipeda

2.1. Volumen kvadra i paralelepipeda. Zamislimo si R? kao euk-
lidski trodimenzionalni prostor, a kanonsku bazu ey, e, e3 kao jedini¢ne vek-
tore u Kartezijevom sustavu. Tada je volumen V(ej,es, e3) te jedini¢ne
kocke jednak 1. Sli¢no, kvadar sa stranicama aey, Ses, yes3 ima volumen

(2.1) V(aer, Bea,ve3) = afy.

27a, funkcije sin i cos vrijedi cos? ¢ + sin? ¢ = 1.
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Geometrijski je jasno znacenje formula:

(2.2) (a1 +a2)By = a1By + axfy, (pa)By = p(apfy),
a(Br+ B2)y = afry +abyy,  a(uB)y = u(aby),
aB(n +72) = aby +aBy,  aBf(Ay) = Aaby).
Paralelepiped razapet vektorima a,b, ¢ € R? definiramo kao skup oblika
(2.3) {z €R3 | 2= XAa+ b+ Azc, 0< A, Ao, A3 < 1},

Naravno, dozvoljavamo i slu¢aj b = a kada je “paralelepiped” razapet vek-
torima a, a i ¢ zapravo paralelogram

(2.4) {reR* |z =Xa+puc, 0<A<2 0<pu<1}).

1z euklidske geometrije znamo ra¢unati volumen paralelepipeda: to je povr-
Sina baze puta visina. Zato je razumno pretpostaviti da svakoj trojki vektora
(a,b,c) € R? x R? x R? mozemo pridruziti volumen V'(a,b,c) € R tako da
vrijedi
(2.5) V(a1 +a2,b,¢) = V(ai,b,¢) + V(az,b,¢), V(ua,b,c)=puV(a,b,c),
V(a,by + bz, ¢) =V(a,bi,c) +V(a,b2,c), V(a,ub,c)=uV(a,b,c),
V(a,b,c1 +c2) =V(a,b,c1) +V(a,b,c2), V(a,b,uc)=uVa,b,c).
Naime, jasno je da p puta duza stranica daje p puta veéi volumen, a ge-
ometrijski mozemo interpretirati i jednakost V(a1 + a2,b,¢) = V (a1, b,¢) +
V(az,b,c) (nacrtajte sliku).
Te su formule u potpunosti u skladu s formulama za volumen kvadra

(2.2). Medutim, volumen paralelograma (2.4) u ravnini trodimenzionalnog
prostora mora biti nula, tj.

V(a,a,c) =0,
sto ne slijedi iz svojstava (2.5).
2.2. Definicija. KaZemo da je funkcija
VR xR*xR?* =R, (a,b,¢c)— Via,b,c),

volumen paralelepipeda ako za sve a,ai,as,b,bi,bs,c,c1,c0 € R3 i pu € R
vrijedi

(1) V(ai+ag,b,¢) =V(ai,b,c) +V(az,b,c), V(ua,b,c)=puV(a,b,c),
(2) V(a,by +ba,c) =V(a,bi,c)+ V(a,ba,c), V(a,ub,c)=puV(a,b,c),
(3) V(a,b,c1 +02) V(a,b,c1) +V(a,b,c2), V(a,b,uc)=puV(a,b,c),
(4) V(a,a,c) = V(a,b,a) =0, V(a,b,b) =0,

(5) V(€1,€2,€3) =1.

U ovoj definiciji relacije (1) zovemo linearnost od V' u prvom argumentu,
relacije (2) zovemo linearnost od V' u drugom argumentu, a relacije (3) zo-
vemo linearnost od V' u trecem argumentu. Bududi da je V' linearno u sva tri
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argumenta, kazemo da je V trilinearno. Svojstvo trilinearnosti treba shvatiti
kao poopéenje svojstva mnozenja brojeva (2.2).

2.3. Trilinearnost za visestruke sume. Trilinearnost povlaci

n m p n m p
Z)\z’aiaz,ujbjazl/kck = ZMV a;, Z ZVka
i—1 =1 k=1 k=1

i=1 j=1
n m n m p
= Z)\ Z,u] (al,b],ZI/kck) = Z Z Z v,V (ai, by, cx)
i=1  j=1 i=1  j=1 k=
p m n
:ZZ )‘Z’/le/kv (ai7bj7ck)a
k=1 j=1 i=1

pa imamo formulu koja sli¢i pravilu mnozenja “svaki sa svakim” ele-
menata \;a;, elemenata p1;0; i elemenata vjci,. Naime, ako pisemo aebec =
V(a,b,c), onda imamo

m n

n m p p
<Z )\,az> [ Z Mjbj [ ] (Z I/kck> = Z Z Z )\iujyk(ai [ bj (] Ck).
=1 J=1 k=1 k=1

j=1 i=1

Tu formulu trebamo shvatiti kao poopéenje pravila mnozenja “svaki sa sva-
kim” za produkte viSestrukih suma brojeva

(;A’> g“j (g’/’):iii&w%

k=1j=1 i=1

2.4. Lema. Za trilinearno preslikavanje V' je ekvivalentno:
(1) V(a,a,c) =0 za svaki a € R?,
(2) V(a,b,c) = -V (b,a,c) za sve a,b € R2.

Doxkaz. (1) = (2). Zaista, zbog (1) i trilinearnosti imamo
0=V(a+ba+b,c)=V(a,a,c)+V(ba,c)+V(ab,c)+V(bb,c)
=V(b,a,c)+V(a,b,c).

(2) = (1). Zaista, za a = b relacija V(a,b,c) + V(b,a,c) = 0 povlaci
2V (a,a,c) =0, pa imamo V(a,a,c) = 0. O

Primijetimo da je ovaj dokaz u sustini prepisani dokaz leme 1.7. Narav-
no, na isti nac¢in vidimo da je V' (a, b, a) = 0 za sve a ekvivalentno V'(a, b, c) =
—V(c,b,a) za sve a i c. Zbog svojstva

V(a,b,c) ==V (b,a,c), V(a,b,c)=—-V(c,b,a), V(a,b,c)=—-V(a,c,b),

trilinearnu funkciju V' zovemo alternirajucom.
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2.5. Teorem. Volumen paralelepipeda V: R3 x R? x R3 — R postoji i
jedinstven je.

DokAz. Pretpostavimo da volumen paralelepipeda postoji. Tada za

3 3 3
a= E aze;, b= E Bje;, c= E Vi,
i=1 j=1 k=1

imamo
3 3 3
Via,b,e) =V [ Y e, > Biej, Y ek
i=1 =1 k=1

3
= > aiBiuV(eiejex)

1,7,k=1

= ) aiBmVieneer)

{ivjvk}:{LQ?S}

=3 ao)Bo@ 103V (€o(1): €0 (2) €o(3)
= Z O‘o‘(l)ﬂo(2)/yo(3) (71)0‘/(61’ €2, 63)

= Z(—l)a%(nﬁam)%(m

g

= a1B273 — 18372 — 25173
+ anf371 + azfiy2 — azfBai.

Ovdje druga jednakost slijedi mnozenjem svakog sa svakim, primijetimo
da se u sumi javljaju i ¢lanovi poput a;f1v3V (e1,e1,e3), a koji je nula
zbog V(e1,e1,e3) = 0. Suma ;11 g o5y Oznacava da uzimamo samo
indekse 7, 7, k koji su medosobno razli¢iti. Buduéi da za indekse 4, j, k koji
nisu medosobno razliciti V' (e;, e, ex) = 0, tre¢a jednakost vrijedi. Suma )
ozna¢ava sumu po svim permutacijama skupa {1,2,3}. Buduéi da su za
permutaciju ¢ indeksi ¢ = o(1), j = 0(2) i k = 0(3) medosobno razli¢iti,
to Cetvrta jednakost vrijedi jer smo samo malo drugacije zapisali sumu po
medusobno razli¢itim indeksima 4, j, k. Oznaka (—1)7 = %1 je definirana
relacijom

(=1)7V(e1, e, €3) = V(es(1)s €(2), €0 (3))-
Na primjer, V' (e, e3,e2) = —V(e1, ea,€3), pa je (—1)7 = —1 za permutaciju
o(1) =1, 0(2) = 3, 0(3) = 2. Zato po definiciji vrijedi peta jednakost. Sesta
jednakost vrijedi zbog V'(e1, e3,e2) = 1, a sedma jednakost daje formulu za
(=1)? ag(1)Bo(2)Vs(3) za sve permutacije o.
Buduéi da je prikaz vektora a, b i ¢ u kanonskoj bazi jedinstven, to
imamo jednu jedinu moguénost za volumen V':

(2.6) V(a,b,c) = ai1B2ys — a1f83v2 — azfiv3 + af3y1 + a3fiy2 — a3fayi.
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Da bismo dokazali egzistenciju volumena V', jednostavno ga definiramo for-
mulom (2.6) i provjerimo da tako definirana funkcija ima sva trazena svoj-
stva. ([l

2.6. Determinanta 3 x 3 matrice. Jedinstveni volumen paralelepi-
peda zovemo determinantom 3 X 3 matrice i piSemo

det (a,b, c) = a1fB273 — a1 8372 — a2 f173 + a2fB371 + asfiye — azfa,

ili

a; B m a B1 "
det [ ag B2 7o | =det as |, 1821, | = det (a, b, ¢).
as B3 73 ag B3 V3

Formulu za determinantu 3 x 3 matrice mozemo zapamtiti po Sarrusovom
pravilu: napiSemo matricu

ar B oo B
az fBa 2 az [
a3 B3 v3 az [

i zbrajamo produkte po “glavnim dijagonalama” i oduzimamo produkte po
“sporednim dijagonalama”:

a1 273 + fryeaz + y1aef3 — azfBayr — B3yecn — y3af.

2.7. Zadatak. Dokazite da je determinata transponirane 3 x 3 matrice
A! jednaka determinanti pocetne matrice A, tj.

a1 oy o ar B1om
det [ B1 B2 P3| =det [as P2 72
Y2 3 az B3 73

2.8. Laplaceov razvoj 3 x3 determinante. Sarrusovo pravilo vrijedi
samo za determinante matrica tipa 3 x 3. Pravilo koje vrijedi opéenito je tzv.
Laplaceov razvoj determinante. Na primjer, Laplaceov razvoj determinante
matrice tipa 3 X 3 po tre¢em stupcu je

a1 B1om

det (s B 7| =mudet (2 P2) ppdet (%1 PL) fqgder (O O1)
o az 3 az  f33 oy o
3 B3 73

a Laplaceov razvoj determinante po prvom retku je
ar Biom
det | aa B2 72| = ardet P2 2 — (1 det L +v1 det az B .
B3 s as V3 as B3
as P 3

Opéenito je Laplaceov razvoj po nekom stupcu (ili retku) suma elemenata
u tom stupcu (odnosno retku) mnozenih determinantama 2 x 2 matrica
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dobivenih brisanjem retka i stupca u kojem se element nalazi, a predznaci
se biraju po pravilu

2.9. Napomena. Ponekad pravilo o Laplaceovom razvoju koristimo za
preglednije zapisivanje formula. Na primjer, ako su Gy, G2 i G3 vektori i
a;, B € Rzai=1,2,3, onda izraz

(a2f3 — a3f2)G1 — (183 — a3fr)Ga + (a1 B2 — azf)G3

krace zapisujemo kao

ar B Gy
det | a2 f2 G2,
ag B3 G3

misleéi pritom da treba primijeniti formulu (kao $to je ona) za Laplaceov
razvoj determinante po tre¢em stupcu.

3. Determinanta kvadratne matrice

3.1. Determinanta 1 x 1 matrice. Determinanta 1 x 1 matrice o1
je sam taj broj aq.

3.2. Determinanta 2 x2 matrice. Determinanta 2 x2 matrice je broj

det (@11 Quz) _
et = Q110122 — Q1120021
Qo1 Q2

3.3. Primjer.
01 -1 1
de1:<2 1)—0-1—1-2——2, det(2 1)——1-1—1~2——3.

3.4. Zadatak. Izracunajte det <_01 }) i det <6 \—/z§>

3.5. Determinanta 3 x3 matrice. Determinanta 3 x 3 matrice je broj

a11 12 013
det | ag1 92 a3
Q31 (32 (33

o o o o o o
= o1 det 2 023 1o det A a3 det 2tz
Q32 3 33 Q31 (32

3.6. Primjer.

1 -1 1
det |2 0 1] =det 0 1) _ (—1)det 21 + det 20y _ 1.
3 9 1 2 1 3 1 3 2
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-1 11
3.7. Zadatak. Izracunajtedet [ O 1 2
2 1 3

3.8. Zadatak. Pokazite da se definicija 3.5 determinante 3 x 3 matrice
podudara s definicijom iz tocke 2.6.

3.9. Oznake za brisanje stupaca i redaka matrice. Neka je A =

(cvij) matrica tipa n x n, zapisana po stupcima kao A = (a1,...,a,). Za
proizvoljne indekse j, k € {1,...,n} ozna¢imo s
k k k
Aji = (ag ),...,agjl,ag-ﬁl,...,a%k))

matricu tipa (n — 1) x (n — 1) dobivenu od matrice A brisanjem j-tog
stupca i k-tog retka u matrici A. Posebno, u matrici Aj; nema
(k)

matricnog elementa oy;. NaSa oznaka a;’ znaci da je u prvom stupcu
ay brisana k-ta koordinata. Matricu A, mozemo zapisati kao

a1 Q12 ... G50 ... aap
Qo1 Q22 ... D ... Qop
S Dy ... Dgj ... g ’
Qpl Qp2 ... Gj ... Qg

gdje smo s oznakom & za prazan skup naznacili da je izostavljen j-ti stupac
i k-ti redak iz matrice A. Na primjer,

4 100 2 3

A_| 1 200 -1 2 A_‘ll_zlg’
~— 1200 100 300 600 | 7 : 9 5

7 100 2 5
3.10. Determinanta n x n matrice. Determinanta n X n matrice
A = (aj) je broj
n
det A = Z(—l)prjalj det Ajl-
j=1
U ovoj induktivnoj definiciji determinante n x n matrice A koristimo (po
pretpostavci veé¢ definirane) determinante (n — 1) x (n — 1) matrica Aj

dobivenih brisanjem j-tog stupca i prvog retka u matrici A. Formulu
si mozemo bolje predociti ako piSemo

(31)  detA= (-D)"aydeta",...,al" i, . D).
j=1

Takoder valja uociti da sumiramo po svim elementima prvog retka matrice
A i da predznaci u (—1)'*7ay; alterniraju

1+n
aii, —Q12, a13, —Q14, ..., (_1) Ulp.
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Valja primijetiti da je definicija za n = 2 i 3 u skladu s opéom definicijom
determinante n X n matrice.

-1
3.11. Zadatak. Racunanjem pokazite da je det

o O ot o
N O Ot

—_ = Ot
W N Ot =

3.12. Determinanta jedinicne matrice.
det I = det(eq,...,e,) = 1.

DokAz. Tvrdnju dokazujemo indukcijom po n. Za n = 1 tvrdnja je
ocita. Takoder je oc¢ito da brisanjem prvog retka i prvog stupca u jedini¢noj
n X n matrici I,, dobivamo jedini¢nu (n — 1) x (n — 1) matricu I,_1, pa iz
definicije slijedi

detl,=1-detl,_1=1-1=1.
O

3.13. Zadatak. Dokazite formulu za determinantu donje trokutaste
matrice

11 0 e 0
21 (o2 ... 0

det . . . = (110922 ...0nnp.
apl QOp2 ... [67970)

4. Osnovni teorem o determinanti
4.1. Linearne funkcije. Za funkciju
g:R" =R, x~ g(x)

kazemo da je linearna funkcija na R™ ako za sve vektore z,xz’, 2" € R™ i
skalare A € R vrijedi svojstvo linearnosti

(4.1) 9@’ +2") = g(a') + g(a"), g(Az) = Ag().
Opcenitije, za preslikavanje
g:R" = R"™, z—g(z)

kazemo da je linearno preslikavanje sa R™ uw R™ ako za sve vektore z, 2/, 2" €
R™ i skalare A € R vrijedi svojstvo linearnosti (4.1).

4.2. Napomena. Kompozicija linearnih preslikavangja g i f je linearno
preslikavanje jer ocito vrijeds

flg(@’ +a")) = fg(a') + 9(a")) = f(g(a")) + f(g(z")),
flg(Az)) = f(Ag(2)) = Af(g(z)).
4.3. Napomena. Za linearnu funkciju g vrijedi g(0) = 0 jer je
9(0) = g(0+0) = g(0) + (0).
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4.4. Determinanta na skupu n x n matrica. Matrice tipa n x n su
po definiciji n-torke (a1, ..., a,) vektora aq,...,a, € R™, pa skup svih n xn
matrica oznaCavamo kao Kartezijev produkt

R" x -+ x R" = (R™)"™.
Determinanta je funkcija
det: (R™")" — R, (a1,...,ayp) — det(ay,...,ap)
koja svakoj matrici A = (ai,...,a,) pridruzuje broj det A. Ako Zzelimo

naglasiti o kojoj funkciji det govorimo napisat ¢emo det ,,.

4.5. Multilinearne funkcije. Za funkciju

(R - R, (a1,...,ap) — f(ay,...,an)
kazemo da je linearna u i-toj varijabli (argumentu) ako je za svaki niz od
n — 1 vektora aq,...,a;-1,ajt1,-..,a, funkcija
x—g(z) = flat,...,ai—1,%,0i41,...,05)

linearna funkcija na R™, tj. vrijedi svojstvo linearnosti (4.1). Kazemo da je
funkcija n-linearna ili multilinearna funkcija ako je linearna u i-toj varijabli
za svaki indeks ¢ = 1,...,n. Ocito je 1-linearna funkcija linearna funkcija,
a u slucaju 2-linearne funkcije govorimo o bilinearnoj funkciji.

4.6. Napomena. Bududi da za linearnu funkciju g vrijedi g(0) = 0, to
za, multilinearnu funkciju f vrijedi

f(al, ey i1, 0, [£ 7 P ,an) = 0
4.7. Lema. Determinanta je multilinearna funkcija.

Dokaz. Tvrdnju dokazujemo indukcijom po n. Za n = 1 tvrdnja ocito
vrijedi. Pretpostavimo da tvrdnja leme vrijedi za n — 1 > 1, tj. da je

det, 1: (R"H" 1 5 R

multilinearna funkcija. Neka je indeks ¢ € {1,...,n} i neka su dani vektori
A1y, @i—1,Qi+1,--.,0yn U R". Kao u tocki 3.9 oznacimo s (1) vektor u
R"~! dobiven iz vektora x u R™ brisanjem prve koordinate &;. Tada je
preslikavanje

z — zM)

linearno preslikavanje s R” u R"~!. Iz toga slijedi da je za j > i kompozicija

2 2 detn_l(agl), ... ,agi)l,x(l),agi)l, ... 7a§'1—)17a§'1+)17 . ,ag))

linearna funkcija jer je det,_; linearna u i-toj varijabli, a a za j < i je
kompozicija

z— 2 — det n_l(agl), ... :aﬁ)paﬁp . ,agi)l, x(l),aﬁ)l, ... ,aﬁll))
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linearna funkcija jer je det,_; linearna u (i — 1)-toj varijabli. No onda i za
sumu

x—g(x) = Z(fl)lﬂdlj det n,l(agl), e ,agi)l, ), ag}gl, . aM)
J#

vrijedi svojstvo linearnosti (4.1). U definiciji determinante (3.1) imamo jos
iclan za j =1

z— (1)1 det n_l(agl), ... ,agi)l, agi)l, A afll))
za koji ocito vrijedi svojstvo linearnosti. Znaci da je
x> det(ar,...,a;-1,T,0i41,...,0n)
linearna funkcija. O

4.8. Zadatak. Dokazite formulu za determinantu gornje trokutaste ma-
trice

a1 12 ... An
0 ap ... a9,

det . . . = 1109292 ...0nn.
0 0 ... apn

4.9. Alternirajuée multilinearne funkcije. Za multilinearnu funk-
ciju
f+ (RM" - R, (a1y...,an) — f(ay,...,an)
kazemo da je alternirajuca ako za sve n-torke vektora aq,...,a, i sve parove
indeksa ¢ < j vrijedi
f(al, ey Ai—15Q4, A4 1y - - ,aj,l, aj,ajﬂ, e ,an)

4.2
( ) :—f(al,...,ai,l,aj,aprl,...,aj,l,ai,ajH,...,an).

Obi¢no (neprecizno) kazemo da zamjenom mjesta dvaju vektora u alter-
nirajuéoj funkciji mijenjamo predznak. Kopirajuéi dokaze lema 1.7 i 2.4
vidimo da je uvjet (4.2) za sve vektore a;,a; € R" ekvivalentan uvjetu

(43) f(ala s Ai—1, A Qg 1y - -+ A1, Ay Gty - - 7an) =0
za sve vektore a € R”.

4.10. Napomena. Valja primijetiti da je svojstvo (4.2) alternirajuce
funkcije, ili njemu ekvivalentno svojstvo (4.3), dovoljno provjeriti za sve

susjedne parove indeksa k < k + 1 jer nam je potreban neparan broj (j —
i)+ (j—i—1) zamjena susjednih stupaca da bismo zamijenili mjesta stupcima
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<y j—1, gy Qg1 - -

ey Qi—1, A1, Qg - -

. 7ai717 a”i+1a (li+2, ..

. 7ai717 a”i+1a (li+2, ..

-5 Ai—1,A441, Ay, - -

sy G 1,5, Aj41y - -

sy G —1, A5, Aj41y - -

<y Qj—1, Qjy G415 - -

<y Gy Qgy At 1y - e e

ey Gy Ay At 1y - e

)

H( <y Ai—1, Q55 Qi 1y - -+ Aj—1, Qg G415 - - - )
Na primjer, za par indeksa 1 < 4 trebamo 3 + 2 zamjene susjednih stupaca

(al, a2, as, a4)

4.11. Lema. Determinanta je alternirajuca multilinearna funkcija.

DokAz. Tvrdnju dokazujemo indukcijom po n > 2. Za n = 2 imamo
o111 Q19 Q12 Q11
det = (119292 — (X120021 = — det .
21 Q22 Q22 Q1

Pretpostavimo da tvrdnja leme vrijedi za n—1. Prema prethodnoj napomeni
dovoljno je dokazati svojstvo (4.3) za sve susjedne parove indeksa i < i + 1
i vektore a. Po definiciji (3.1) imamo

det(ay,...,ai—1,a,a,a;42,...,a,) =
Z(—1)1+ja1j det n_l(a(ll), ... ,ag-i)l, a§1+)1, ... ,agl, a, o, aﬁ)z, .. ,asll))
j<i
+ (=D)'"ay det n_1<a§1)’ . ,agl, a), al(.1+)2, . a)
(—1)" L det n,l(agl), . ,agi)l, al, aﬁ)Q, .. ,a%l))+
Z (71)1+j0z1j det n,l(agl), e agi)l, a oM QEPQ, . ,ag-l_)l, agﬁl, . ,ag))
i>i+1
J:> [4)-7

pri ¢emu su prva i zadnja suma jednake nuli jer se u alternirajuc¢oj funkciji
det,,_1 isti vektor a(l)‘javlja u dva argumenta, a dva sumanda za j =4,i+1
se krate jer je (—1)'¢ 4 (=1)++l = 0. O
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4.12. Lema. Neka je g: (R™)" — R multilinearna alternirajuca funk-

cija. Ako je niz vektora (al,...,al) dobiven uzastopnom primjenom ele-
mentarnih transformacija iz niza (ai,...,ay,), onda postoji p # 0 takav da
je

glai,...,an) = pg(dy,... al).

Doxkaz. Dovoljno je dokazati tvrdnju u slucaju elementarne transfor-
macije

(a1,...,an) — (a},...,a)).
U slucaju elementarne transformacije zamjene mjesta dvama vektorima ima-
mo = —1 # 0 jer je g alternirajuca. U slucaju elementarne transformacije

mnozenja i-tog vektora skalarom A # 0 imamo p = 1/\ # 0 jer je g linearna
u i-tom argumentu. U slucaju elementarne transformacije dodavanja Aa;
vektoru a; imamo p = 1 jer zbog linearnosti u j-tom argumentu

g(al,...,ai,...,aj_l,aj+)\ai,...,an)
=g(ar,...,q,...,0j-1,aj5,...,0p)
+Ag(ar, ... Qs Qj—1, a4y, Op)
=1-g(at,...,Qi...,05-1,aj,...,0p),
pri cemu je g(ai,...,a;,...,aj-1,0;,...,an) = 0 jer je g alternirajuéa. 0O

4.13. Osnovni teorem o determinanti. Neka je f: (R™)" — R mul-
tilinearna alternirajuca funkcija. Tada je

flz1,...,xn) = fle1,...,en) det(z1,...,2).

Posebno, determinanta je jedinstvena multilinearna alternirajuca funkcija f
takva da je

f(ela"'ven) =1
DokAz. Veé¢ smo dokazali da je det: (R™)™ — R multilinearna alter-
nirajuca funkcija i da je detI = 1. Po pretpostavci je f multilinearna

alternirajuca funkcija. Stavimo

k= fler,...,en) 1 g(x1,...,2n) = f(T1,...,2n) — Kdet(z1,...,2y).

Tvrdimo da je g multilinearna alterniraju¢a funkcija. Naime, f i det su
linearne u prvoj varijabli, pa

f@'+2" xo, . xn) = f@ mo, . xn) + f(@ 20, y)
kdet(x' + 2" xa,...,2,) = kdet(a',29,...,2,) + kdet(z”, 20,..., )
povlaci
g(@ + 2" xo, .. xn) = g2 2o, xn) +g(2” 1o, ).
Ocito na taj nacin mozemo provjeriti svojstva linearnosti od g u svakoj
varijabli. Buduéi da pri zamjeni mjesta dvaju vektora i kdet(aq,...,a,)
i f(ai,...,a,) mijenjaju predznak, onda je jasno da mijenjaja predznak i

g(ai,...,a,). Znaci da je g alternirajuca funkcija.
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Ako su vektori a1, ..., a, baza u R™, onda prema teoremu 3.1.12 tu bazu
mozemo elementarnim transformacijama prevesti u kanonsku bazu

(a1,...,ap) ~ (€1,...,€n),
pa prema lemi 4.12 postoji pu takav da je
glat,...,an) = pgler,...,en) = u(f(er,...,en) — rdet(er,...,en)).

Sada det(eq,...,e,) =11k = f(e1,...,en) povladi g(a,...,a,) = 0. Ako
vektori ay, ..., a, nisu baza, onda su linearno zavisni i svodenjem na stepe-
nastu formu elementarnim transformacijama dobivamo niz vektora

(a1,...,an) ~ (c1,...,¢k,0...,0)
za k < mn, pa prema lemi 4.12 postoji u takav da je

glai,...,an) = pglcr, ..., ck,0...,0).

Sada linearnost funkcije g u n-tom argumentu povlaéi g(aq,...,a,) = 0.
Znaci da za svaku n-torku vektora ay,...,a, vrijedi g(ai,...,a,) = 0, od-
nosno

flay,...,an) = fle1,...,en)det(ay,...,an).

Time je dokazana prva tvrdnja teorema. Ako je f(e1,...,e,) = 1, onda
slijedi da je f determinanta. O

4.14. Primjedbe. Kao i za R? i R3, determinantu mozemo interpre-
tirati kao volumen paralelotopa® u R™. Intuitivno osnovni teorem o deter-
minanti znac¢i da postoji samo jedan nacin mjerenja volumena paralelotopa,

ovisno o tome kojom jedinicom za mjeru v = f(eq,...,e,) mjerimo kocku
(e1,...,en). Taj jedinstveni nacin je multilinearna alternirajuc¢a funkcija
f = ydet.

4.15. Zadatak. Za n x n matrice A = (oy;) induktivno definirajte
funkciju

(4.4) dete A= (—1)"ay; dety (af",....al",al . alV)
j=1

i dokazite da je det, multilinearna alternirajuca i da je dete I = 1. Tada iz
osnovnog teorema o determinanti slijedi formula® det A = det, A.

Ponavljajué¢i argumente iz dokaza teorema 4.13 dobivamo:

3Pamlel0top razapet vektorima a1, ..., an definiramo kao skup

{z eR" |z=Xa+ -+ Anan, 0< A1, A, < 1}

ATy se formula zove Lapalaceov razvoj determinante po n-tom retku.
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4.16. Teorem. Vektori aq,...,a, su baza od R™ ako i samo ako je
det(ay,...,ay) #0.

Dokaz. Ako su vektoriaq, ..., a, bazauR", onda prema teoremu 3.1.12
tu bazu mozemo elementarnim transformacijama prevesti u kanonsku bazu

(a1, ... an) ~ (e1,...,€p),
pa prema lemi 4.12 postoji u # 0 takav da je
det(ay,...,an) = pdet(er,...,e,) = p #0.

Obrat. Ako vektoriay, ..., a, nisu baza, onda su linearno zavisni i svodenjem
na stepenastu formu elementarnim transformacijama dobivamo niz vektora

(a1,...,an) ~ (c1,...,¢k,0...,0)
za k < n, pa prema lemi 4.12 postoji p takav da je
det(ay,...,an) = pdet(cy,...,cx,0...,0).
Sada linearnost det u n-tom argumentu povlaci det(aq, ..., a,) = 0. U

4.17. Zadatak. Racunajuéi determinante pokazite da su stupci ma-

trica
7 0 0 1 . 0 2
a=(o 5)a=(ho) 1 e=(30)

tri uredene baze u CZ2.

5. Determinanta matrice i elementarne transformacije

5.1. Racunanje determinante matrice pomocu elementarnih
transformacija. Osim u sluc¢aju 2 x 2 matrica i (mozda) 3 x 3 matrica,
determinantu “konkretne” matrice ne raéunamo po formuli danoj u defi-
niciji determinante. Najefikasniji nacin ra¢unanja determinante “konkretne”
matrice je izvodenjem elementarnih transformacija

/ /
(a1, ...,an) — (ag,...,a,)
na stupcima matrice i koriStenjem veze izmedu

det(ay,...,an) i det(a},...,al).

»'n

5.2. Zamjena mjesta dvaju vektora. Buduéi da je po definiciji
funkcija det alternirajuca, imamo

det(al, S ,ai_l,b, i1y ey Aj—1,Ay Qj41, ... ,an)

= _det(alv s @i—1,0, Q41,5 - - '7aj—1ab7 Aj+1; - - 'aa’n)'

5.3. Mnozenje jednog vektora skalarom A # 0. Bududi da je po
definiciji funkcija det multilinearna, imamo

det(ay,...,ai—1,Aa,aiq1,...,a,) = Adet(ay,...,ai—1,a,ai41,...,05).
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5.4. Pribrajanje jednog vektora pomnozZenog skalarom drugom
vektoru. Bududéi da je funkcija det multilinearna i alternirajuca, imamo

det(al, SRR o 7 I ¢ I VT ,a,j_l,b—i— Aa, Ajtly- - ,an)
= det(al, ey Qi—1,0, Q547 - - - ,a,j_l,b, Ajt1y--- ,an)
+ )\det(al, ey A1, 0y A 1y ey B 1, Ay Ay 1y - s ,an)
= det(al, ey Qi—1,0, Q541 - - - ,a,j_l,b, Aji1y--- ,an).

(Ovdje smo zapisali slu¢aj i < j, no isto vrijedi i za i > j.) Znaci da nakon
ove transformacije na stupcima matrice determinanta ostaje ista.

5.5. Racunanje determinante matrice. Racunanje determinante po-
mocu elementarnih transformacija svodi se, u sustini, na uzastopnu primje-
nu transformacije treéeg tipa: Odaberemo li jedan matricni element ay; # 0
u 1-tom stupcu a = a; matrice

A= (a1,~--»az‘flva,aiﬂw~-,ajf1,aj,aj+1,---,an),
i odaberemo li A = —oyj/ o, onda u j-tom stupcu matrice
/
A= ((11, ceey @i—1,0, Q4 1y - - G5—1, 05 + )\CL, Ajt1y--- 7an)7

vektor aj + Aa ima k-tu koordinatu jednaku oj+ (—a;/oni)ow; = 0. Uzas-
topnom primgjenom takovih transformacija dobijamo matricu u kojoj su svi

elementi u k-tom retku nula, osim pocetnog ay; # 0. Stavimo k1 = k i
11 = 1. Na primjer,
1 -1 2 3 3 -1 2 3 3 -1 -1 3
1 2 -1 2 -3 2 -1 2 -3 2 5 2
det] 30|70 1 30T 0 1 0 0
1 1 2 5 -1 1 2 5 1 5 5

Ovdje smo odabrali ags = 1 # 0. U prvom koraku mijenjamo prvi stupac i
biramo A = —2. U drugom koraku mijenjamo treéi stupac i biramo A = 3.
Cetvrti stupac ne mijenjamo jer na treéem mjestu veé stoji 0. Stavimo
k1=3111 =2.

Nakon toga biramo ai; # 0, © # i1. Ako takav ne postoji, matrica
ima nul-stupac 1 determinanta je nula. Ako postoji, nastavimo postupak
kao ranije. Primijetimo da pritom mneéemo mijenjati postojeéi ki-ti redak.
Stavimo ko = k i i = i. U naSem primjeru mozemo odabrati ay; = —1 # 0.
U prvom koraku mijenjamo drugi stupac i biramo A = 1. U drugom koraku
mijenjamo treéi stupac i biramo A = 5. U tre¢em koraku mijenjamo ¢etvrti
stupac i1 biramo A = 5. Stavimo ko =419 = 1.

3 2 -1 3 3 2 14 18
-3 -1 5 = det -3 -1 —-10 -—-13
0 1 0 0 1 0 0
-1 0 5 -1 0 0 0

det

T O N
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Nakon toga biramo ag; # 0, 1 # 11,42 itd. U postupku dobivamo ili nul-stupac
ili zavrsavamo s ay,,;, # 0. U potonjem slucaju primijenimo elementarne
transformacije drugog tipa i dobivamo

det A = agyiy Qgiy - - - Qi det(ea(l), e ,eg(n))

za neku permutaciju o. Na kraju primijenimo elementarne transformacije

zamgene stupaca i svojstvo det(eq, e, ..., e,) = 1. U naSem primjeru
3 2 —7/5 18 6/5 3/5 —7/5 —1/5
3 -1 1 —13 0 0 1 0
10 det 0 1 0 0 =..-=10det 0 1 0 0
1 0 0 0 1 0 0 0
6/5 3/5 —7/5 1 0001
0 0 1 0 0 01 0
= 10(—1/5) det 0 1 0 0 == —2det 010 0
1 0 0 0 1 0 0O
Na kraju imamo det A = —2det(eq, €3, €2,€1) = —2det(ey, e, e3,e4) = —2.

5.6. Zadatak. Koristenjem elementarnih transformacije stupaca ma-
trice izracunajte
-1

det

S O ot o
o O Ot

A
W N Ot

6. Cramerovo pravilo

6.1. Cramerovo pravilo. Neka je A = (ay,...,a,) kvadratna matrica
idet A #0. Tada za svaki b € R™ sistem jednadzbi

§1a1+"'+§nan:b

ima jedinstveno rjesenje x € R™. Stovise, koordinate &; rjesenja x dane su
formulom

_ det(ay,...,ai—1,b,ai41,...,ay)

;= asve t=1,...,n.
S det(ay,...,an) sy Y

Dokaz. Prema teoremu 4.16 pretpostavka det A # 0 povlaci da su vek-
tori ay,...,a, baza od R", pa sistem Az = b ima jedinstveno rjeSenje x.
Zmagci da postoje &1,...,&, € R takvi da je

Zgjaj = glal ++§nan =b.
j=1
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Tada je

det(ai,...,a;—1,b,ai+1,...,an)

n
= det(al, ey g1, Z§jaj s Ait1y - - .,an)
J=1

n
= ij det(al, Ce. ,ai_l,aj,aiﬂ, Ce ,an)
7j=1

= SZ det(ala sy Ai—1, 045 Ajt 1, - - 7a7’b)~

Druga jednakost vrijedi zbog linearnosti determinante u ¢-tom argumentu.
Ako je j # i, onda se unizu ay,...,a;—1,a;, aiy1, ..., a, vektor a; pojavljuje
dvaput, pa zbog alternirajuceg svojstva determinante imamo

det(ai,...,ai-1,aj,ai41,...,a,) =0

i tre¢a jednakost vrijedi. Buduéi da je po pretpostavci det A # 0, imamo
formulu

¢ = det(ai,...,ai—1,b,ai41,...,ay)
! det(ay,...,ay)

6.2. Pitanje. Da li se sistem

0 -1 1 1\ /&4 1
5 5 5 5| ([&]=12
0 0 1 2/ \& -3

moze rijeSiti Cramerovim pravilom? DA NE

6.3. Zadatak. Rijesite sistem

0 -1 1 1\ /& 1
5 5 5 5| (&l |2
0 0 12|l [-3
0 2 1 3/ \& 1

Cramerovim pravilom i potom Gaussovom metodom.

7. Vektorski produkt u R?

Vaznu ulogu u geometriji prostora R? igra vektorski produkt. Opéenito
na R™ postoje algebarske strukture koje u nekim aspektima poopcéuju vek-
torski produkt, ali ni jedna od njih nije sasvim kao vektorski produkt na
R3.
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7.1. Vektorski produkt u R3. Za vektore a,b € R? definiramo vek-
torski produkt vektora a i b kao vektor

(7.1)  axb=(azf3 —azf2)er — (a183 — azPi)es + (a12 — azfi)es

u R3, sto kraée zapisujemo kao

a; B1 el
(7.2) axb=det|ay [ es
as 3 e3

Ocito je vektorski produkt u R3
x:R3xR® =R (a,b)—axb
bilinearno preslikavanje®, tj. vrijedi
(@ +ad"yxb=a xb+a" xb, (Aa)xb=\axb),
ax (O +0)=axb +axd’, ax(\b)=Aaxb),

i alternirajuée preslikavanje, tj. vrijedi

axb=—-bxa.
7.2. Primjer.
1 -1 1 -1 ¢ 6
a=12],b=1 0 |,axb=det |2 0 ex| =6e1—4es+2e3=|—4
1 3 1 3 e3 2

7.3. Zadatak. Izracunajte a x bza a = (1,1,1)i b= (1,—1,0).
7.4. Pitanje. Dali je definiranoa xbzaa=5b=(1,1)7 DA NE

7.5. Mjesoviti produkt u R>. Za ¢ = vyie; + Y22 + y3es3 skalarni
produkt

(7.3) (axb|c)=(azfs—azf)y — (183 — azB1)ye + (a182 — a2f1)73,

zovemo mgjeSovitim produktom vektora a, b i c. O¢ito je

a1 B1om
(7.4) (axblc)y=det |ag P2 72|,
az B3 73

pa zbog alternirajuceg svojstva determinante slijedi
(7.5) (axb|a)=0, (axb|b)=0.
5ponekad kazemo i da vrijedi distributivnost vektorskog mnoZenja u odnosu na zbra-

janje i homogenost vektorskog mnoZenja u odnosu na mnozZenje skalarom
6ponekad kazemo i da je vektorski produkt antikomutativno mnoZenje
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7.6. Lema. Vektori a,b € R? su linearno nezavisni ako i samo ako je
ngihov vektorski produkt a x b # 0.

DokAz. Zbog linearnosti u drugom argumentu imamo a x 0 = 0. Ako
je a = A\b, onda je opet a x b = (Ab) x b = A(bx b) = A0 = 0. S druge strane,
ako su a i b linearno nezavisni, onda ih mozemo nadopuniti do baze a, b, ¢ od
R3 i teorem 4.16 povlaci da je mjesoviti produkt (ax b | ¢) = det(a, b, c) # 0.
No onda je nuzno a x b # 0. (]

7.7. Konstrukcija okomice na ravninu u R3. Neka su a i b linearno
nezavisni vektori. Tada je linearna ljuska (a, b) ravnina u R3. Iz relacije (7.5)
i teorema 5.4.1 slijedi da je a X b okomica na ravninu, odnosno

axbl{ab).

Po teoremu o projekciji 2-dimenzionalnu ravninu W = (a,b) u R? mozemo
zadati jednom jednadzbom

W=WHt =Re)r ={z eR3| (c|z) =0}
za neki vektor (odnosno bazu) ¢ # 0 u W+. Ako uzmemo ¢ = a x b, onda je
W = (a,b) ={z €R®| (a x b | z) =0} = { € R*| det(a, b, z) = 0}.

Tako je, na primjer, za vektore a i b iz primjera 7.2 ravnina (a,b) zadana
jednadzbom

6&1 — 4€2 + 283 = 0,

odnosno
&1 1 -1 &
(a, )y =L [& | eR3 | det[2 0 &| =0
&3 1 3 &

7.8. Primjer. Neka je
Y=c+(a,b)={x=c+d|de(ab)}

ravnina u R? kroz tocku ¢ = (1,—1,2) paralelna potprostoru razapetom
vektorima a = (1,1,0) i b = (0,1,1). Tada uvjet x — ¢ = d € (a, b) mozemo
napisati pomocu jednadzbe

det(a,b,z —c) =0,

odnosno
10 &-1
«52 ER? | det[1 1 &+1)] =0
0 1 & -2
={= 51—1 (2 +1) + (&3 —2) =0}.

Kazemo da je
(E1—1)—(&4+1)+(&—2)=0

jednadzba ravnine X.
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7.9. Zadatak. Napisite jednadzbu ravnine ¥ u R? kroz tocku ¢ =
(1,—1,—1) paralelnu potprostoru razapetom vektorima a = (1,—1,2) i
b=(2,1,1).

7.10. Udaljenost tocke od ravnine u R3. Ako je z tocka i W pot-
prostor u R™, onda je udaljenost tocke x od W jednaka normi ||Q(z)|| vek-
tora Q(z) = ¢ — P(x) okomitog na potprostor W, a projekciju P(x) € W
racunamo metodom najmanjih kvadrata. U slucaju kad je W = (a,b) rav-
nina u R? razapeta vektorima a i b, onda je

o axb
|la x bl|

jedini¢ni vektor okomit na ravninu W, a komponenta od = duz vektora e je

|(z [ a xb)]
[la < ]|

Q) = (z [ e)e, [IQ)|| = |(z | e)| =

7.11. Primjer. Vratimo se primjeru 5.6.3 iz prethodnog poglavlja u
kojem je izracunata udaljenost to¢ke b od ravnine Y = (vy,v3) u R? za
vektore

vy = 4=(1,-1,0), wy = —(1,1,1), b= (-1,-2,1).

Tada je

1 1 e 1 -1 V6

nxvg=— (-1 1 e|=="2o-1], |t xw|]= %=1,

\/6 0 163 \/6 2 \/6

pa je projekcija od b na okomicu e = v; X v na ravninu Y jednaka

Q(b):(ble)e:ngQe:jée.

Znaci da je udaljenost b od Y jednaka ||Q(b)|| = %.

7.12. Zadatak 5.6.4. Nadite udaljenost tocke b od ravnine (v1,v2) za

v =(1,1,1)/V3, v =(1,1,-2)/V6 i b=(1,0,1).

7.13. Zadatak. Nadite udaljenost tocke d od ravnine II = ¢+ (v1, vo),
v = (1,1,1)/vV3, vy =(1,1,-2)/v6, c¢=(1,1,1) i d=(21,2).

(Uputa: Buduéi da je d(z — ¢,y — ¢) = d(z,y), to je udaljenost tocke d od
ravnine II jednaka udaljenosti tocke d — ¢ od ravnine Il — ¢ = (v1, v2).)
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7.14. Lema. Neka su a,b,c,a’,b, ¢ vektori u R3. Tada vrijedi
(7.6)

(@]a) (@]b) (d]c) of ab df o B
det [ ('1a) & [b) (]c)| =det |8 & 8 )det|az B 7
(la) (@]b) (|0 % as By s

Doxkaz. Fiksirajmo vektore a/,¥, ¢ i ozna¢imo s f(a,b, ) lijevu stranu
jednakosti (7.6). Buduéi da je skalarni produkt linearan u drugom argu-
mentu, to prvi stupac

(a’ | a)

(' | a)

(¢ ] a)
koji se javlja u formuli za f ovisi linearno o a. Zbog toga linearnost deter-
minante u prvom argumentu povlaci linearnost od f u prvom argumentu.
Na isti nacin zakljucujemo da je f linearna u drugom i u tre¢em argument.
Ocito je f alternirajuca funkcija jer je determinanta alternirajuc¢a funkcija.
Iz teorema 4.13 slijedi da je

a1 B1om
f(a,b,c) = f(e1,e2,e3)det(a,b,c) = f(e1,e2,e3)det | aa B2 72 |,
as Pz 73
pa (7.6) vrijedi jer je
(a’e1) (a'|e2) (a’]es3) oy ay af
fler,ea,e3) =det | (V' |e1) (V' [e2) (V' |es) | =det| B By B3
(' ler) (]e2) (¢ ]es) MoY2 3
O
7.15. Teorem. Za sve a,b € R? vrijedi
b)
7.7 axbzzdet<(a’“) (a] >:a2b2— al b
@n o =det (G @I < jalPiol? - i 6)

DokAz. Ako su vektori a i b linearno zavisni, onda su obje strane (7.7)
jednake nuli i jednakost vrijedi. Pretpostavimo zato da su vektori a i b line-
arno nezavisni. Tada je prema lemi 7.6 a x b # 0. Buduéi da je determinanta
3 x 3 matrice jednaka determinanti njoj transponirane matrice, to iz (7.6)
zaa=a,b=">1c=c imamo

a Bom\\’ (ala) (a]b) (alc)
(axb|c))>=|det|as B2 7o =det | (b]a) (b|b) (b]c)
as PBs 73 (cla) (c|b) (c|c)

Prema (7.5) za ¢ = a x b imamo (a | ¢) = (b | ¢) = 0, pa Laplaceov razvoj
zadnje determinante po tretem stupcu daje

||c||4=|axb||4=<c|c>det(§‘£\‘3>> EZJZD-

Pokratimo li s ||c||?> = (c| ¢) # 0, dobijamo formulu (7.7). O
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7.16. Povrsina paralelograma u R3. Primijetimo da iz teorema 7.15
dobivamo Cauchyjevu nejednakost (5.3.7). Podsjetimo se da je Cauchyjeva
nejednakost vezana uz formulu za kosinus kuta izmedu vektora

(a | b) = [lal|[[b]] cos e,
pa ako to uvrstimo u (7.7) dobivamo
lla > ][> = [[al *[[b][* (1 — cos ¢®) = ||al[*||b][* sin *.

U paralelogramu razapetom vektorima a, b € R3 duljina baze je ||a||, a visina
je ||b]|sing. Zato ||a x b||> mozemo interpretirati kao kvadrat povrsine
paralelograma razapetog vektorima a,b € R? danog formulom

(a]a) (al b)>
I'(a,b) = det .
o =a (12 G
1z formule u dokazu teorema 7.15 vidimo da je kvadrat volumena para-
lelepipeda razapetog vektorima a, b, c € R? dan formulom

(ala) (a]b) (a]o
D(a,b,e) =det [ (b]a) (b]0) (b]c)
(cla) (c|b) (c]o)

Determinante I'(a,b) i I'(a, b, ¢) zovemo Gramovim determinantama.

7.17. Zadatak. Izracunajte povrsinu paralelograma razapetog vekto-
rima a = (1,1,1) i b = (1,1,0) koristeci
(1) Gramovu determinantu I'(a, b) i
(2) neki drugi nacin.
Iz teorema 7.15 i formule (7.5) slijedi

7.18. Teorem. Neka su fi i fa ortonormirani vektori u R3. Tada je
fi, f2 i f3 = f1 x fa ortonormirana baze u R3.

7.19. Konstrukcija ortonormirane baze u R?. Ako je f; normirani
vektor u R3, onda nije tesko naé¢i normirani vektor fo okomit na f;. Tako,
na primjer, za

1

1
hi=—711
V3 \4

mozemo “pogoditi” niz vektora okomitih na fi:

1 0 1 -2 1
-1, 11, 01, 1], 1
0 -1 -1 1 -2
Uzmemo li, na primjer, prvi od tih vektora i normiramo li ga, dobivamo
1
1
Ja=—74 -1
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Stavimo li

1 1 1 e 1 1

= fiXxfo=——=det|1 -1 e = —(e1+eg—2e3) =
f3=fix fo W - ez \/3( 1+e 3)

onda je fi, fo, f3 ortonormirana baza od R3.

Sl
=)

|

N

7.20. Primjer. Neka su a i b vektori iz primjera 7.2. Zelimo li nadi
ortonormiranu bazu potprostora (a, b), onda mozemo racunati

o 1 (1) . axb 1 (6 1
lall V6 |4 llax bl V56 \ o Vid | 4
Tada je

1 3 e 1 4 12

1
=91 X g3 = det |2 —2 eo| = 2 | =—11
VYV Rl R B/ TSV Wty VT W

vektor iz potprostora (a,b) jer je okomit na okomicu a x b = /56 g3. No
onda je g1, g2 ortonormirana baza potprostora (a,b), tj.

(a,b) = (g1, 92)-

7.21. Jednadzbe pravca u R3. Neka je v # 0 vektor smjera pravca
p = (v). Po teoremu o projekciji 1-dimenzionalni potprostor p u R? mozemo
zadati dvjema jednadzbama

p=(p")" = Ra+RY)" = {z|(a]2) = (b|2) = 0}

za neku bazu a, b potprostora p+ od R3. Za dani vektor v € R? lako je nadi
jedan vektor a # 0 okomit na v, a za drugi vektor onda uzmemo b = a x v.

7.22. Primjer. Neka je v = (1,2,1) vektor smjera pravca p = (v).
Ocito je a = (1,0, —1) okomit na v. Ako stavimo

1 1 e 2
b=axv=det| 0 2 e|=|-2],
-1 1 e3 2

onda je a,b baza potprostora p i p = (p)* je zadan sistemom jednadzbi
(a|x)=6&—&=0,
(b|z) =28 —286+ &3 =0.
7.23. Primjer. Neka je pravac ¢ = {x = ¢+ d | d € p} kroz tocku
¢ = (3,—2,1) paralelan s pravcem p = (v) iz prethodnog primjera. Uvjet
T — ¢ € p mozemo zapisati kao sistem jednadzbi

(alz—c)=(-3)—(&—1)=0,
(blz—c)=2(&-3)—-2(&+2)+(§-1)=0

kojeg zovemo jednadzbama pravca q.
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7.24. Zadatak. Neka je ¢ = {x = c+ tv | t € R} pravac kroz tocku
¢ = (3,—2,1) s vektorom smjera v = (=2, 1, —1). Napisite jednadzbe pravca
q.
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POGLAVLJE 7

Linearna preslikavanja s R” u R™

U ovom poglavlju uvodimo pojam linearnog preslikavanja s R” u R™
i pokazujemo da je linearno preslikavanje u potpunosti odredeno svojom
matricom. Za linearno preslikavanje A definiramo sliku i jezgru od A i
dokazujemo teorem o rangu i defektu. Pokazujemo da je kompozicija line-
arnih preslikavanja linearno preslikavanje, te da kompoziciji preslikavanja
odgovara mnozenje matrica. Na kraju poglavlja pokazujemo da su opcéenito
linearni operatori u potpunosti odredeni svojim vrijednostima na bazi pro-
stora.

0.1. Kompozicija preslikavanja. Neka su A, B i C skupovi i
f: A— Big: B— C preslikavanja. Tada preslikavanje

h: A— C,

koje elementu a iz A pridruzuje element h(a) iz C' po pravilu

h(a) = g(f(a)),
zovemo kompozicijom preslikavanja f i g i piSemo h =go f.

0.2. Asocijativnost kompozicije preslikavanja. Neka su A, B, C' i
D skupovii f: A— B, g: B— Cih: C — D preslikavanja. Tada je

hog)of=ho(gof).

(
Naime, s jedne je strane ((h o g) o f)(a) = (h o g)(f(a) = h(g(f(a))), a s
druge strane je (ho(go f))(a) = h((go f)(a)) = h(g(f(a))), dakle jednako
prvom, i to za svaki a € A.

0.3. Identiteta na skupu. Neka je A skup. Identiteta id na skupu A,
ili id4 ako zelimo naglasiti skup A, je bijekcija
id: A — A, id(a) =a zasve ac€ A.
0.4. Kompozicija preslikavanja s identitetom. Za svako preslika-
vanje f: A — B vrijedi

foida = f, idgo f=1Ff.
Naime, za sve a € A vrijedi (f oidg)(a) = f(ida(a)) = f(a). Isto tako, za
sve a € A vrijedi (idg o f)(a) =idg(f(a)) = f(a).
153
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1. Linearna preslikavanja

1.1. Definicija linearnog preslikavanja s R” u R"™. Kazemo da je
preslikavanje

A:R" - R™

linearno preslikavanje ili linearan operator ako za sve vektore x,y € R" i sve
skalare A € R vrijedi

Az +y) = Az) + A(y), A(\z) = NA(z).

Ako je A linearno, onda je obi¢aj umjesto A(z) pisati Az.

1.2. Linearne funkcije. Uz oznake iz prethodne tocke za m = 1
imamo poseban slucaj linearnog preslikavanja
A:R" - R

kojeg zovemo linearna funkcija ili linearni funkcional na R™. Ako je A
linearna funkcija, onda je za vrijednost funkcije u tocki = obicaj pisati A(x),
ane Azx.

1.3. Pitanje. Za koje je n = 0,1, 2, 3 funkcija f, linearna funkcija,
fn: R—> R, folx) =2"7

1.4. Svojstvo linearnosti preslikavanja i linearne kombinacije.
Primijetimo da je zbrajanje vektora x 4y operacija u podrucju definicije R™
preslikavanja A, a da je zbrajanje vektora A(x)+A(y) operacija u podrucju
vrijednosti R preslikavanja A. Grubo govoredi, u slu¢aju linearnog presli-
kavanja je svejedno da li izvodimo operacije zbrajanja i mnozenja skalarom
prije “primjene” preslikavanja A ili nakon “primjene” preslikavanja A. To
vrijedi i za proizvoljne linearne kombinacije:

(1.1) AZL 4+ + Ao) = MAz1 + -+ + \Az,.

DokAz. Tvrdnju dokazujemo indukcijom po s. Za s = 1 tvrdnja vrijedi
jer po pretpostavei imamo A(Ajx1) = AAzy. Pretpostavimo da tvrdnja
vrijedi za neki s > 1. Tada je

ANz + - 4+ AsZs + As41T541)

= A((A1x1 + -+ Ass) + As+1Ts41)
=AMz + -+ Asxs) +F A Xsy1%541)
= ()\1A£L'1 —+ o+ )\sAacs) + /\3+1A.%'s+1
= MAx1 + - F AsAxs + Asp1Ax11.

Primijetimo da druga jednakost vrijedi zbog pretpostavljenog svojstva za
sumu dva vektora. (|
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1.5. Primjer: identiteta I: R” — R" je linearno preslikavanje.
Obicaj je identitetu na skupu R"™ oznacavati s I. Identiteta je o¢ito linearno
preslikavanje

Ie+y)=x+y=I1(x)+1(y), I(Az) = Az = M (x).

1.6. Pitanje. Da li je centralna simetrija z — —z u R3 linearno pre-
slikavanje? DA NE

1.7. Primjer: rotacija u ravnini za kut 7 je linearno preslika-
vanje. Preslikavanje A: R? — R? definirano formulom

a(8)= (&)

je linearno preslikavanje. Naime,

B a1+ p1\ _ [(—(ae+p2)\ [~ —B2\ _
A(a+b)—A<a2+52)—< a1 + B )_<a1>+<5l)_Aa+Ab’

a na slican nacin vidimo i

)\041 —)\CYQ — Q9
0= () = (252) =2 (22) = 2o

Linearnost preslikavanja A mozemo dokazati i geometrijski: Interpreti-
ramo li a = (4}) kao vektor-strelicu u euklidskoj ravnini, onda je vektor-
strelica Aa = ( a2 ) dobiven iz a rotacijom oko ishodista za kut § (nacrtajte
sliku!). Rotacija A prevodi paralelogram s vrhovima 0, a, b, a + b u paralelo-
gram s vrhovima 0, Aa, Ab, A(a + b), a ovaj drugi mora biti (zbog definicije
zbrajanja vektor-strelica) paralelogram 0, Aa, Ab, Aa + Ab. Sada jednakost
vrhova daje relaciju

A(a+b) = Aa + Ab.

Na slican geometrijski na¢in mozemo dokazati i relaciju

A(Aa) = Ma.

1.8. Primjer: rotacija u ravnini za kut ¢ je linearno presli-
kavanje. Geometrijski argument o linearnosti rotacije za kut 7 mozemo
ponoviti za bilo koju rotaciju oko ishodista: rotacija R, : R? — R? oko
ishodista v euklidskoj ravnini za kut ¢ je linearno preslikavanje.

2. Zadavanje linearnog preslikavanja matricom

2.1. Zadavanje linearnog preslikavanja matricom. Neka je zadan

niz od n vektora aq, as,...,a, u R, ili, sto je isto, matrica
a1p a2 A1p
a91 a9 e A9n
(2.1) (a1,...,a,) =



156 7. LINEARNA PRESLIKAVANJA S R® U R™

Buduéi da proizvoljni vektor z € R™ mozemo na jedinstveni nacin zapisati
kao linearnu kombinaciju vektora kanonske baze

r=&er + -+ Enen,

mozemo definirati preslikavanje A: R” — R™ x — A(z), formulom

(22) A(l‘) = Slal + -+ gnan-

Tako definirano preslikavange je linearno. Naime, buduéi da je i-ta koordi-
nata od Ax jednaka AE;, to je

AAz) = (A&1)ar + - -+ (A&p)an, = M&rar + -+ - + &nayn) = NA(z).
Buduéi da je i-ta koordinata od = + y jednaka &; + n;, to je

Alx +y) = (& +m)ar + -+ (& + Mn)an
= (&ra1 + -+ &pan) + (mar + - + npay) = A(x) + A(y).

Primijetimo da je Ae; = a; jer je i-ta koordinata od e; jednaka jedan,
a sve ostale su nula. Zato obi¢no kazemo da smo linearno preslikavanje A
zadali vrijednostima (ay, .. .,ay) na vektorima kanonske baze.

2.2. Primjer. Linearno preslikavanje A: R3 — R? zadano je na kanon-
skoj bazi eq, ea, e3 u R? nizom od tri vektora

1 1 1
0/’ 2/’ —1
formulom
&1
Al& | =& <(1)> + &2 (;) +&3 <_11>
&3

2.3. Pitanje. Da li je matricom

1111
0 00O

zadano linearno preslikavanje s R? u RY? DA NE

(51 + &+ 53)
260 —-& )7

2.4. Pitanje. Kojom je matricom zadano linearno preslikavanje

&1
o L& +E
e ‘(351—252—§3>?
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3. Matrica linearnog preslikavanja

3.1. Linearno preslikavanje odredeno je vrijednostima na ka-
nonskoj bazi. Neka je A: R® — R™ linearano preslikavanje i ei,..., e,
kanonska baza u R™. Tada su u potpunosti odredeni vektori

a1 = Aey, a9 = Aes, ... a,=Ae,

u R™, napisimo ih kao

011 12 A1n
921 22 Q2n,
a; = . ) az = . ) oo an =
am1 Qm?2 Qmn
Buduéi da je A linearno, dovoljno je znati vektore a1, ao, . . ., an da bi odredili

Az za svaki vektor x € R™. Naime, proizvoljni vektor x € R” mozemo na
)
jedinstveni nacin zapisati kao linearnu kombinaciju vektora kanonske baze

z=¢&1e1+ -+ &nen,
pa zbog linearnosti preslikavanja A imamo

(3.1) Az = A(&rer+- -+ &nen) = E1der +- - -+ Aey, = §1a1 4+ - -+ Epan.

Zmaci da je vektor Ax izrazen kao linearna kombinacija vektora ai,...,a, u
R™ u kojoj su koeficijenti koordinate &1, ..., &, vektora x:

o1 o2 Qin

Q21 Q22 Q2n
(3.2) Az=4 | . [+&]| . |+ +&

Om1 am?2 Qmn

3.2. Pitanje. Da li je linearno preslikavanje A: R? — R3 odredeno
vrijednostima u kanonskoj bazi eq, e, e3 prostora R3? DA NE

3.3. Matrica linearnog preslikavanja. Razmatranje u prethodnoj
tocki pokazuje da je linearno preslikavanje A: R™ — R™ u potpunosti
odredeno n-torkom vektora (Aeq,...,Ae,) = (a1,...,a,) iz R™ koju zo-
vemo matricom linearnog preslikavanja A u kanonskoj bazii zapisujemo kao

11 192 e A1n

a1 a99 e Qon
(Aeq, ..., Aey) =

aAml1 m2 ... Amn,

Matrica je tipa m x n.
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3.4. Matrica linearnog preslikavanja zadanog matricom. Primi-
jetimo li da je i-ta koordinata vektora e; kanonske baze jednaka 1, a sve
ostale 0, onda vidimo da za linearno preslikavanje A: R™ — R™ definirano
formulom (2.2) vrijedi

Aei = a;.
Znaci da je matrica (2.1) s kojom smo zadali linearno preslikavanje A u
stvari matrica (Aey, ..., Ae,) tog linearnog preslikavanja A.

3.5. Matrica identitete je jedini¢éna matrica. Bududi da je za iden-

titetu Ie; = ej;, to su stupci matrice preslikavanja I: R" — R" upravo
elementi kanonske baze prostora R™. Tu matricu oznacavamo s I,
I=(e1,...,en),
i zovemo je jedini¢nom matricom. Na primjer,
10 00
10 01 00
1=1, <0 1)_1’ 0 010 =1
0 001

gdje je redom [ jedini¢na matrica tipa 1 x 1, tipa 2 x 2 i tipa 4 x 4.

-10 0
3.6. Pitanje. Dali je ( 8 —01 01) matrica centralne simetrije x — —zx
uR3? DA NE

3.7. Primjer: matrica rotacije u ravnini za kut . Rotacija A =
R, oko ishodista za kut ¢ je linearno preslikavanje, pa je u potpunosti
odredeno vektorima (nacrtajte sliku!)

B . 1\  [cosyp . . 0\ (—singp
al_Ael_A<0>_<sincp>’ ag—Aeg—A<1>—<COS(p).

Matrica rotacije za kut ¢ je

cosp —singp
sing cosp /)
Posebno su matrice rotacija za kuteve 0, 5, 7 i 37” redom

R U N OO R C))

3.8. Zadatak. Napisite matrice rotacija u R za kuteve 0, 5, i 37”
oko 1) z-osi, 2) y-osii 3) z-osi.

3.9. Zadatak. Geometrijskim argumentom dokazite da je refleksija u
euklidskoj ravnini s obzirom na simetralu prvog kvadranta linearno preslika-
vanje. Napisite matricu odgovarajuceg linearnog preslikavanja T: R? — R2.
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3.10. Zadatak. Neka je a = (—1,1) i neka je preslikavanje T': R? — R?
zadano formulom
e |a)
(a]a)
Dokazite da je T linearno preslikavanje i izra¢unajte mu matricu. Interpre-
tirajte preslikavanje T geometrijski.

T(x)=z—

3.11. Matrica linearne funkcije. Kao i u opem slucaju, linearna je
funkcija A: R" — R zadana vrijednostima A(e;) = aq, ..., Ae, = a5 na
kanonskoj bazi, odnosno 1 X n matricom

(a1,09,...,0p).
Vrijednost funkcije A(z) ra¢unamo po formuli
Alz) = a1y + a2&a + - + anéa.

Na primjer, f(&1,&2,63) = & — 36 + 4€3  je linearna funkcija na R3 s
matricom (1,—3,4).

3.12. Mnozenje matrice i vektora. Za linearno preslikavanje A s

matricom (Aey, ..., Ae,) slika Az € R™ proizvoljnog vektora x € R™ dana
je formulom (3.1). Tu formulu (3.1) za racunanje Az, po koordinatama
zapisanu kao (3.2), obitno zovemo mnoZenje matrice (ai,...,an) i vektora
s koordinatama &1, . .., &, 1 piSemo:
an oz ... am\ (& anél + -+ amén
Qo1 Qg2 ... Q2 &2 @911+ + agnf
(3.3) Az = T = , o
Am1 Om2 ... Omp n am1é1 + -+ amnén

Primijetimo da je definirano mnozenje matrice s vektorom samo za mxn
matrice A s vektor-stupcem z tipa n x 1, i da je rezultat vektor-stupac Az
tipa m x 1. Istaknimo to kao “formulu”

(mxn)-(nx1)=(mx1).

Stavimo li b = Az i oznacimo li koordinate vektora b s fBi,...,05Bn, tada
formulu (3.3) za mnozenje matrice s vektorom mozemo zapisati krace kao

n
(34) 51 = Zaijfj za sve 1= 1, e, M.
j=1

Primijetimo da je formula (2.2) kojom smo definirali preslikavanje A u stvari
formula za mnozenje matrice i vektora. Zbog toga vrijedi svojstvo da je
mnozenje vektora matricom A linearno preslikavanje

A(x +y) = Az + Ay, A(Ax) = NAz.
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3.13. Primjeri produkta matrice i vektora.

1 2 1 1 4 12 1 -1
02 —1) (=) (Y H{q)=("
1 1 1 0

3.14. Pitanje. Da li je definiran produkt matrice i vektora

1 2 1
0 -1 117 DA NE
1 1 1

3.15. Produkt jediniéne matrice i vektora. Bududi da je za iden-
titetu Iz = x, to je formula za racunanje vektora Ix mnozenjem jedini¢ne
matrice I s vektorom x opet vektor . Na primjer

1 000 1 1
0100 21 | 2
0010 31 | 3
00 01 -1 -1
3.16. Primjer. Za rotaciju A = R, vektor Ax racunamo koristeci

mnozenje matrice rotacije (Aey, Aes) i vektora x

cosp —sing\ (1) _ [(&1cosp —Easing
sing  cosy &) \&sinp+&cosp)’
™

Posebno rotacije vektora z za kuteve § i 7 racunamo koriste¢i mnozenje
matrice i vektora

) E)-() G A)E)- ()
L 0)\&) &) \0 —1)\&) \-&)°
3.17. Primjer. Za linearnu funkciju f(&1,&2,&3) = &1 —3&+4€3 na R3

vrijednost funkcije f(z) na vektoru z ra¢unamo koriste¢i mnozenje matrice
linearne funkcije (1,—3,4) i vektora x:

&1
(1,-3,4) [ &2 | =& — 38 +4&.
&3

3.18. Poistovjeéivanje linearnog preslikavanja i matrice. Bududi
da svakom linearnom preslikavanju pripada matrice, i da svakoj matrici pri-
pada linearno preslikavanje kojemu je to pripadna matrica, mi vrlo ¢esto ne
pravimo razliku! izmedu m x n matrice (Aey, ..., Ae,) i linearnog preslika-
vanja A: R" — R™,

x— Ax,
1Kod poistovjedivanja zanemarujemo razlike medu stvarima, ali je dobro pamtiti $to

smo zanemarili. U ovom konkretnom slucaju treba imati na umu i posebnu ulogu kanonske
baze u formuli (3.1).
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definiranog formulom (3.3) za produkt Az matrice (Aey, ..., Ae,) i vektora
x, veé pisemo A = (Aey, ..., Ae,). U tom je smislu matrica

1 2 3
A= <4 5 6)
linearno preslikavanje A: R3 — R? zadano formulom

& 123\ (8 et
A: 2 ~ <4 5 6) 2 _<4511+5§22+6533>'

4. Linearno preslikavanje kao sistem linearnih funkcija

4.1. Sistem linearnih funkcija. Linearno preslikavanje A: R™ — R™
mozemo shvatiti kao m-torku funkcija

N1 fi(z)
f2 fo(z
A= . ’ Az = ( ) )
fm fm ()
odnosno A = (f1,..., fm), koju ponekad zovemo sistemom od m funkcija
fis-++y fm. Te su funkcije dane formulom (3.3) za mnoZenje vektora matri-
com
fil€r, - &n) = annén + -+ ainén
(4.1) f2(&1, - 6n) = azién + - + aznén
fm(fb s 7§n) = am1€1 et O‘mnfn )
a i-ti redak (ay1,...,q;,) matrice A je matrica i-te linearne funkcije f;.

4.2. Primjer. Linearno preslikavanje A: R? — R? zadano matricom

3 1 -1
-1 0 1

mozemo shvatiti kao sistem od dvije linearne funkcije od tri varijable

J1(61,62,83) = 361 + &2 — &3,
f2(61,62,83) = —&1 + &3

mozemo ga zapisati i kao

A(&1,82,83) = (381 + &2 — &3, —&1 + &3).
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4.3. Pitanje. Linearno preslikavanje A: R? — R? zadano je formulom
A(&1,82) = (561 + &2, —&1, =61 +2€2). Dalije

5 1
-1 0
-1 2

matrica linearnog preslikavanja A7 DA NE

4.4. Sistem jednadzbi Az = b i linearno preslikavanje A. Neka je
A= (ay,...,a,) matrica tipa m x n i b vektor u R™. Tada sistem jednadzbi

§1a1 + -+ &pan =0
mozemo shvatiti kao problem nalazenja svih vektora

2= (&1, .., 6n) ER

koje linearno preslikavanje
A:R*" - R™
preslikava u vektor b, tj. da je
Az =b.

Ocito je matrica sistema A ujedno i matrica linearnog preslikavanja.

5. Slika i jezgra linearnog preslikavanja

5.1. Slika linearnog operatora. Neka je A: R” — R™ linearno pre-
slikavanje. Slika preslikavanja A je skup

imA = {Az e R™ | x € R"}.

Slika linearnog preslikavanja A: R™ — R™ je potprostor vektorskog prostora
R™. Stovide,

(5.1) imA = (Aey, ..., Aey).

Dokaz. Az, Ay € imA povla¢i Az + Ay = A(x + y) € imA. Takoder
imamo AAx = A(Az) € imA. Znaci da je slika od A potprostor vektorskg
prostora R™. Buduéi da za vektor x = £1e; + - - - + €€, u R™ imamo

Ax =& Aer + - + & Aen,
to ocito vrijedi (5.1). O
5.2. Rang matrice i linearnog operatora. Rang linearnog preslika-
vanja A: R™ — R™ je dimenzija slike od A, tj.
rang A = dimimA = dim(Aey, ..., Aey).
Rang matrice A = (ay,...,ay) je rang pripadnog preslikavanja, tj.

rang A = rang (a1, ...,a,) = dim(ay, ..., a,).
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5.3. Surjektivnost preslikavanja i slika. Po definiciji je A surjek-
cija ako 1 samo ako je im A = R™. Stovise, A je surjekcija ako i samo ako
je rang A = m.

Naime, prema teoremu 3.4.7, R™ je jedini m-dimenzionalni potprostor
od R™,

5.4. Egzistencija rjeSenja sistema Axr = b i slika od A. Ocito
sistem jednadzbi Ax = b ima rjeSenje ako i samo ako je b € imA.

5.5. Jezgra linearnog operatora. Neka je A: R® — R™ linearno
preslikavanje. Jezgra preslikavanja A je skup

ker A = {x € R" | Az = 0}.

Jezgra linearnog preslikavanja A: R™ — R™ je potprostor vektorskog prosto-
ra R™.

DokAz. z,y € ker A povlaéi A(z +y) = Az + Ay = 0, odnosno x +y €
ker A. Takoder imamo A(Ax) = Az = 0, pa je Az € ker A. Znadci da je
jezgra od A potprostor vektorskg prostora R™. ([

5.6. Defekt matrice i linearnog operatora. Defekt linearnog pre-
slikavanja A: R¥ — R™ je dimenzija jezgre od A, tj.

defekt A = dim ker A.
Defekt matrice A = (a1, ...,a;) je defekt pripadnog preslikavanja.

5.7. Injektivnost preslikavanja i jezgra. Podsjetimo se da je pre-
slikavanje A injekcija ako Az = Ay povlacéi x = y. U sluc¢aju linearnih
preslikavanja imamo:

Linearno preslikavanje A je injekcija ako i samo ako je ker A = 0.
Stovise, A je injekcija ako i samo ako je defekt A = 0.

Naime, za linearnu injekciju Az = 0 = A0 povlaci x = 0, pa je ker A = 0.
Obratno. Ako je jezgra od A nula, onda je A injekcija jer Ar — Ay =
A(z — y) = 0 povlaéi x —y = 0. Druga tvrdnja slijedi iz prve jer samo
nul-prostor ima dimenzija nula.

5.8. Jedinstvenost rjesenja sistema Ax = b i jezgra od A. Ako je
ker A =0, onda Az = b= Ay povladi z = y.

5.9. Teorem o rangu i defektu. Neka je A: R™ — R™ linearno pre-
slikavange. Tada je
rangA + defektA = n.

DoxkAz. Neka je
V1y...,Up

baza jezgre od A. Taj linearno nezavisan skup u R™ nadopunimo do baze

Vly---,Up, Uptl,.--,Un.
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Vektori Avy, ..., Av, razapinju sliku preslikavanja A. No vektori vy, ..., v,

su u jezgri preslikavanja A i za njih je Av; = 0, pa imamo da vektori
Avpi, ..., Av,

razapinju sliku preslikavanja A. Za dokaz teorema dovoljno je dokazati da
je to baza slike preslikavanja A, tj. da je taj skup linearno nezavisan. Zato
pretpostavljamo da je

(52) )\p+1AUp+1 + 4 )\nA’Un =0

i dokazujemo da su svi koeficijenti nula. Zbog linearnosti preslikavanja A iz
(5.2) slijedi

A(Apr1vpr1 + -+ + Ayupy) = 0.
Znaci da je vektor A\,11vpt1+- - -+ A0, U jezgri preslikavanja A. Prikazemo
li taj vektor u bazi jezgre

Apt1Upi1 4 -+ Agln = M01+ -+ + Aptp

dobivamo

—)\1’1)1 — s — )\pvp + )\p+1vp+1 + -+ /\nvn = 0.
Bududéi da je vy, ..., v, baza prostora R", svi koeficijenti u toj kombinaciji
moraju biti nula. Posebno je A1 =--- = A, =0, $to je i trebalo dokazati.

0

6. Kompozicija linearnih preslikavanja
6.1. Kompozicija linearnih preslikavanja. Ako su
A:R"—-R™ i B:R™ - R"
linearna preslikavanja, onda je kompozicija
BoA:R" - RF,  (BoA)(x) = B(A(x))

takoder linearno preslikavanje. Naime, zbog linearnosti preslikavanja A i B
imamo

B(A(z +vy)) = B(A(z) + A(y)) = B(A(z)) + B(A(y)),
B(A(\x)) = B(AA(z)) = AB(A(z)).

Kompoziciju B o A linearnih preslikavanja A i B ozna¢avamo kratko s BA.
Po dogovoru za linearno preslikavanje C pisemo Cx umjesto C(x), pa po
definiciji kompozicije BA imamo

(BA)x = B(Ax),
$to onda pisemo bez zagrada kao

BAz.
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6.2. Mnozenje matrica. Neka je A: R™ — R™ linearno preslikavanja
s matricom (ay,...,a,) tipa m x n i neka je B: R™ — R* linearno presli-
kavanja s matricom (by,...,b,,) tipa k x m. Kompozicija BA: R" — RF je
linearno preslikavanje i ima matricu
C=(c1,...,cn) = (BAey,...,BAey,)
tipa kxn, gdje je eq, . .., e, kanonska baza u R". Stupce ¢; = B(Ae;) = Ba;
matrice C ra¢unamo po formuli (3.3) za mnozenje matrice i vektora. Matricu

(6.1) C = (Bay,...,Bay)

zovemo produktom matrica (by, ..., by) 1 (a1,...,an).

Primijetimo da je definirano mnozenje dvije matrice samo za k X m
matricu s m X n matricom i da je rezultat matrica tipa k x n. Istaknimo to
kao “formulu”

(kxm)-(mxn)=(kxn).
Stavimo li A = (a4j), B = (Bi;) 1 C = (745), tada formulu (6.1) za mnozenje
matrica

C =BA
mozemo zapisati pomocéu matri¢nih koeficijenata kao

m
(6.2) 'Yij:Zﬁirarj zasve i=1,....k, j=1,...,n.
r=1

6.3. Primjer. Za matrice
1 2 3 1 -1
A_<456>’ B_<0 2)
produkt AB nije definiran, a za BA imamo
1 -1 1 2 3 -3 -3 -3
BA_(O 2)(456)(8 10 12)'

6.4. Mnozenje n x n matrica nije komutativno. Za dvije n X n
matrice A i B definirani su produkti AB i BA, no op¢enito oni nisu jednaki.
Na primjer

01 0 0y (1 0 0 0y /0 1} (0 O
0 0 1 0/ \0 0/’ 1 0/\0 0/ \0 1)°
6.5. Zadatak. Dokazite? da je R,Ry = Rypy, ftj.
cosp —sing) [cosyy —siny)  [(cos(p+1) —sin(p+ 1)
sing  cosy singy cosy ) \sin(p+1v) cos(p+v) )’
27a, funkcije sin i cos vrijede adicioni teoremi:

sin(p + 1) = sin p cos 1 + cos psin ¢,
cos (¢ + 1) = cos p cos 1) — sin @ sin 1.
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6.6. Mnozenje jedinicnom matricom. Za linearna preslikavanja pri-
rodno je definirana kompozicija preslikavanja, uz pretpostavku da je po-
drug¢je vrijednosti jednog preslikavanja jednako podrucju definicije drugog
preslikavanja. MnozZenje matrica definirano je tako da je produkt matrica
preslikavanja upravo matrica kompozicije. Buduéi da kompozicija s identi-
tetom ne mijenja linearno preslikavanje, to i mnozenje s njenom jedini¢nom
matricom ne mijenja matricu preslikavanja. Zato za mnozenje jedini¢nom
matricom [ vrijedi

Al = A, IB=B
(kada su produkti matrica definirani).
6.7. Asocijativnost mnozenja matrica. Buduéi da je kompozicija

asocijativna operacija, to je i pripadno mnoZenje matrica asocijativno: za
tri matrice A, Bi C (tipa k x m, m x nin x p) je

(AB)C = A(BQC).
6.8. ViSestruki produkti operatora na R”. Neka su A1, Ao, ..., Ap

linearni operatori s R™ u R™. Tada viSestruki produkt operatora definiramo
induktivno koriste¢i mnozenje dva po dva operatora:

A1AgAg = (A1A2)As, A1A2A3Ay = (A1A2A3) Ay
i opcenito
ArAg - A 1 A = (A1Ag - Ag 1) Ag.
Produkt od k faktora A; = A zovemo k-tom potencijom operatora A i zapi-
sujemo kao A*.

6.9. Asocijativnost za viSestruke produkte. Zbog asocijativnosti
mnozenja operatora za sve r i § imamo

(6.3) (Ap- A (Apgr - Apys) = Ay ApApyy -+ Aps.

Formulu dokazujemo indukcijom po r + s = k koristeéi svojstvo asocijativ-
nosti za produkt tri operatora

(Al"'Ar>(Ar+1"'Ar+s)
- (Al T Ar)((Ar-H e 'AT+S—1)AT+S)
= ((Al T AT)(AT—H o 'AT—I—S—I))AT-i-S
= (Are e ApArgs - Avgy 1) Ars g
=A1 - ApArgr o Args—1Ars
(tre¢a jednakost vrijedi zbog pretpostavke indukcije za r +s — 1 =k — 1).

Formulu (6.3) zovemo svojstvom asocijativnosti za visestruke produkte ope-
ratora.

6.10. Potencije operatora na R". Zbog asocijativnosti mnozenja za
linearno preslikavanje A: R™ — R"™ vrijedi

ARt = Ak g™,
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6.11. Zadatak. Izracunajte sve potencije od J za
0 —1
J= <1 5 ) .

7. Pojam linearnog operatora

7.1. Definicija linearnog operatora. Neka su V' i W vektorski pro-
stori nad poljem K. Kazemo da je preslikavanje

AV W

linearan operatorili linearno preslikavanje s V u W ako za sve vektore x,y €
V' i sve skalare A € K vrijedi

Az +y) = A(z) + A(y), A(Az) = NA(z).
Ako je A linearno, onda je obi¢aj umjesto A(x) pisati Az.

7.2. Svojstvo linearnosti preslikavanja i linearne kombinacije.
Ponavljajuéi doslovce argument iz tocke 1.4 vidimo da je A linearan operator
ako i samo ako za proizvoljne linearne kombinacije vrijedi

(7.1) A()\lxl + -+ )\3.1‘5) = MAx1 + -+ AAx,.

7.3. Linearna preslikavanja C" u C™. Osim linearnih preslikavanja
s R™ u R™, posebno su vazna linearnih preslikavanja s C* u C™. Bududi da
smo u dosadasnjem proucavanju linearnih preslikavanja s R™ u R™ koristili
samo svojstva zbrajanja i mnozenja realnih brojeva popisanih u definiciji
polja, to se sva razmatranja jednako prenose za svako dano polje, pa posebno
i za polje kompleksnih brojeva— samo treba zamijeniti R sa C.

7.4. Realne matrice kao kompleksne matrice. Buduéi da realne
brojeve mozemo shvatiti kao kompleksne brojeve, to realne matrice mozemo
shvatiti kao matrice linearnih operatora s R™ u R™ ili kao matrice linearnih
operatora sa C" u C™. No operatori na R™ i C" nemaju ista svojstva. Na

primjer, realna matrica
0 -1
1 0

je matrica rotacije A u R? za kut 5, pa ne postoji vektor v # 0 koji bi
bio proporcionalan vektoru Av. S druge strane, shvatimo li tu matricu kao
matricu linearnog preslikavanja B sa C2 u C2, onda je

b ) 6)=6)

pa je vektor B (1) proporcionalan vektoru (). Ovaj primjer pokazuje da
operator B na kompleksnom prostoru ima svojstvo koje operator A na re-
alnom prostoru nema. Kao §to ¢emo vidjeti, to je vezano za svojstvo skupa
kompleksnih brojeva C da jednadzba x? + 1 = 0 ima rjesenje u C (rjesenje
je x = +1i).
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7.5. Pitanje. Dali je

((1) _01> <_i1>=—2‘ (_ﬁ)? DA NE

7.6. Zadatak. Izracunajte

0 -1\ i 0 0 i\’
1 0 ’ 0 —i) "’ i 0)
7.7. Mnozenje linearnih operatora. Ako su U, V i W vektorski
prostori nad istim poljem K i

B:U—=V i A V->W

dva linearna operatora, onda produkt operatora AB definiramo kao kompo-
ziciju
(AB)(z) = (Ao B)(x) = A(B(z)) =zasvakiz e U.
Lako je provjeriti da je AB takoder linearan operator s U u W. Operacija
mnozenja je asocijativna
(AB)C = A(BCQC).

Kao i obi¢no, identitetu idy na V obi¢no oznac¢avamo s I,

I1:V—>V, ITix—ax zasvakizeV.
Za identite na V i W i operator A: V — W imamo

Al =A, TA=A.

7.8. Linearan operator odreden je vrijednostima na bazi. Kljuc-
ni moment naseg razmatranja linearnih preslikavanja s R™ u R™ je jednostav-
na primjedba da je to linearno preslikavanje u potpunosti odredeno svojim
vrijednostima u (kanonskoj) bazi. To kljuéno svojstvo vrijedi i opéenito za
linearne operatore:

Teorem Neka su V' i W wvektorski prostori i B baza od V.

(1) Linearno preslikavanje A: V. — W u potpunosti je odredeno svojim
vrijednostima

Ale), e€B

na elementima baze B vektorskog prostora V.
(2) Ako je na bazi B vektorskog prostora V' zadano preslikavanje

a: B—W, e~ ale),

onda postoji jedinstveno linearno preslikavanje A: V. — W takvo
da je A(e) = a(e).
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DoKkAz. Za dokaz teorema treba samo ponoviti argumente iz tocke 3.1
i tocke 2.1:
(1) Ako je v vektor u V, onda postoje vektori baze z1,...,zs € B takvi
da imamo jedinstveni prikaz vektora v kao kombinacije
V=X + o+ AsXs.
No tada zbog linearnosti (7.1) operatora A imamo
Av = Az + -+ + A\ Axs.

Buduéi da su za dani v u potpunosti odredeni koeficijenti Aq,...,As, a po
pretpostavei su odredene i vrijednosti Axq, ..., Axs operatora A na elemen-
tima baze, to je u potpunosti odreden i vektor Av. Znagci da je preslikavanje
v — Av u potpunosti odredeno.

(2) Neka su zadani vektori a(e) € W za svaki e € B. Ako je vektor v € V/
prikazan kao v = Az + - + Asxs pomocéu vektora baze x1,...,xs € B,
onda stavimo

A(w) = Ma(zr) + -+ Asa(zs) € WL
Time smo definirali preslikavanje
AV W, v Av)

i preostaje vidjeti da je to preslikavanje linearno. Za skalar u zbog prikaza
vektora pv = pAixy + -+ pAsxs po definiciji imamo

A(p) = phra(@1) + -+ + pAsa(xs) = pA(v).
Na sli¢an nac¢in dokazujemo i da je A(v+u) = A(v) + A(u). O
7.9. Teorem. Neka su'V i W wektorski prostori i B baza od V. Tada
je linearno preslikavanje A: V. — W izomorfizam ako i samo ako su vektori
(7.2) Ae, eeB
baza vektorskog prostora W.

Dokaz. Neka je A izomorfizam, tj. linearna bijekcija. Zbog surjektiv-
nosti preslikavanja A za svaki vektor w € W postoji v € V takav da je w =
Aw, pa raspisujuéi v kao linearnu kombinaciju vektora baze x1,...,x5s € B
dobivamo

w=Av=AMx1+ -+ Ass) = MAx1 + - + A\sAxs.

Znaci da skup vektora (7.2) razapinje W. Zbog injektivnosti preslikavanja
A imamo Av = 0 samo za v = 0, pa relacija

MAT + -+ AgAxs =0
povlaci
Az + -+ Asxs = 0.

Sada iz linearne nezavisnosti baze B slijedi A\{ = --- = A; = 0, a to znadi da
je skup vektora (7.2) linearno nezavisan.
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Obratno, ako su vektori (7.2) baza u W, onda prema prethodnom te-
oremu 7.8 postoji jedinstveno linearno preslikavanje

c:wW -V
koje je na bazi (7.2) od W zadano vrijednostima
C(Ae) =e, e€B.

Tada su CA: V — V i AC: W — W linearna preslikavanja koja su na
odgovaraju¢im bazama identitete

CAe=e, AC(Ae)= A(CAe)= Ae,
pa zbog jedinstvenosti takvih preslikavanja mora biti
CA=idy, AC=idwy.

Znagi da je A bijekcija s inverznim preslikavanjem C. U
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Regularni operatori na R"

0.1. Pojmovi injekcije i surjekcije. Neka su A i B dva skupa i
f: A — B preslikavanje sa skupa A u skup B.

Kazemo da je preslikavanje f injekcija ako x # y povlaci f(x) # f(y).
Drugim rije¢ima, injekcija pridruzuje razli¢itim elementima iz A razlicite
elemente u B. O¢ito je preslikavanje f injekcija ako i samo ako f(x) = f(y)
povlacéi x = y.

Kazemo da je preslikavanje f surjekcija ako za svaki element b € B
postoji neki element a € A takav da je b = f(a). Drugim rije¢ima, pri
preslikavanju f svaki je element iz B slika nekog elementa iz A.

0.2. Bijekcija. Kazemo da je preslikavanje f bijekcija ako je injekcija i
surjekcija. Ako je f bijekcija, onda mozemo identificirati elemente skupa A
s elementima skupa B tako da element a identificiramo s njegovom slikom

f(a), pisemo

a<— f(a).
Naime, zbog injektivnosti razli¢ite elemente z,y € A identificiramo s razli¢itim
elementima f(x), f(y) € B, a zbog surjektivnosti smo svaki element b € B

identificirali s nekim elementom a € A. Grubo govoredi, ako je f bijekcija,
onda skupovi A i B “izgledaju isto”.

0.3. Inverzno preslikavanje. Ako je f bijekcija, onda postoji inverzno
preslikavanje g: B — A koje elementima f(a) € B pridruzuje elemente
a € A, piSemo

g: fla) — a.

Drugim rije¢ima, ako je b = f(a), onda je g(b) = a. O¢cito je inverzno
preslikavanje takoder bijekcija i vrijedi

g(f(a)) =a,  f(g(b)) =0

Inverzno preslikavanje ¢ oznac¢avamo s 1.

0.4. Identiteta i inverzno preslikavanje. Ako je f: A — B bijekcija
i g: B — A inverzno preslikavanje od f, onda je

gof=ida 1 fog=idp
jerje g(f(a)) =azasveac Ai f(g(b)) =bzasvebe B.

171
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0.5. Lema. Nekasu f: A — Big: B — A preslikavanja. Ako je
gof=ida,
onda je f injekcija i g surjekcija.
Dokaz. f(x) = f(y) povlaci x =y jer je
z=1ida(x) = (9o f)(x) = g(f(2)) = 9(f(y)) = (g0 f)(y) =ida(y) = v.

Znaci da je f injekcija. S druge strane, iz upravo izvedene formule x =
g(f(z)) vidimo da je svaki x € A slika g(y) elementa y = f(x), pa je g
surjekcija. ([l

1. Linearne surjekcije i injekcije

1.1. Linearne surjekcije. Neka je A: R™ — R™ linearno preslikavanje.
Kazemo da je A linearna surjekcija (sa R™ na R™) ako je preslikavanje A
surjektivno, tj. ako za svaki vektor b u R™ postoji neki vektor z u R™ takav
da je b = Ax. Drugim rije¢ima, linearno preslikavanje A je surjekcija ako i
samo ako sistem jednadzbi

Ax =1
ima rjesenje za svaki b € R™,
1.2. Teorem. Neka je A: R™ — R™ linearno preslikavanje i e, ..., e,
kanonska baza uR™. Tada je A surjekcija ako i samo ako vektori Aeq, . .., Ae,

razapingu R™.
Dokaz. Neka vektori Aey, ..., Ae, razapinju R™. Tada svaki y € R™
mozemo prikazati kao linearnu kombinaciju
y = AdAer + -+ A\ Ae,.
No zbog linearnosti preslikavanja A imamo
y=A(Aer + -+ Apen),

tj. y je slika vektora Ajeq + - - 4+ Apey, iz R™. Znadi da je A surjekcija.
Obrat. Pretpostavimo da je A surjekcija. Neka je y = Az za vektor

r=¢&er+ -+ &nen
iz R"™. Tada zbog linearnosti preslikavanja A imamo
y = A(£161 + T + gnen) == €1A61 + tee + é.nAeru

tj. y je linearna kombinacija vektora Aey,..., Ae,. Znaci da ti vektori
razapinju R™. ([

Prema teoremu 3.3.10 je broj izvodnica od R™ vedi ili jednak m, pa
u slucéaju linearne surjekcije imamo neposrednu posljedicu prethodnog te-
orema;

1.3. Korolar. Ako je A: R™ — R™ linearna surjekcija, onda jen > m.
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1.4. Pitanje. Da li je linearno preslikavanje zadano matricom
1 2
11
3 1
surjekcija? DA NE

1.5. Zadatak. Koristeé¢i elementarne transformacije dokazite da je li-
nearno preslikavanje zadano matricom

1 2 1
1 1 2
311
surjekcija.
1.6. Linearne injekcije. Neka je A: R™ — R™ linearno preslikavanje.

Kazemo da je A linearna injekcija (sa R™ u R™) ako je preslikavanje A
injektivno, tj. ako Ax = Ay povladi = = y.

1.7. Teorem. Neka je A: R™ — R™ linearno preslikavanje. Tada je A
injekcija ako i samo ako homogeni sistem jednadzbi
Az =0

ima jedinstveno rjesenje x = 0.

DoxkAZ. Pretpostavimo da jednadzba Az = 0 ima jedinstveno rjesenje
x = 0. Neka je Au = Av. Tada je zbog linearnosti preslikavanja A
A(u —v) = Au— Av =0,
pa je rjesenje sistema z = u—wv = 0, odnosno v = v. Znaci da je A injekcija.
Obrat. Pretpostavimo da je A injekcija. Buduéi da je A0 = 0, to zbog

injektivnosti Az = 0 povlaci z = 0. O
1.8. Teorem. Neka je A: R™ — R™ linearno preslikavanje i ey, ..., e,
kanonska baza u R™. Tada je A injekcija ako i samo su vektori Aeq, ..., Ae,

linearno nezavisni.

DoxkAZ. Pretpostavimo da su vektori Aeq,..., Ae, linearno nezavisni.
Ako je Ax = 0 za vektor

z =&1e1 + -+ &nen,
onda je zbog linearnosti preslikavanja A
Ax =& Aer + -+ & Aey, =0,

pa zbog linearne nezavisnosti vektora Aey, ..., Ae, slijedi & =--- =&, =0,
tj. = = 0. Sada iz teorema 1.7 slijedi da je A injekcija.
Obrat. Pretpostavimo da je A injekcija. Ako je

flAel —+ -+ §nAen =0,
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onda je zbog linearnosti preslikavanja A

Az = A(&ier + - - + &nen) =0,

pa zbog injektivnosti preslikavanja A imamo x = £1eq + -+ + &nen = 0, tj.
& =---=¢&, =0. Znadi da su vektori Aeq,..., Ae, linearno nezavisni. [

Prema teoremu 3.3.10 je broj linearno nezavisnih vektora u R manji
ili jednak m, pa u sluc¢aju linearne injekcije imamo neposrednu posljedicu
prethodnog teorema:

1.9. Korolar. Ako je A: R™ — R™ linearna injekcija, onda je n < m.

1.10. Pitanje. Da li je linearno preslikavanje zadano matricom
1 21
11 2

1.11. Zadatak. Koriste¢i elementarne transformacije dokazite injek-
tivnost linearnog preslikavanja zadanog matricom

injekcija? DA NE

1 21
1 1 2
311

1.12. Linearne bijekcije na R". Ako je A: R™ — R™ linearna bijek-
cija, onda je n = m.

Naime, s jedne je strane A surjekcija, pa je prema korolaru 1.3 n > m, a
s druge je strane A injekcija, pa je prema korolaru 1.9 n < m. Primijetimo
da je to u sustini isti dokaz kao dokaz iste tvrdnje teorema 3.77. Neposredna
posljedica teorema 1.2 1 1.8 je i teorem 7.7.9:

Neka je A: R™ — R" linearno preslikavanje i eq, . .., e, kanonska baza u
R™. Tada je A bijekcija ako i samo ako su vektori Aey, ..., Ae, baza u R™.

Koristedi teorem 3.3.18 dobivamo i tre¢u neposrednu posljedicu teore-
ma 1.2 1 1.8:

1.13. Teorem. Neka je A: R™ — R” linearno preslikavanje. Tada je
ekvivalentno:
(1) A je bijekcija,
(2) A je surjekcija,
(3) A je injekcija.

Ovo je jedan od najvaznijih teorema linearne algebre. Posebno je vazna
i korisna tvrdnja da injektivnost preslikavanja povlaci surjektivnost. Naime,
provjera da je A injekcija svodi se na provjeru da jedan sistem jednadzbi

Az =0
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ima jedinstveno rjeSenje x = 0, a provjera da je A surjekcija svodi se na
provjeru da svaki od beskona¢no mnogo sistema jednadzbi

Ax = b, beR"
ima rjeSenje.

1.14. Primjer. Za dokaz da je linearno preslikavanje zadano matricom

1 21
1 1 2
311

linearna bijekcija dovoljno je dokazati da su stupci matrice linearno nezavi-
sni.

2. Regularni operatori na R"
2.1. Regularni linearni operatori. Ako je
A: R - R"”
linearna bijekcija!, onda je i inverzno preslikavanje
AL R 5 R”

linearno preslikavanje?. Zbog ovog svojstva linearne bijekcije na na R” zo-
vemo invertibilnim ili reqularnim linearnim operatorima na R™, a operator
A=Y zovemo inverzom od A.

2.2. Inverzna matrica. Neka je A matrica tipa nxn. Zanxn matricu
B kazemo da je inverzna matrica ili inverz od A ako vrijedi

AB=BA=1.

Ako inverz od A postoji, onda mora biti jedinstven. Naime, ako za neku
n X n matricu B’ vrijedi AB’ = B’A = I, onda zbog svojstva mnoZenja s I
i asocijativnosti mnozenja matrica imamo

B'=B'I =B(AB) = (B'A)B = IB = B.

Ako postoji, inverz od A oznac¢avamo s A~

Lodnosno: izomorfizam od R” ili automorfizam na R"

2Naime, za proizvoljna dva vektora a i b postoje jedinstveni vektori z i y takvi da
jea = A(z) i b = A(y), odnosno & = A~ '(a) i y = A7'(b), pa koristedi linearnost
preslikavanja A dobivamo

AN a+b) = A7 (A@) + A(y) = A A +y) =a+y = A" (@) + A7 (b).
Na slican nacin dokazujemo i svojstvo linearnosti u odnosu na mnozenja skalarom

A aa) = A (A(z)) = A" (Alax)) = az = aA™ (a).
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2.3. Primjer. Matrica () nema inverznu matricu jer za sve 2 x 2
matrice (f;;) imamo

0 0 611&2:00#10
0 0)\B2a1 P22 00 0 1)°
2.4. Zadatak. Razmisljajte geometrijski i nadite inverz matrice
cosp —sing
sing cosp )
2.5. Regularni operatori i regularne matrice. Ako je A regularan
operator, onda iz relacije
AA TV =ATTA=1T,

slijedi da je matrica preslikavanja A~! inverzna matrica matrice preslikava-
nja A. Obratno, ako matrica A ima inverznu matricu B, tj. ako je

AB=BA=1,
onda je linearno preslikavanje definirano matricom A bijekcija. Naime, po-

istovjetimo li matrice i pripadna preslikavanja, onda je prema lemi 0.5 zbog
relacije

AB=1
preslikavanje A surjekcija, a zbog relacije
BA=1

je preslikavanje A injekcija. Matrice koje imaju inverz zovemo invertibilnim
ili regularnim matricama. U skladu s prijasnjim dogovorom mi ¢emo ¢esto
poistovjeéivati regularne operatore i regularne matrice

2.6. Primjedba. Linearno preslikavanje A moze biti bijekcija samo ako
je A: R™ — R"™ za neki n. Zato iz prethodnog razmatranja slijedi da za
matrice A i B moze biti AB = BA = I samo ako su obe matrice tipa n x n
za neki n. Tako je, na primjer

o ()-n w (o o-( 0402 0).

2.7. Zadatak. Nadite 2 x 3 matricu A i 3 X 2 m atricu B tako da je
AB =1 iizratunajte BA.

2.8. Teorem. Neka su A i B kvadratne matrice tipa n X n. Tada su
sljedece tri turdnje ekvivalentne:
(1) AB=BA=1,
(2) AB=1,
(3) BA=1.
Ako vrijedi jedna od tvrdnji, onda je B = A1 i A= B!,
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Dokaz. Shvatimo matrice A i B kao linearna preslikavanja R” — R™.
Ako je AB = I, onda je prema lemi 0.5 preslikavanje A surjekcija. No onda
je prema teoremu 1.13 preslikavanje A bijekcija i postoji inverz A~!. Sada
iz pretpostavke AB = I slijedi

B=IB=(A"'A)B=A"YAB)=A"'T=47",

pa vrijedi AB = BA = 1.

Ako je BA = I, onda je prema lemi 0.5 preslikavanje A injekcija. No
onda je prema teoremu 1.13 preslikavanje A bijekcija i postoji A~!. Sada iz
pretpostavke BA = I slijedi

B=DBI=BAA Y)Y =(BAA ' =1A" = A7

pa vrijedi AB = BA = 1. O
2.9. Pitanje. Da li iz relacije (§1) (3 7') =(39) slijedi
GO =0 1 (7)) =@¢h? DA NE

2.10. Teorem. Kuwadratna nxn matrica A je reqularna ako i samo ako
postoje rjesenja by, ..., b, sistema jednadzbi

(2.1) Azi =e1, ..., Az, =e,,
pri cemu su desne strane sistema vektori kanonske baze u R™. Ako je A

reqularna, onda je
A7 = (by,...,bp).
DokAz. Ako je A~! = (by,...,b,) inverzna matrica matrice A, onda
zbog pravila o mnozenju matrica imamo
AA™Y = A(by, ..., by) = (Aby,..., Aby) = A7 = (e1,...,e,) = 1.
Zmnaci da je vektor b; rjeSenje sistema Ax = e;.

Obratno, ako sistemi (2.1) imaju rjesenja by, ..., b,, onda je AB = I za
matricu B = (b1, ...,by,) i tvrdnja slijedi iz teorema 2.8. O

Primjedba. Ako su vektori by, ..., b, iz R" rjeSenja n sistema jednadzbi
(2.1), onda je (by,...,b,) = A~L, pa zbog jedinstvenosti inverza slijedi da je
za svaki ¢ = 1,...,n rjeSenje b; sistema Ax; = e; jedinstveno.

2.11. Primjer. Ocito su stupci matrice

1 1 2
A=10 1 -1
0 0 1

linearno nezavisni, pa je A regularna matrica. Tri sistema jednadzbi (2.1)
rijesavamo istovremeno Gaussovom metodom:

11 2 | 100 112100
(Aleezes)=[0 1 =1 | 01 0l—={0 10 1] 01 1|
00 1 | 001 001 ] 001
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11010 -2 100 |1 -1 -3
01 0]01 1 ]—~]0101]TV0 1 1 | =(1]b1,bg,b3).
001 1] 00 1 001 ] 0 0 1
Dobivena matrica B = (by, b, b3) je inverz od A, tj.
1 -1 -3
At=10 1 1
0 0 1
2.12. Zadatak. Stupci matrice
1 2 =2
A=1|1 3 —4
2 4 -3

su baza u R3. Izra¢unajte inverz od A.

2.13. Zadatak. Koristeéi teorem 2.10 dokazite da kvadratna matrica
koja ima jedan redak nula nema inverz.

2.14. Samo produkt regularnih matrica je regularna matrica.
Neka su A i B kvadratne n X n matrice i neka je produkt AB reqularna
matrica. Tada su A i B regularne matrice.

Dokaz. Ako je AB regularna matrica, onda je operator AB: R” — R"
injekcija i surjekcija. Tada je o¢ito B injekcija i A surjekcija, pa tvrdnja da
su B i A bijekcije slijedi iz teorema 1.13. O

3. Opéa linearna grupa GL(n,R)

3.1. Produkt regularnih operatora. Ako su A i B regularni opera-
tori na R™, onda je i kompozicija AB reqularan operator i vrijedi

(AB) "' =B7tA™!
jer je zbog asocijativnosti kompozicije
B 'A'AB=B'IB=B'B=1,
ABB'AT = ATAT = A4 = 1L
Za viSestruke produkte regularnih operatora imamo
(AjAg - A1 Ap) = AP A - AT AT
Produkt od k faktora A; = A~! zapisujemo kao A~F.

3.2. Pitanje. Dalije (A"H)"1=4"2 ? DA NE

3.3. Zadatak. Neka je A = <(1) 1) i B= (i (1)> Pokazite da
(AB)"' #£ A~1B~1,
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3.4. Pojam grupe. Za neprazan skup G kazemo da je grupa ako je
zadana binarna operacija
x:GxG—G, (a,b)—axb,

tako da za sve elemente a, b, c € G vrijedi

(1) (axb)xc=ax*(bxc) (asocijativnost);

(2) postoji neutralni element e tako da je axe = exa = q;

(3) svakia € G ima inverzni element a ! tako da je axa™! = a"'xa = e.
Binarnu operaciju u grupi ¢esto zovemo mnozenjem?®, a neutralni element e
zovemo jedinicom u grupi.

3.5. Opcéa linearna grupa GL(n,R). Na skupu svih regularnih ope-
ratora na R™ imamo operaciju mnozenja (kompoziciju preslikavanja) koja je
asocijativna, postoji jedinica I i svaki element A ima inverz A~!. Znaci da
je taj skup grupa i zovemo ga opéom linearnom grupom GL(n,R) (¢itamo
“ge el en er”).

3.6. Opca linearna grupa nije komutativna. Za n > 2 mnozenje
nije komutativno. Na primjer, za n = 2 imamo regularne operatore zadane
matricama tako da je

11 10_21#1011_11
0 1/\1 1) \1 1 1 1)\0 1) \1 2/
Opcenitije, za regularne n X n matrice
A= (e1,e1 +eg,€3,...,6n) 1 B=(e1+ea,e1,63,...,6n).
imamo AB # BA. Zbog toga kazemo da je GL(n,R) nekomutativna grupa.
3.7. Uredena baza u R". Uredena baza u R™ je baza tq,...,t, shva-
¢ena kao niz vektora, tj. kao m-torka vektora (t1,t2,...,t,) u kojem t;

zovemo prvim elementom baze, to zovemo drugim elementom bazeitd. Prema
teoremu 1.12 uredena baza je regularna matrica

T:(t17"'atn)

Ciji su stupci baza t1,...,t, u R". Zbog toga skup regularnih matrica
GL(n,R) mozemo “geometrijski” shvatiti kao skup svih uredenih baza u
R™. Na primjer, jedini¢cnu matricu mozemo shvatiti kao kanonsku bazu

I=(e1,...,en),
a matricu
0O ... 01
0 1 0
: : = (en,...,€1)
1 ... 00

3Primjer grupe je i skup svih cijelih brojeva Z s obzirom na operaciju zbrajanja 4. U
slu¢aju operacije zbrajanja neutralni element zovemo nula i ozna¢avamo ga s 0, a inverzni
element od a radije zovemo suprotnim elementom i oznacavamo ga s —a.
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kao uredenu bazu (ep,...,e1) u R™ kojoj je e, prvi element, ..., e; n-ti
element.

3.8. Elementarne matrice. Matricu dobivenu nekom elementarnom
transformacijom stupaca jedini¢ne matrice zovemo elementarnom matricom.
Znaci da imamo tri tipa elementarnih n x n matrica

(3.1) (el,...,ei_l,ej,ei+1,...,ej_l,ei,ejﬂ,...,en), ’i<j,
(3.2) (el,...,ei_l,)\ei,ei+1,...,,en), )\7&0,
(3-3) (€1,...,€i-1,6i + Nej, €iq1,. .., €n), J # i

Na primjer, imamo 4 x 4 elementarne matrice

1000 1 0 00 1000
0010 0 vV2 0 0 0100
0100]” o o 10| 0010
0001 0 0 01 A0 01

3.9. Mnozenje matrice elementarnom matricom. Neka je
A= (ay,...,ap)

m X n matrica i E elementarna matrica (3.1). Tada je po definiciji mnozenja
matrica

AFE = A(el, sy €i-1,€5,€i41,...,€5-1,€, €541, - . .,Bn)
= (Ael, e ,Aei,l,Aej,AeiJrl, e ,Aej,l,Aei,AejJrl, e ,Aen)
= (a1, .., 01,05, @11, ., Qj_1,05,Aj11,. .., 0n).

Zmnaci da je A — AF elementarna transformacija zamjene i-tog i j-tog stupca
matrice A.
Ako je E elementarna matrica (3.2), onda je

AFE = A(el, .. .,ei,l,)\ei,eprl, PN ,,en)
= (Ael, e ,Aei,l,A)\ei,AeHl, e ,Aen)
= (al, ce ,aifl,)\ai,aiﬂ, PN ,an).

Znaci da je A — AFE elementarna transformacija mnoZenja i-tog stupca
matrice A skalarom A\ # 0.
Ako je E elementarna matrica (3.3), onda je

AFE = A(el, ce, 61,6 + )\ej,eiﬂ, .. .,,en)
= (Ael, R ,Aei,l,A(ei + )\ej),A€2'+1, L. ,Aen)
= (al,. c, Q1,05 + )\aj,azqu, e ,an).

Znaci da je A — AFE elementarna transformacija pribrajanja i-tom stupcu
matrice A j-tog stupca pomnozenog skalarom .
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3.10. Regularna matrica je produkt elementarnih matrica. Za
regularnu matricu T = (¢, ..., t,) su vektori t1, ..., t, baza od R", pa prema
teoremu 3.1.17 postoji niz elementarnih transformacija

I—=IT'w—...—=T,
ili zapisano pomoc¢u elementarnih matrica
I—I1FE — IE1Eyw— ...~ IEFEy...E,=T.
Znaci da T mozemo napisati kao produkt elementarnih matrica

T=FEFE,...E;.

3.11. Primjer. Za niz elementarnih transformacija

1 1 2 1 1 3 1 10 1 00
A=101 -1}~ [0 1 0]—={(0 1 O0)]—= 1|0 1 0)=1
0 0 1 0 0 1 0 0 1 0 0 1
imamo inverzne transformacije
1 00 1 10 1 1 3 11 2
I=1010]—1{|01O0]—1]01O0]—]|01 -1]=A4
0 0 1 0 0 1 0 0 1 00 1
pa je
A=I1FEFEyE3; = 1(61,62 + 61,63)(61,62763 + 361)(61,62, es — 62).
Znaci da je
1 10 1 0 3 1 0 0
A=10 1 0 010 01 -1
0 0 1 0 0 1 0 0 1

3.12. Zadatak. Napisite regularnu matricu

1 2
=13
kao produkt elementarnih matrica.

4. Matrice permutacija
4.1. Grupa permutacija 5,. Bijekciju
o:{l,....,n} = {1,...,n}
obi¢no zovemo permutacijom skupa {1,...,n} i obi¢no zapisujemo kao niz
o(l),...,0(n).
Tako, na primjer, niz 2431 oznacava permutaciju
1—2, 2—4, 3—3, 4—1

skupa {1,2,3,4}. Kompozicija permutacija o o v je permutacija koju zapi-
sujemo ov i zovemo produktom permutacija ¢ i v, a kompoziciju zovemo
mnozenjem. Skup permutacija s tom binarnom operacijom je grupa jer je
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mnozenje asocijativno, postoji jedinica id i svaka permutacija ¢ ima inverz
o~!. Grupu permutacija skupa {1,...,n} oznacavamo sa S,,.

4.2. Pitanje. Da li niz 123123 predstavlja permutaciju u Sg? DA NE

4.3. Primjer. Za permutaciju o = 3412 je 0% = id. Naime

o*(1) = o(o(1)) = 0(3) =1,
0*(2) = 0(0(2)) = 0(4) =2,
0*(3) = 0(0(3)) = o(1) = 3,
o*(4) = o(0(4) = o(2) = 4.

4.4. Pitanje. Da li je 4231 inverz permutacije 4231 u S47 DA NE

4.5. Matrice permutacija. Za permutaciju o skupa {1,...,n} defi-
niramo n X n matricu permutacije

TO’ = (60(1)7 ) ea(n))'

Drugim rije¢ima, matrica permutacije ¢ je matrica regularnog operatora T,
na R™ definiranog na kanonskoj bazi relacijama

Trej = €s(5) s j=1,...,n.

Na primjer, za permutaciju 4231 u S4 imamo 4 x 4 matricu permutacije

0 0 01
1 00

TO’ = (84)62763761) = O 0 1 0 9
1 0 0 O

a za identitetu id = 1234 je matrica permutacije jedini¢na matrica

Tiq = (e1,e2,e3,e4) = I.
4.6. Pitanje. Da li je (gég) matrica permutacije? DA NE

4.7. Mnozenje matrica permutacija. Buduéi da za produkt permu-
tacija ov vrijedi

Tovej = e(ou)(j) = eotuiy)) = Toeu() = To(Tvey),
to za matrice permutacija vrijedi formula
(4.1) Ty, =T,T,.
Buduéi da je Tiq = I, iz gornje formule slijedi I = T,7T -1, odnosno

(4.2) T, =(T,) "

[
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4.8. Primjer. Buduéi da je 02 = id za permutaciju o = 3412, to je
12 =1, (T,) ' =1,,

ili zapisano pomoc¢u matrica

0 010 0010 1 0 00
0 001 0001 10100
1 0 00 1 000 (0010
0100 0100 0 001

4.9. Matrica inverza permutacije. Neka je o permutacija skupa {1, . ..
Tada je

(4.3) (T,)' = T,.
Na primjer,
0100\ /0010
(e3,e1,e4,€2)" = (1) 8 8 (1) = (1) 8 8 (1] = (eg, e4,€1,€3).
0 01 0 01 00

Dokaz. Matrica T, permutacije o € S, u svakom stupcu i svakom retku
ima jednu jedinicu i sve ostale elemente nula. Zato je i transponirana matrica
(T,)! matrica permutacije T}, za neku permutaciju v. Matri¢ne elemente od

T5 = (€5(1) -+ €o(n)) = (ij) 1 transponirane matrice T, = (f;;) mozemo
zapisati
1 kadjei=o(y) 1 kad je j =v(i)
Qij = o Bji = o
0 inace, 0 inace.

No po definiciji transponirane matrice imamo fj; = oyj, pa

i=o0(j)=0@() i j=uv()=rv(o(j)))

povlaéi ov = vo = id, odnosno v = o~ L. [l

5. Trukutaste matrice

5.1. Pojam podgrupe. Ako je G s binarnom operacijom * grupa,
onda kazemo da je podskup H C G podgrupa ako je H s operacijom *
grupa. To znaéi da H sadrzi jedinicu i da je zatvoreno za operacije mnozenja
1 invertiranja.

5.2. Primjer. Skup svih matrica permutacija
{T, |0 €S,} C GL(n,R)

je podgrupa opce linearne grupe jer je zbog (4.1) zatvoren za mnozenje
matrica, sadrzi jediniénu matricu i zbog (4.2) je zatvoren za invertiranje
matrica.
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S druge strane, skup svih prirodnih brojeva N C Z je zatvoren za ope-
raciju zbrajanja u grupi cijelih brojeva Z, ali N nije podgrupa jer nema
neutralni element 0 i za prirodan broj n ne sadrzi njemu suprotni —n.

5.3. Mnozenje trokutastih matrica. Neka su A = («;j) i B = (B;5)
gornje trokutaste n x n matrice. Tada je i AB gornja trokutasta matrica.

Naime, po pretpostavci je o;j = 01 3;; =0 za i > j. Zato je za i > j

n n
Vij = § ik Brj = E aikBrj =0,
k=1 k=i

gdje je prva jednakost definicija matriénog elementa u produktu matrica
C = AB, druga jednakost vrijedi zbog «a;i = 0 za i > k, a treca jednakost
vrijedi jer je By; = 0za k >1 > j.

Na slican nacin vidimo i da je produkt donjih trokutastih matrica donja
trokutasta matrica.

5.4. Zadatak. Izracunajte produkte AB i BA za donje trokutaste ma-
trice

1000 1000
1100 210 0
A=11110] T B=l3 11 0
111 1 411 1

i uvjerite se da je AB # BA.

5.5. Regularne trokutaste matrice. Neka je A gornja ili donja tro-
kutasta matrica. Tada je A reqularna ako i samo ako su joj svi dijagonalni
elementi o;; razliciti od nule.

Naime, ako su svi dijagonalni elementi gornje trokutaste matrice A
razli¢iti od nule, onda obratnim hodom Gaussove metode vidimo da sis-
tem jednadzbi Az = 0 ima jedinstveno rjesenje x = 0 i da je prema teoremu
1.7 i 1.13 matrica A regularna. Obratno, neka je o;; = 0 za neki j i neka je
J najmanji takav indeks, tj. neka je ay; # 0 za ¢ < j. Tada obratnim hodom
Gaussove metode za sistem Ax = 0 vidimo da je za &, = -+ = §41 =0
jednadzba

0§ + 10+ -+ a;,0=0
zadovoljena za svaki skalar §; i da za svaki izbor {; jednadzbe
& + iit1&iv1 + - Fain, =0

odreduju jedinstvene &; za i < j. Znaci da sistem Az = 0 nema jedinstveno
rjeSenje i da prema teoremu 1.7 i 1.13 matrica A nije regularna.
Tvrdnju za donje trokutaste matrice dokazujemo na slican nacin.
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5.6. Pitanje. Da li je donja trokutasta matrica

A=

O =
— = O
_— o O

regularna? DA NE

5.7. Invertiranje trokutastih matrica. Neka je A reqularna gornja
trokutasta matrica. Tada je inverz od A gornja trokutasta matrica.

Naime, inverz od A racunamo istovremenim rjeSavanjem n sistema jed-
nadzbi Gaussovim eliminacijama

(A| 1)+ ... (I|B),

gdje je B na kraju postupka trazeni inverz. Postupak zapoc¢injemo dijelje-
njem n-tog retka s ayy, # 0 i eliminacijom prvih n — 1 elemenata u n-tom
stupcu matrice A, pri ¢emu umjesto vektora e, u matrici I dobivamo neki
novi vektor. Zatim dijelimo (n — 1)-ti redak s a,—1,,—1 # 0 i eliminiramo
prvih n — 2 elemenata u (n — 1)-tom stupcu matrice A, pri ¢emu umjesto
vektora e, _1 iz po¢etne matrice I dobivamo neki novi vektor kojemu je zad-
nja koordinata 0. Nastavljajuéi taj postupak dobivamo gornju trokutastu
matricu B.

Na slican nacin vidimo i da je inverz donje trokutaste matrice donja
trokutasta matrica zapocinjuci postupak s elementom aq;.

5.8. Zadatak. Invertirajte donju trokutastu matricu

O R
il e )
_ o O

5.9. Podgrupe gornjih i donjih trokutastih matrica. Iz gornjih
razmatranja slijedi da je skup svih reqularnih gorngih trokutastih n X n real-
nih matrica podgrupa opce linearne grupe GL(n,R). Isto tako je skup svih
reqularnih dongih trokutastih n X n realnih matrica podgrupa opce linearne
grupe GL(n,R).

6. Matrica operatora u paru baza

6.1. Koordinate vektora u bazi. Neka je V kona¢no dimenzionalni
vektorski prostor nad poljem K i neka je B = (by,ba,...,b,) uredena baza
od V. Tada je koordinatizacija s obzirom na bazu B

VK" xz—uap
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izomorfizam vektorskih prostora koji vektoru z iz V' pridruzuje njegove ko-
ordinate xrg u K™:

&

13

€ =& b1+ &by -+ &b g = | .

&n
Linearnost koordinatizacije

(r+y)p=2zp+ys, (A\zx)p=Azp.

mozemo opcéenitije zapisati kao

k k
(6.1) (Z )\ll‘l) = Z)\Z(l'l)B
=1 B i=1

6.2. Primjer. Neka je V realni vektorski prostor polinoma stupnja < 2
i F uredena baza

(1,2,27).
Tada imamo koordinatizaciju V — R3,
Qo
(g + oz 4+ az®)p = | ay
Qg

6.3. Napomena. Primijetimo da u slucaju V = K" s kanonskom ba-
zom E = (eyq,...,e,) imamo

r=2xg.
Na primjer, u R? imamo

1 0 0 &1

r= |0 +& (1) +& (0] =& =2
0 0 1 €3
6.4. Matrica linearnog operatora. Neka je V vektorski prostor s
uredenom bazom E = (ey,...,e,) 1 W vektorski prostor s uredenom bazom
F=(f1,..., fm)- Neka je
AV - W

linearan operator. Tom linearnom operatoru pridruzujemo matricu tipa
m X n Ciji su stupci koordinate vektora Aeq, ..., Ae,
(6.2) Ape = ((Ae1)p, ..., (Aen)r).

Ako je Apg = (o), onda dogovor o matrici operatora znaci

(63) Aej = Zai]’fi, zZa j = ]., ceeyn.
i=1
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6.5. Napomena. Primijetimo da je pojam matrice linearnog presli-
kavanja A: R® — R™ uveden u prethodnom poglavlju u skladu s opcom
konstrukcijom jer za kanonske baze F u R™ i F' u R” imamo matricu pres-
likavanja

Apg = ((Ae)r, ..., (Aey)r) = (Ae, ..., Aey).
6.6. Primjer. Neka je V vektorski prostor polinoma stupnja < 21i E i
F' uredene baze
E= (17$7$2)a F:(1,$+1,($+1)2).

Da bismo izra¢unali matricu Igp identitete I moramo racunati vrijednosti
identitete na elementima baze F' i te vrijednosti raspisati u bazi E

I(1) =1=1-1+ 0z + 022,
Iz+1)=z+1=1-1+ 1z + 022
I((z4+ 1)) =(z+1)2=1-14+2z+ 12>

Sada koeficijente zapiSemo u stupce

111
Ipgp=|0 1 2
0 01

6.7. Zadatak. Neka su V, E'i F kao u prethodnom zadatku. Napisite
matricu identitete Ipg.

6.8. Pitanje. Neka je e, es kanonska baza u prostoru R? koji shvatimo
kao euklidsku ravninu. Da li je
0 1
-1 0

matrica rotacije za kut § u uredenoj bazi (e2,e1)? DA NE

6.9. Teorem. Koordinate vektora Ax u bazi F' racunamo kao mnoZenje
matrice operatora Apg 1 koordinata vektora x u bazi E, tj.

(6.4) (Ax)p = Appzp.

DoxkAz. Zbog linearnosti operatora A i inearnosti koordinatizacije (6.1)
imamo

(Az)p = (A (Z 5)) = (Z&m) => & (Aei)p.
i=1 F i=1 F =1

No zadnji izraz je upravo definicija mnozenja matrice ((4ej)p, ..., (Aey)r)
i vektora xg s koordinatama &1, ...,&,. O
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6.10. Kompozicija operatora i mnozenje matrica. Ako suV,W, U
tri prostora s uredenim bazama E, F,G
A: VW, B:W-—=U,
onda je za kompoziciju BA:V — U matrica dobivena mnoZenjem matrica

(6.5) (BA)ce = BarAre.

Zaista, koristeéi definiciju matrice operatora i formulu (6.4) za j-ti stu-
pac dobivamo

(BAej)c = Bar(Aej)r,
a to je upravo formula za j-ti stupac u produktu na desnoj strani (6.5).
6.11. Slucaj iste baze. Ako je V vektorski prostor s uredenom bazom

E i A:V — V linearan operator, onda je obic¢aj pisati

Ap = Agg.
U tom slucaju formula (6.4) glasi
(6.6) (Ax)p = Apxp.
Ocito je matrica identitete jedini¢na matrica, tj.

(id)p = 1.

6.12. Primjer. Neka je V' vektorski prostor polinoma stupnja < 2i F
uredena baza

E=(1,z,2%.

Oznac¢imo s A deriviranje polinoma A: V — V, A: f — f’. Deriviranje
polinoma je linearan operator jer vrijede pravila deriviranja

(f+9) =f+4d, N =rf.

Matricu A operatora A u bazi E odredujemo tako da izra¢unamo vrijed-
nosti operatora na elementima baze

(1) =0=0-1+ 0z + 022,
() =1=1-1+ 0z + 022,
(%) =22 =0-1+ 2z + 02>

i onda koeficijente upiSemo u stupce matrice

010
Ap=10 0 2
000

6.13. Zadatak. Izracunajte produkte Ipplrg i Ipplgr iz primjera 6.6
i zadatka 6.7.
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6.14. Matrica inverza operatora. Za regularan operator T: V — V
formula (6.5) za id = T7!T = TT~! daje

(id)g = (T HeTe = Tp(T g,
pa zbog jedinstvenosti inverza imamo
(TN = (Te) ™"

6.15. Promjena baze i operator prijelaza. Nekasu E = (eq,...,e,)
i E'=(e,...,e)) dvije uredene baze u V. Operator

ren
T:V =V
zadan na bazi eq, ..., e, formulom
/ /
Tey=ey, ..., Te,=e,

zovemo operatorom prijelaza iz baze E u bazu E'. Kvadratnu n X n matricu
Tg zovemo matricom operatora prijelaza iz baze E u bazu E' ili matricom
prijelaza iz baze E u bazu E'. Podsjetimo se da je Tk definirana kao

Te = (), (eh)E) = ((Te1)p, ..., (Ten)r).

6.16. Primjer. Neka je E kanonska baza u R? i neka je E’ uredena
baza

1 1 2
=12, e&=[-1], es=1|1
1 -1 2

Buduéi da u ovom primjeru imamo napisane koordinate vektora e,ef i ef
u kanonskoj bazi, jedino §to nam preostaje da te koordinate napiSemo u
stupce matrice:

1 1 2
Tp=1(2 -1 1
1 -1 2

6.17. Operator prijelaza i matrica prijelaza u R". Neka su

T=(t,...,tn) 1 S=1(s1,...,5n)
dvije uredene baze u R". Tada su matrice T i S regularne, pa mozemo
definirati operatore

A=TS' i B=ST.

Tada je

AS = (TS™HS=T(S7'8) =TI =T,
ili zapisano kao mnozenje matrica

(As1y..., Asp) = (t1, ..., tn).

Zmnaci da je A operator prijelaza iz baze S u bazu T, odnosno

tlesl,..., tn:ASn.
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Na slican nacin vidimo i da je B operator prijelaza iz baze T u bazu S,
odnosno
s1 = Btq,..., s, = Bt,.
Matrice A i B nisu? matrice prijelaza iz jedne u drugu bazu jer je
Ag=S5"T1AS=571ST 15 =T'5,
a matrica prijelaza iz baze T u bazu S je

Br=T"'BT=T7"'ST 'T =T7"15.

6.18. Promjena koordinata s promjenom baze. Za vektor x imamo

zapis u bazi B’
n
. 3N
= Z g] €js
Jj=1
pa zbog linearnosti koordinatizacije imamo

rp=0_&ep =Y &)
P =1

Tu formulu prepoznajemo kao mnozenje matrice Ty = ((€})g, ..., (e))E) i
vektora zpr s kordinatama &7, ..., &),. Dakle imamo formulu za transforma-
ciju koordinata pri promjeni baze:

(67) TE — TExE“

Buduéi da je matrica prijelaza regularna matrica, koordinate xg vektora x
u bazi E' racunamo iz koordinata xg vektora x u bazi E po formuli

(6.8) rp = (Tg) ‘o
6.19. Promjena matrice operatora s promjenom baze. Neka su
E = (e1,...,en) i E' = (€),...,¢€]) dvije uredene baze u V s matricom

prijelaza Ty © F = (f1,..., fm) i F' = (f{,..., f},) dvije uredene baze u W
s matricom prijelaza Sg. Operatoru

AV W
mozemo pridruziti matrice Ap g i Ap gr. Tada je
App = (Sp) ' AppTe.
Doxkaz. Koristeéi formulu (6.7) ra¢unamo koordinate vektora
SF(Ae;)F/ = (Ae;-)p = (ATej)r = Arg(Tej)E.
Po definiciji mnozenja matrica to su j-ti stupci u matricama
SrAp g = AreTE,

pa formula slijedi mnozenjem te jednakosti s lijeva inverzom (Sg)~!. ([

40vo je dobar primjer kako nije uvijek dobro identificirati operatore na R"™ s njihovim
matricama/
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Posebno je vazan slucéaj kad je A: V — V. Tada formula glasi
(6.9) Ap = (Tg) ' ApTg.
6.20. Zadatak. Neka je V vektorski prostor polinoma stupnja < 21 E
i F uredene baze
E=(1,z,2%), F=(1,z+1,(z+1)%).

U primjeru 6.12 nasli smo matricu Ag operatora deriviranja u bazi FE.
Izra¢unajte matricu operatora deriviranja Ap u bazi F.






POGLAVLJE 9

Determinanta operatora

U ovom poglavlju dokazujemo Binet-Cauchyjev teorem koristeéi osnovni
teorem o determinanti. Zbog Binet-Cauchyjevog teorema mozemo definirati
determinantu linearnog operatora na kona¢no dimenzionalnom vektorskom
prostoru i pojam jednako orijentiranih baza na realnom prostoru, a pred-
znak permutacije definiramo kao determinantu pripadne matrice permuta-
cije. Nakon toga dokazujemo Laplaceov razvoj determinante, te formule za
Gram-Schmidtov postupak ortogonalizacije koriste¢i Gramove matrice.

1. Binet-Cauchyjev teorem

1.1. Binet-Cauchyjev teorem. Neka su A i B matrice tipa n X n.
Tada je
det(AB) = det A - det B.
DokAz. Definirajmo funkciju f: (R™)" — R formulom
f(v1,...,v,) = det(Avy,. .., Avy).

Buduéi da je A linearno preslikavanje i determinanta linearna funkcija u
i-toj varijabli, to je i kompozicija

T — Ax »—>det(Av1, ey sz;l,A:E, A'UiJrl, cey Avn)
= f(vl, ey U1, L, V541« - - ,’Un)

linearna funkcija. Znaci da je f multilinearna funkcija. Buduéi da je deter-
minanta alternirajuca funkcija, to je i f alternirajuca:

F01, o 0im1, 4, Vi1, -, Vi1, b, V4, -, V)
=det(Avy,..., Avi—1, Aa, Avit1, ..., Avj_1, Ab, Avjy, ..., Avy)
= —det(Avy,..., Avi_1, Ab, Avitq, ..., Avj_1, Aa, Avjiq, ..., Avy)
=—f(v1,.., 01,0, Vi41, ..., Vi1, G, Vjg1, - . ., Up).
Prema teoremu 9.4.13 vrijedi
f(biy. .. by) = f(e1,...,e,)det(by, ..., by),
odnosno
det(Aby, ..., Ab,) = det(Aeq, ..., Aey,) det(by,. .., by),
a to 1 jest Binet-Cauchyjeva formula det(AB) = det A det B. O

193
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1.2. Apsolutna vrijednost kompleksnog broja. Zapisemo li kom-
pleksni broj z = a + i kao realnu 2 x 2 matricu, onda je

det (g _aﬁ> =a’+ B% =2~

Tada iz Binet-Cauchyjevog teorema slijedi |21 22| = |21]|22].
1.3. Apsolutna vrijednost kvaterniona. Za kvaternione imamo

B
Tada iz Binet-Cauchyjevog teorema slijedi |Z1 Z2| = | Z1]| Za|.

det Z = det <a —aﬁ> = la* + (81> = |2]*.

1.4. Determinanta je invarijanta. Ako je T regularna n xn matrica,
onda je prema Binet-Cauchyjevom teoremu za svaku n x n matricu A

det T7'AT = det T~ ' det Adet T = det T~ det T' det A
=det T"'Tdet A = det I det A = det A.

Funkciju f na skupu n X n matrica zovemo invarijantom ako za svaku regu-
larnu n x n matricu T vrijedi

F(TTHAT) = f(A).

Posebno, funkcija det na skupu n x n matrica je invarijanta.

1.5. Determinanta linearnog operatora. Razmatranje iz prethodne
tocke mozemo ponoviti i u opéenitijoj situaciji: Neka je A: V — V linear-
ni operator na kona¢no dimenzionalnom prostoru V i E = (e1,...,ep) i

E' = (é},...,e),) dvije uredene baze u V. Tada su matrice operatora A u

tim bazama vezane relacijom
Ap = TE:IAETE,

pri ¢emu je Tk matrica prijelaza, pa primjenom Binet-Cauchyjevog teorema
dobivamo

det Apr = det Ag.

Znaci da determinanta matrice operatora ne ovisi o izboru baze, pa je zovemo
determinantom operatora i piSemo

det A = det Ag.

1.6. Zadatak. Izracunajte determinantu det(I + %) linearnog opera-
tora I + % na prostoru polinoma P(z) stupnja < 2.
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1.7. Determinanta preslikavanja je faktor poveéanja volumena.
Neka je B matrica tipa 3 x 3, shvatimo je kao linearno preslikavanje

B:R3 — R3.
Neka su a1, ag, a3 vektori u R3. Oni odreduju paralelepiped
{y € R® | y = May + daao + Azaz, 0 < Ap, Ao, A3 < 1}

volumena det(ay, as,asz) kojeg linearno preslikavanje B prevodi u paralele-
piped

B({y € R’ |y = Ma1 + Xoas + Azaz, 0< Aj, Ao, A3 < 1})

= {By € R® | By = \;Ba; + AyBay + A3Bas, 0 < A, A\, A3 < 1}
volumena det(Baj, Bag, Bas). Prema Binet-Cauchyjevom teoremu

det(Bay, Bas, Bag) = det B - det(aq, ag, as)
preslikavanje B je povecalo volumen pocetnog paralelepipeda za faktor!
det B.

Intuitivno shvaéanje determinate det(aq, az,as) kao volumena ili det B kao
faktora pove¢anja volumena daje nam geometrijsko razumijevanje nekih
Cisto algebarskih tvrdnji kao sto je

Lema. Ako je det B =0, onda B nije regularna matrica.

Razmisljajuéi intiutivno, matrica B za koju je det B = 0 nema inverz, jer
paralelepiped (a1, a2, as) volumena det(a,az,as) # 0 preslikava u paralele-
piped (Bai, Bag, Baz) volumena 0 i nema tog preslikavanja C' s faktorom
povecanja volumena det C koje bi paralelepiped volumena 0 vratilo u pocetni
paralelepiped volumena razli¢itog od nula.

Formalni dokaz leme je u sustini isti: Neka je det B = 0. Pretpostavimo
li da B ima inverz C, onda bi, koriste¢i Binet-Cauchyjev teorem, dobili
kontradikciju

0=0detC =det BdetC =det BC =detl =1.

1.8. Specijalna linearna grupa SL(n,R). Linearna preslikavanja koja
cuvaju volumen? ¢ine grupu. Ta se grupa zove specijalna linearna grupa
SL(n,R) (¢itamo: grupa es el en er):

SL(n,R) ={A € M,(R) | det A=1}.
Naime, za A,B € SL(n,R) imamo det AB = det AdetB = 1-1 = 1,

dakle AB € SL(n,R). Takoder detI = 1, pa je I € SL(n,R). Na kraju,
det A=' =1/det A=1/1 =1, paje det A=t € SL(n,R).

LOva interpretacija determinante javlja se u integralnom racunu kod teorema o za-
mjeni varijabli.
2tj. ona preslikavanja A za koja je faktor povecanja volumena det A = 1
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1.9. Orijentacija baze realnog vektorskog prostora. Neka su F =

/

(e1,...,en) 1 E' = (€},...,e),) dvije uredene baze u realnom vektorskom

prostoru V. Matricu prijelaza Tk iz baze E u bazu E’ moZemo shvatiti i
kao matricu identitete na V u paru baza

Te = ((Te1 g, (Ten)r) = (V) B, ..., () r) =id gg.
Kazemo da su baze E i E' jednako orijentirane ako je
det (id gg/) > 0.
U tom slucaju zbog Binet-Cauchyjevog teorema imamo
det (id ggr) det (id prg) = det (id gpr id prg) = det (id gp) = det I =1 > 0,
pa je
det (id E/E) > 0.
Znac¢i da su baze E 1 E' jednako orijentirane ako i samo ako su baze E' i

E jednako orijentirane. Stovise, ako su baze E i E' i baze E' i E" jednako
orijentirane, onda su i su baze E i E" jednako orijentirane jer je

det (idEEN) = det (idEE/ idElE//) = det (idEE/) det (idE/E//) > 0.

Odavle slijedi da vV postoje dvije disjunktne klase baza takve da su baze iz

iste klase jednako orijentirane, a baze iz razlicitih klasa nisu jednako orijen-

tirane.

1.10. Pitanje. Da li su kanonska baza (e1,e2) u R? i baza (es, e1) su-
protno orijentirane? DA NE

1.11. Zadatak. Neka je V vektorski prostor polinoma stupnja < 21 E
i F uredene baze

E=(,z4%), F=1z+1,(z+1)?.

Dali su F i F jednako orijentirane?

2. Determinanta i grupa permutacija

2.1. Matrice permutacija. Podsjetimo se da za permutaciju o skupa
{1,...,n} definiramo n x n matricu permutacije

Ty = (60'(1)7 SRR ea(n))'

Tako, na primjer, za permutaciju 4231 u S; imamo 4 x 4 matricu permuta-
es 4
cije

Ty = (e4,€2,e3,€1) =

_ o o O
SO = O
O = OO
OO O

30biéno kazemo da su baze suprotno orijentirane ako nisu jednako orijentirane.
4vidi tocku 8.4.5
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a za identitetu id = 1234 je matrica permutacije jedini¢na matrica

Tiq = (e1,e2,€3,e4) = 1.

2.2. Predznak permutacije. Neka je o permutacija skupa {1,...,n}
i Ty, matrica permutacije. Tada je

detT, = det(ea(l), R eg(n)) e {1,-1}.

Naime, u matrici (ea(l), .. ,eo(n)) vektor e; mozemo premijestiti na prvo
mjesto zamjenom s prvim vektorom u matrici. Potom es mozemo premijes-
titi na drugo mjesto, i tako redom sve dok ne dobijemo jedini¢énu matricu
I = (e1,...,e,). Buduéi da kod zamjene mjesta dvaju vektora mijenjamo
predznak alternirajucoj funkciji det, to je konac¢ni rezultat (—1)° det I, gdje
je s broj izvrsenih zamjena. Buduéi da je det I = 1, konacni rezultat je £1.
Na primjer, za permutaciju 3241 imamo
det(es, en,eq,e1) = —det(eq, e, eq, e3) = (—=1)? det(ey, e, e3,e4) = 1.

To smo, dodusSe, mogli postié¢i i na drugi nacin

det(es, e2,€e4,e1) = —det(es, ea,€1,€4) = (—1)2 det(es, e1, €2, e4)

= (—1)3 det(el, es3, €, 64) = (—1)4 det(el, €2, €3, 64) =1,
ali rezultat je isti. Broj

e(o) = det Ty,

zovemo predznakom permutacije o i éesto ga oznacavamo i kao (—1)?. Tako
je, na primjer, predznak permutacije 3241 jednak 1. Oc¢ito je predznak
identitete 1, uz uvedene oznake piSemo

e(id) = detTiqg = det I = 1.
2.3. Zadatak. Izracunajte predznak permutacije 32514.

2.4. Predznak produkta permutacija. Neka su o i v permutacije
skupa {1,...,n}. Primjenom Binet-Cauchyjevog teorema na formulu (8.4.1)

TO’I/ = TO'TV
dobivamo formulu za predznak produkta permutacija

detT,, = det T, det T,,.

1

Kada je ov =id, odnosno v = ¢~ *, imamo

detT,detT,-1 = 1.

Buduéi da je predznak permutacije jednak +1, dobivamo da su predznaci
permutacija o i o~ isti
det T,—1 = det Ty.

2.5. Zadatak. Napisite inverz permutacije 32514 i izracunajte pred-
znak inverza.
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3. Determinanta transponirane matrice

3.1. Indeksi s indeksima. Recimo da tri “opéa” vektora aq, as i ag
trebamo napisati u kanonskoj bazi. Tada bismo, u skladu s dogovorom,

pisali
n n n
ay = g Qi1€5, a2 = E Qi2€;, a3 = E Qj3€;4.
i=1 i=1 i=1

Ako kojim slucajem treba koristiti razlic¢ite indekse sumacije, onda se odlu¢imo
za slova i, j i k i piSemo

n n n
al = E QG1€3, a2 = g Qj2€5, A3 = E OE3€Ck-
i=1 j=1 k=1

Birati tri razlic¢ita slova 4, j i k je lako, ali sto ako treba birati sto razli¢itih
slova? Odgovor je u pisanju indeksa s indeksima: u nasem slu¢aju mozemo
birati tri razlicita slova ji, j2, j3 1 pisati

n n n
a1 = E dj11€5,, A2 = E :O‘j22ej2> az = E :aj33ej3'

j1=1 J2=1 Jjs=1

3.2. Teorem. Neka je A = (o;) kvadratna n x n matrica. Tada je

(3.1) det A = Z E(O’)Oég(l)l © Qo (p)n-
oeS(n)

DokaAz.
det A = det(ay,ag...,ay)

(3.2) = det(z 411651, Z Ajo2€j5, - vy Z ajnnejn)
Ji J2 Jn

(3.3) = Zajll det(ejl,Zaj226j2, cee ,Zajnnejn)
Ji J2 Jn

(3.4) = Z Qg1 Z Qo2 det(ejl 3 €jgy ey Z ajnnejn)
Ji J2 Jn

(35) = Z aj11 Z Oéj22 e Z Oéjnn det(€j17€j27 ey ejn)
Ji J2 Jn
(36) = Z Z s Z Q11062 " O det(ejl,ejz, ey ejn)

1 J2 Jn

(3.7) = Z Q110552 * - O det(ejl, €lnyevs ejn)
jl7j2"“)jn

(3-8) = Z A5 (1)106(2)2 " * Co(n)n det(€x(1)s -5 €o(n))-

oeS(n)
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Ovdje smo u (3.2) napisali vektore aj,as ..., a, u kanonskoj bazi koriste¢i
razli¢ite indekse. Potom smo u (3.3) koristili linearnost determinante u
prvom argumentu, u (3.4) linearnost u drugom argumentu i tako redom
do zadnjeg argumenta u (3.5). Koristeéi distributivnost mnozenja prema
zbrajanju dobili smo (3.6) i to prepisali kra¢e u (3.7) naznacivsi da svi
indeksi 71, jo, .. ., jn poprimaju sve moguce vrijednosti iz skupa {1,...,n}.
Medutim, ako neka dva indeksa poprime istu vrijednost j. = js, onda je
det(ej,, €j, - - ., €j4,) = 0 jer ima isti vektor e;, = e;, na dva mjesta, r-tom i s-
tom. Znaci da je dovoljno napisati sumu za sve medusobno razli¢ite indekse
71,72, -+, Jn- No svaki takav izbor odreduje jedinstvenu permutaciju

o = (0'(1)70'(2>, v ,U(TL)) - (j17j2; s 7jn)a

kako je i napisano u (3.8). Ovdje smo se odluéili pisati predznak permutacije
kao det(ey(1y; -+ €q(n)) = €(0). O

3.3. Teorem. Za kvadratnu matricu A = (ayj;) vrijedi

det A = Z 6(7’)0[17.(1) “ Qpr(n)-
T€S(n)

DokAz. Neka je A = («;;). Prema teoremu 3.2

det A = Z 6(0’)0&0(1)1 o CQo(n)n:
oeS(n)

Buduéi da je za permutaciju o skup vrijednosti o(1),...,0(n) ¢itav skup
1,...,n, to produkt
Q1)1 """ Qg(n)n

mozemo prepisati u drugom poretku

Q17(1) " Opr(n)s

pri cemu je faktor a, i = Qpr(p) za o(k) = p ik = 7(p). Znaci da je
T = 0~!, pa formulu za determinantu mozemo prepisati kao

det A = Z 8(0-)05(7(1)1 “ Qo(n)n
ceS(n)

- Z 8(7'_1)@17.(1) © Qpr(n)

ceS(n)

T=0"1

- Z E(T)al‘r(l) © o Qpr(n)-
TES(N)

Zadnja jednakost vrijedi jer je svaki 7 oblika 7 = 0! za to¢no jedan ¢ = 7!

ijerjee(tt) =e(r). O
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3.4. Teorem. Za svaku kvadratnu matricu A vrijedi

det A = det A.
DokaAz. Prema teoremu 3.2 1 teoremu 3.3 imamo

det A' = Z 5(0)04:7(1)1 . -a;(n)n = Z e(0)1(1)  ** Uno(n) = det A.
oeS(n) oeS(n)

O

3.5. Funkcija det: A! — det A! je n-linearna alternirajuca funkcija stu-
paca matrice A’. Buduéi da su stupci matrice A reci u matrici A, teorem
3.4 daje

Teorem. Funkcija det: A — det A jen-linearna alternirajuéa funkcija
redaka matrice A.

Zbog ovog teorema determinantu matrice mozZemo racunati i elementar-
nim transformacijama na recima, ili cak kombinacijom elementarnih tran-
sformacija po stupcima i recima.

4. Laplaceov razvoj determinante

Ovdje zadrzavamo oznake iz tocke 3.9. Posebno, matrica A, dobivena
je iz matrice A brisanjem j-tog stupca i k-tog retka.

4.1. Teorem. Za svaki j € {1,...,n} za matricu A vrijedi Laplaceov
razvoj determinante od A po j-tom stupcu:

det A = Z(—I)Hkakj det Ajy.
k=1

Za svaki j € {1,...,n} za matricu A vrijedi Laplaceov razvoj determinante
od A po j-tom retku:

det A = Z(—l)j+kajk det Ay;.
k=1

DokaAz.
det(ai,...,aj-1,a5,aj41,...,ay)
n
(4.1) :det(al,...,aj_l, Zakjek ,aj+1,...,an)
k=1
n
(4.2) = Zakj det(ai,...,aj-1,€k, Gj41,...,0n)

k=1

n .

(4.3) = Z(_l)]_lakj det(ek, A1y ey Aj—1,A541,--- ,an)
k=1
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= i— _ k k k
44) =Y (D g den(a, el o) a®)
k=1
= (—1)j+kakj det Ajk'
k=1

U prvom smo koraku (4.1) stupac a; zapisali u kanonskoj bazi, (4.2) vrijedi
zbog multilinearnosti determinante, (4.3) vrijedi zbog alternirajuéeg svoj-
stva determinante. Da bismo vidjeli (4.4) ra¢unamo

det(eg,a1,...,aj—1,aj41,...,0n)
0 a1 ayg ... G ... Qg
0 ao1 a99 ... G ... Qop
= det
1 apg arsy ... Drj . Qp
0 apt aps ... Gj ... Qpp
1 o ape ... Di .. Qi
0 a1 aig ... Di ... O1p
0 a9 a9 Dj ... Q2n
= (=1)*tdet | : : : : :
G Gy P ... Dxj ... g
0 ap1 ap2 ... 95 ... gy
1] o2 ... Jj ... Oln
Qo1 Q2 ... G ... Qgy
= (- ldet | S ' '
( ) G Dr ... Br; ... i
Qpl Qp2 ... G5 ... Qnp
k-1 k k k k k-1
=(-1) det(ag ), . ,a§31,a5-421, al)y = (1)F L det Ay

Prema teoremu 3.5 determinanta je alternirajuca funkcija redaka matrice,
pa premjeStanjem k-tog retka na prvo mjesto dobivamo drugu jednakost.
Trec¢a jednakost slijedi iz pocetne definicije determinante.

Time je dokazan Laplaceov razvoj determinante po j-tom stupcu. Po
teoremu 3.4 je det A = det A?, pa Laplaceov razvoj det A po recima slijedi
iz Laplaceovog razvoja det A® po stupcima. ([

4.2. Primjedba. Primijetimo da matrica predznaka (—1)¥*7 pocinje
s + na mjestu k = j = 1 i zatim “alternira”. Na primjeru 4 x 4 matrice
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imamo
+ - + -
- 4+ - +
+ - + -
- 4+ - +

4.3. Primjer. Laplaceov razvoj determinante matrice tipa 3 x 3 po
tre¢em stupcu je

ar B1om

as P33 @z P as P ay B2

a Laplaceov razvoj determinante po prvom retku je
ar P m

det | ag B2 72 | =aidet (52 72) — 1 det <a2 72) oy det (042 52) ‘
as P33 B 3 a3 73 a3 B3

4.4. Napomena. Ponekad pravilo o Laplaceovom razvoju koristimo
za preglednije zapisivanje formula. Na primjer, ako su G1, Gy i G3 vektori
ia;,B; € Rzai=1,2,3, onda izraz

(a2f3 — a3f2)G1 — (a1f3 — a3fB1)Ga + (12 — 2f1)G3

krace zapisujemo kao

ar B Gy
det | as BQ Gy ,
ag B3 G3

misleéi pritom da treba primijeniti formulu (kao Sto je ona) za Laplaceov
razvoj determinante po tre¢em stupcu.

5. Gramova determinanta

U ovom je paragrafu V realan ili kompleksan unitaran prostor sa skalar-
nim produltom ( | ).

5.1. Gramova matrica i determinanta. Neka su aq,...,a, vektori
u V. Matricu
(a1 |a1) (a1 |a2) (a1 | an)
(a2 [a1) (a2 | a2) (az | an)
(5.1) G(ay,...,a,) = det ) "
(an |a1) (an|a2) ... (an|ap)

zovemo Gramovom matricom, a determinantu Gramove matrice
(5.2) I'(a1,...,a,) =detG(ay,...,ap)

zovemo Gramovom determinantom.
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5.2. Teorem. Vektori ay,...,a, su linearno nezavisni ako i samo ako
je (a1, ...,a,) #0.

Dokaz. Mnozimo li linearnu kombinaciju

(53) §ra1 + - +&pan =0

s lijeva vektorima az,...,a, dobivamo da je n-torka brojeva (&1, ...,&,)
rjeSenje sistema jednadzbi

(5.4) Slaila) +-+&(ai]ay) =0, i=1,...,n.

Prema Cramerovom pravilu I'(ai,...,a,) # 0 povlaci da sistem (5.4) ima
jedinstveno rjesenje &, = -+ = &, = 0. No to onda znaci da je (5.3) trivijalna
kombinacija i da su vektori a1, ..., a, linearno nezavisni.

Obratno, pretpostavimo da su vektori ay, . . ., a, linearno nezavisni. Ako
je (&1,...,&,) rjeSenje sistema jednadzbi (5.4), onda mnozenjem i-te jed-
nadzbe s &; i zbrajanjem po svim ¢ = 1,...,n dobivamo

n n n n
0=> &> &laila) = (Q_&ai| Y _¢&ay)
i=1  j=1 i=1 j=1

i stroga pozitivnost skalarnog produkta povlaci Y " ; &a; = 0. Sada line-
arna nezavisnost vektora povlaci & = --- = &, = 0, Sto znac¢i da homogeni
sistem jednadzbi (5.4) ima jedinstveno rjeSenje i da su stupci Gramove ma-
trice linearno nezavisni vektori u C". Iz teorema 3.3.18 slijedi da su stupci
Gramove matrice baza od C", a teorem 9.4.16 povlaéi I'(a1,...,a,) #0. O

5.3. Gram-Scmidtov postupak ortogonalizacije. Neka su vektori
ai,...,an € V linearno nezavisni. Tada definiramo niz vektora yi,...,yn
formulom koju treba shvatiti kao Laplaceov razvoj determinante po k-tom
stupcu

(a1 ’ CL1) (a1 ’ CLQ) e (a1 ’ CLk,1> al
(a2 ’ CL1) (a2 ’ ag) e (CLQ ’ CLk,1> a9
(5.5)  yp =det : : :
(ag—1]a1) (ak—1]a2) ... (ag—1|ax—1) ar—1
(ak ’ al) (ak ‘ a2> ces (ak,1 ‘ ak,l) Qg
To znaci da je
(5.6) Yk = Ma1 +y2a2 + -+ Ye-10k—1 T Vkak,

pri cemu je
(57) Yk :F(al,...,ak,l).

Iz teorema 5.2 slijedi v # 0, pa indukcijom po k dokazujemo jednakost
linearnih ljuski

<yla" . ayk—lvyk> = <CL]_,. . 'aak—lvyk> = <CL]_,. . 'aak—lva’k>'



204 9. DETERMINANTA OPERATORA

Zbog jednakosti linearnih ljuski

Wi, yk—1) = (a1, .., ap-1)
iz (5.6) slijedi

(5.8) Yk = Bryr + Bayz + - + Be—1Yk—1 + Yk
za neke koeficijente 1, ... fr—1. Pomnozimo li (5.5) (odnosno (5.6)) skalarno
s desna sa a; za j = 1,...,k — 1 dobivamo
(a1 la)  (arlaz) ... (a&1|ar) (a1 ]ay)
(a2 |a) (a2 laz) ... (e2|ar—1)  (a2|ay)
(g | aj) =det : : : : =0
(a1 a1) (ag-1laz2) ... (ap—1|ax—1) (ar-1]ay)
(ar | a1)  (axlaz) ... (ap—1|ae—1) (ak | a;)

jer je u gornjoj matrici j-ti stupac jednak k-tom stupcu. Znaci da je
Ye L (ar, .o ap-1) = (Y1, -+, Yk-1),
pa mnozenjem (5.8) sa yj dobivamo

(5.9) (y& | k) = (Y | Bryi + Bay2 + - + Be—1Yk—1 + vear) = Ve(yk | ax).

S druge strane, skalarnim mnozenjem (5.5) s desna s a dobivamo

(5.10) (yk ’ ak) :F(al,...,ak),
pa iz (5.9) 1 (5.7) slijedi
(5.11) (ye | yx) =T(a1,...,ax—1) (a1, .., ax).

5.4. Teorem. Neka su aq,...,a, linearno nezavisni vektori u realnom
unitarnom prostoru V. Tada je T'(ay,...,a,) > 0, a /I'(a1,...,a,) je
volumen paralelotopa razapetog vektorima ay, ..., an,.

Dokaz. Iz teorema 5.2 i linearne nezavisnosti vektora aq,...,ay sli-

jedi I'(ai,...,ar) # 0. Za k = 1 iz pozitivnosti skalarnog produkta slijedi
I'(a1) = (a1 | a1) > 0. Opcenito I'(ay,...,a;) > 0 slijedi indukcijom ko-
ristedi (5.11) i (yx | yx) > 0.

Zan =1 je “volumen” duzine koju “razapinje” vektor a; jednak duljini
tog vektora

llaa|| = V(a1 | a1) = \/T(a1).

Opcenito volumen paralelotopa razapetog vektorima aq,...,a; u realnom
unitarnom prostoru definiramo induktivno kao “povrsinu baze” razapete
vektorima aq,...,a;_1, dakle

\/F(al, . .,ak_l),

pomnozenu “visinom” paralelotopa, a to je projekcija

(ak | ex)
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vektora aj na okomicu e = yi/||yx|| na bazu. Znaci da je volumen parale-

lotopa razapetog vektorima ay, ..., ar_1 jednak
(ar | ex)v/T(ay, ... ap_1)
(ar | yr) N
= F(al,...,ak,l)
\/F(al, cooyap—1)(ay, ... a)
— F(ah . '7a]€)
L(ai,...,ax)
=+v/I(ai,...,a),
pri ¢emu smo koristili (5.11) za normu od y i (5.10) za skalarni produkt
(ar | yr)- O
5.5. Teorem. Neka suaq,...,a, linearno nezavisni vektori u R™. Tada
je

D(ai,...,an) = (det(ar, ..., an))>.

DokAz. Element (a; | aj) u Gramovoj matrici mozemo shvatiti kao
mnoZenje i-tog retka matrice A’ i j-tog stupca matrice A = (aq,...,a,), pa
je Gramova matrica produkt matrica

G =Gl(ay,...,ay) = A'A.
Prema teoremu 3.4 je det A = det A, pa Binet-Cauchyjev teorem daje
det G = det A'A = det A®det A = (det A)?.






POGLAVLJE 10

Algebra operatora na R"

U ovom poglavlju na skupu n X n matrica uvodimo operacije zbrajanja
i mnozenja skalarom. S obzirom na dobivenu strukturu vektorskog prostora
mnozenje n X n matrica je bilinearna binarna operacija i dobivenu algebarsku
strukturu zovemo asocijativnom algebrom s jedinicom. Kao vazne primjere
takve strukture procavamo kompleksne brojeve kao realne 2 x 2 matrice i
kvaternione kao kompleksne 2 x 2 matrice.

1. Vektorski prostor linearnih preslikavanja s R" u R™

1.1. Zbrajanje preslikavanja i mnozenje skalarom. Neka su
A:R" —-R™ i B:R" - R™
dva linearna preslikavanja. Buduéi da na vektorskom prostoru R™ imamo
operacije zbrajanja i mnozenja skalarom A € R, mozemo definirati nova
preslikavanja
A+ B:R" = R™ i MA:R" - R™
tako da za svaku tocku x iz R"™ stavimo
(A+ B)(x) = Ax + Bz, (M) (z) = NAx.

Ponekad kazemo da smo te operacije definirali po tockama.
To su linearna preslikavanja. Naime, koristeé¢i definiciju zbrajanja, svoj-
stvo linearnosti od A i B i opet definiciju zbrajanja, dobivamo

(A+ B)(z+y)=Ax+y)+ Bx+y) = Ax+ Ay + Bx + By
= (A+ B)(z) + (A+ B)(v),
(A+ B)(px) = A(px) + B(pz) = pAx + uBx = p(Ax + Brx)
— WA+ B)(x).
Sliéno dokazujemo i linearnost preslikavanja AA.

1.2. Matrica sume linearnih preslikavanja. Matrica linearnog pre-
slikavanja (A + B): R” — R™ je

(1.1) ((A+ B)ey,...,(A+ B)e,) = (Aey + Bey, ..., Ae, + Bey).

Zmnaci da je svaki stupac matrice preslikavanja A + B suma odgovarajuéih
stupaca matrice preslikavanja A i matrice preslikavanja B. Buduéi da ne
zelimo praviti razliku izmedu preslikavanja i njihovih matrica, formulom

(1.2) (a1,...,an) + (b1,...,bp) = (a1 +b1,...,an + by)
207
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definiramo zbrajanja matrica tipa m x n, tako da (1.1) glasi
((A+ B)ei,...,(A+ B)e,) = (Aey, ..., Ae,) + (Bey, ..., Bey).

Ocito je matrica linearnog preslikavanja AA dobivena mnozenjem s A
svakog stupca matrice preslikavanja A

(1.3) (A)er,...,(A)eyp) = (Mey, ..., A ey).

Buduéi da ne zelimo praviti razliku izmedu preslikavanja i njihovih matrica,
formulom

(1.4) AMay,...,an) = (Aa1, ..., ap)
definiramo mnozenje skalarom matrica tipa m x n, tako da (1.3) glasi

((AM)eq, ..., (AA)e,) = A(Aey, ..., Aey).

1.3. Primjeri zbrajanja matrica i mnozenja matrice skalarom.

11 1 2 2 3 1 2 3 6
0 21+(1 2|=(|1 4], 30 2] =10 6
2 3 11 3 4 1 3 39

1.4. Zadatak. Izracunajte

(02)+(2) 302

1.5. Nul-preslikavanje i nul-matrica. Linearno preslikavanje
A: R™ — R™ definirano s Az = 0 za svako x iz R" zovemo nul-preslikavanjem
i oznacavamo ga s 0. Pripadna matrice tipa mxn je nul-matrica i oznacavamo

je s 0. Na primjer,
0 0 0 000
<O 0) =0, (O 0 0 0> =0,

gdje je prva nula matrica tipa 2 x 2, a druga nula je matrica tipa 2 x 4. Nul-
preslikavanje i nul-matrica su neutralni elementi za odgovarajuée operacije
zbrajanja.

1.6. Svojstva operacija zbrajanja matrica i mnozenja skalarom.
Ako su (oyj) i (Bij) matrice tipa m x n, onda definicije zbrajanja matrica
(1.2) i mnozenja matrica skalarom (1.4) mozemo zapisati kao

(aij) + (Bij) = (aij + Bij),  Mevz) = (Aaij).
Shvatimo li matriéne elemente «;; kao koordinate vektora u R™", onda je
gornja formula upravo definicija zbrajanja vektora i mnozenja vektora skala-
rom, pa za te operacije vrijede sva svojstva popisana u tocki 2.2.3. Posebno,
imamo nul-matricu 0, neutralni element za zbrajanje, te za svaku matricu
(ai;) njoj suprotnu

—(0j) = (—aij).
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Znaci da je skup svih matrice tipa m Xn s operacijama zbrajanja i mnozZenja
skalarom u stvari vektorski prostor R™"™, samo §to koordinate zovemo ma-
tricnim koeficijentima i opéenito ih zapisujemo u kvadaratnu shemu, a ne
u samo jedan redak ili samo jedan stupac. Buduéi da na matricama imamo
osim zbrajanja i mnozenja skalarom i druge operacije, obic¢aj je vektorski
prostor (R™)™ svih m x n matrica oznacavati drugacije — mi ¢emo koristiti
oznaku
Mopxn  ili Mpxn(R)

ako zelimo naglasiti da govorimo o realnim m X n matricama. Naglasimo da
je dimenzija tog vektorskog prostora

dim M, xpn = m - n.
1.7. Linearne kombinacije matrica. Kao i inace za vektorske pro-
store, linearnom kombinacijom matrica zovemo matricu ili izraz
MAL+ -+ A A

u kojem su \; brojevi (skalari), a A; matrice istoga tipa. Na primjer, matricu
rotacije mozemo napisati kao linearnu kombinaciju

cosp —sing) 1 0 . 0 -1
<sin<p coscp>_COS<‘0<0 1>+s1ng0<1 0 )"

1.8. Kanonska baza vektorskog prostora matrica tipa m x n.
Svaku matricu A = («;) tipa m X n mozemo na jedinstveni nacin prikazati
kao linearnu kombinaciju

m n
A= E E oijEij,
i=1 j=1

gdje je F;; matrica koja ima matri¢ni element 1 u i-toj koordinati j-tog
stupca, a sve ostale elemente 0. Ili, drugim rijec¢ima,

Eij:(O,...,O,ei,O,...,O),

pri ¢emu se element e; kanonske baze prostora R™ nalazi na j-tom mjestu.
Te matrice zovemo kanonskom bazom vektorskog prostora matrica tipa mXxn.
Tako, na primjer, za 2 X 2 matrice imamo kanonsku bazu

1 0 0 1 0 0 0 0
EnZ(O 0)’ E12=<0 0>, E21=<1 O)’ E22=<0 1>

u kojoj mozemo na jedinstveni nacin prikazati svaku 2 x 2 matricu

o1 12\ 1 0 0 1 0 0 0 0
<a21 a22>_0‘“ (0 0>+0‘12 (0 0)*0‘21 (1 0>+O‘22 (0 1)'

1.9. Zadatak. Pokazite da za 2 x 2 matrice imamo i bazu

b2 GA) (o) ()
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1.10. Vektorski prostor linearnih preslikavanja s R” u R™. Ope-
racije zbrajanja A + B preslikavanja i mnozenja AA preslikavanja skalarom
definirane su po to¢kama i nasljeduju dobra svojstva zbrajanja i mnozenja
skalarom u R™. Tako, na primjer, za svako x € R" i tri preslikavanja A, B
i C' imamo

(Az + Bx) + Cx = Az + (Bx + Cx)

zbog asocijativnosti zbrajanja u R™. No to znaé¢i da imamo jednakost pre-
slikavanja

(A+B)+C=A+(B+0C),

odnosno asocijativnost operacije zbrajanja preslikavanja. Na slican nacin
vidimo da operacije zbrajanja preslikavanja i mnozenja preslikavanja skala-
rom imaju sva svojstva iz definicije vektorskog prostora. Mi ¢emo vektorski
prostor linearnih preslikavanja s R™ u R™ oznacavati s

L(R™,R™).

1.11. Izomorfizam vektorskih prostora linearnih preslikavanja
s R” u R™ i m xn matrica. Ne samo da je pridruzivanje matrice linearnom
preslikavanju bijekcija koja nam je dozvolila poistovjec¢ivanje linearnog pre-
slikavanja i matrice

A +— (Aeq, ..., Aey),

nego su i operacije zbrajanja matrica i mnozenja matrice skalarom definirane
u skladu s tom identifikacijom

A+ B <+— (Aeq,...,Ae,) + (Bey,...,Bey), M +— A\ Aeq, ..., Aey).

Znaéi da imamo izomorfizam vektorskog prostora linearnih preslikavanja s
R™ u R™ i vektorskog prostora matrica tipa m x n

LR™,R™) 2 Myxn(R).
Odavle posebno slijedi
dim L(R",R™) = n - m.
1.12. Izomorfizam vektorskih prostora linearnih operatora i
matrica. NekasuV i W dva vektorska prostora nad istim poljem K. Skup!
L(V,W)

svih linearnih operatora A: V' — W je vektorski prostor s operacijama zbra-
janja i mnozenja skalarom A\ € K definiranim po tockama:

(A+ B)(x) = Az + Bz, (M) (z) = Mz
Winearno preslikavanje zovemo i homomorfizmom vektorskih prostora, od gréke rijeci

homomorfan=sli¢nog oblika, a skup linearnih operatora L(V, W) esto oznacavamo i kao
Hom (V, W).
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za svaki x € V. Na isti na¢in kao prije vidimo da su A + B i AA linearni
operatori, te da je L(V,W) s tim operacijama vektorski prostor. Kao i
obi¢no, nul-operator oznacavamo s 0,

0:V—->W, 0:x—0 zasvakixzelV.

Ako su V i W kona¢no dimenzionalni vektorski prostori s uredenim
bazama E i F, onda linearne operatore mozemo identificirati s njihovim
matricama u tom paru baza

A<+— AFE-

Buduéi da su koordinatizacije v — vg i w — wp linearna preslikavanja, to je
i bijekcija A — Apg linearno preslikavanje. Znaci da su vektorski prostora
operatora i matrica izomorfni, tj.

L(V,W) = Mpxn(K)
zan =dimV i m=dimW. Odavle slijedi
(1.5) dim L(V, W) =dimV - dim W.

1.13. Zadatak. Dokazite da je A — Apg linearno preslikavanje.

1.14. Zadatak. Izracunajte dimenziju vektorskog prostora

L(L(R,R?), M3x3(R)) ?

2. Algebra n x n matrica

2.1. Distributivnost mnozenja matrica prema zbrajanju. Mno-
zenje matrica definirano je samo uz uvjet da su odredenog tipa, opcenito
smo to zapisali “formulom”

(kxm)-(mxn)=(kxn).
Zmaci da imamo preslikavanje
kam X men — Man, (A, B) — AB

koje matrici A tipa k x m i matrici B tipa m x n pridruzi njihov produkt
AB — matricu tipa k X n. Za mnozenje matrica vrijede dva svojstva di-
stributivnosti prema zbrajanju matrica — u vektorskim prostorima M, xn

1 Mpsn, te Migxm 1 Mpgsen :

A(B+C)=AB+ AC, (A+ D)B=AB+ DB.
Naime, neka je A = (o), B = (Bi;) i C = (vi;). Koriste¢i formulu za
matriéni element na mjestu ij matrice A(B + C') dobivamo

m

m m m
Z O‘ir(ﬁr‘j + ’Yrj) = Z(air,ﬁrj + air’Yrj) = Z air‘ﬁrj + Z QirYrj,
r=1 r=1

r=1 r=1
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a to je matri¢ni element na mjestu 5 matrice AB + AC. Na slican nacin
dokazujemo i drugu formulu, kao i homogenost mnozenja matricom u odnosu
na mnozenje skalarom u vektorskim prostorima Mgy, Mupmxn 1 Mixn

(M)B = A(AB),  A(AB) = A(AB).

Vrlo cesto ova svojstva mnozenja matrica zovemo svojstvom bilinearnosti
mnozenja i zapisujemo kratko kao

A (Z )\sz> = Z )\2143z y Z /,LjAj = ZMjAjB s
i=1 =1 j=1 j=1

ili joS opcéenitije kao “mmnozenje svaki sa svakim”

7j=1 =1

j=1i=1
2.2. Bilinearnost mnozenja linearnih operatora. Ako su V, W i
U tri vektorska prostora nad istim poljem K i
B: VW i A:W-=>U
linearni operatori, onda je produkt AB definiran kao kompozicija
AB:V = U, (AB)(v)= A(B(v)).
Opéenito imamo preslikavanje
L(V,W)x L(W,U) - L(V,U), (B,A)— AB

koje paru linearnih operatora B i A pridruzi njihov produkt AB. Kao i u
slu¢aju mnozenja matrica imamo svojstvo bilinearnosti

A(MB1+XoB2) = MAB1 + X ABy, (1A +p2A2)B = pnA1B+ 112 A2 B,
Naime, za prvu tvrdnju ra¢unamo
(A(MB1 4+ X2B2))(v) = A((M By + \2Bs2)(v))

= A()\lBl(U) + )\QBQ(U))

= MA(B1(v)) + AA(B2(v))

= M (AB1)(v) + A2(AB3)(v)

= (MAB; + X2 ABs)(v),
pri ¢emu prva jednakost vrijedi zbog definicije kompozicije, druga zbog de-
finicije operatora A\ By + A2 B3, tre¢a zbog linearnosti operatora A, cetvrta
zbog definicije kompozicije i peta zbog definicije linearne kombinacije ope-
ratora AB; i ABy. Kadje V=R", W =R™, U =R* i

R" Z R 4 R

onda imamo malo drugaciji dokaz distributivnosti mnozenja matrica.
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2.3. Pojam algebre. Neka je A vektorski prostor. Kazemo da je A
algebra ako je dano mnozenje

T AXA— A, (A,B)—~ A-B
koje je bilinearno, tj. za sve vektore A, B,C € A i skalare A, u vrijedi

M+ uB)-C=XNA-C)+u(B-C),

C-(M+uB)=X\C-A)+u(C- B).
U algebri vrlo ¢esto ne piSemo znak za mnozenje elemenata i umjesto A - B
piSemo samo AB. Ako je mnoZenje asocijativno, tj. za sve A, B,C € A
vrijedi

(AB)C = A(BC),
onda kazemo da je A asocijativna algebra. Ako postoji jedinica I za mnozenje,
tj. za sve A € A vrijedi
IA= Al = A,

onda kazemo da je A asocijativna algebra s jedinicom. Algebre koje ¢emo mi

razmatrati bit ¢e iskljucivo asocijativne algebre s jedinicom, pa ¢emo govoriti
samo algebra. Ako je mnozenje u A komutativno, tj. za sve A, B € A vrijedi

AB = BA,
onda kazemo da je A komutativna algebra®.
2.4. Strukturne konstante algebre. Neka je A algebraiej,...,en

baza vektorskog prostora A. za svaki par indeksa i,j € {1,...,m} produkt
vektora e;e; mozemo zapisati u bazi

m
€iej = E Nijrer,
k=1

a koeficijente
Nijka iajak€{17"'7m}
zovemo strukturnim konstantama algebre A. Zbog bilinearnosti mnozenja u

algebri produkt proizvoljna dva elementa mozemo izraziti pomocu njihovih
koordinata i strukturnih konstanti:

m m m m
Ty = <Z§z‘€z> > omjei | = timjeiej = > &y Nijre.
i=1 j=1 ij=1 ijk=1

Stovise, za danu bazu ei,..., e, vektorskog prostora A i proizvoljni iz-
bor strukturnih konstanti IV;j; gornjom je formulom definirano bilinearno
mnozenje na A, kazemo da smo mnoZenje zadali na bazi.

23 mislimo: komutativna asocijativna algebra s jedinicom
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2.5. Zadatak. Na 4 = R? s kanonskom bazom e, es definirano je bi-
linearno mnozenje na bazi tablicom mnozenja

€11 = €1,
€1€2 = €2,
€2€1 = €2,
€9y = 0.

Dokazite da je s tim mnoZenjem A asocijativna komutativna algebra s jedi-
nicom.

2.6. Zadatak. Na A = R? zadajte bilinearno mnozenje na kanonskoj
bazi e, es, e3 tako da A bude asocijativna komutativna algebra s jedinicom.

2.7. Pitanje. Na R? imamo bilinearno vektorsko mnozenje a x b. Da
li je to mnozenje asocijativno?

2.8. Algebra n x n matrica. Skup M,,x,(R) svih n X n realnih ma-
trica, Cesto pisemo M, (R) ili M, je vektorski prostor na kojem imamo
operaciju mnozenja matrica. Pogledamo li svojstva operacija zbrajanja ma-
trica, mnozenja matrice skalarom i mnozenja matrica, onda vidimo da je
M, asocijativna algebra s jedinicom. Podsjetimo se da je

dim M,, = n®.

2.9. Zadatak. Neka je V vektorski prostor, ne nuzno kona¢no dimen-
zionalni. Provjerite da je vektorski prostor L(V) linearnih operatora na
V' asocijativna algebra s jedinicom s obzirom na kompoziciju kao operaciju
mnozenja.

2.10. Izomorfizam algebri. Ako su A i B dvije algebre, onda izomor-
fizam ®: A — B vektorskih prostora zovemo izomorfizmom algebri ako za
sve elemente A, B € A vrijedi

B(AB) = B(A)D(B).

Drugim rije¢ima, izomorfizam algebri je bijekcija pomocéu koje mozemo iden-
tificirati ne samo elemente skupova, nego i operacije zbrajanja, mnozenja
skalarom i mnozenja na tim skupovima jer vrijedi

®(A+ B)=P(A) + ®(B), PNA) =AP(A), P(AB)=D(A)P(B).
Kazemo da je ® izomorfizam algebri s jedinicom ako je
o(1) =1.

Kao i obi¢no, ako postoji izomorfizam algebri ®: A — B, onda kazemo da
su algebre A i B izomorfne i pisemo

A=B.
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Akosu ®: A — BiV: B — C izomorfizami algebri, onda je i kompozicija
Uod: A— C izomorfizam algebri jer je to opet linearna bijekcija i vrijedi

VU(®(AB)) = W(2(A)®(B)) = U(P(A))¥(P(B)).
Izomorfizam algebre ®: A — A obi¢no zovemo automorfizmom od A.

2.11. Izomorfizam algebri linearnih operatora i matrica. Ako
je V kona¢éno dimenzionalni vektorski prostor s uredenom bazom F, onda
linearne operatore A mozemo identificirati s njihovim matricama Ap = Agg
u toj bazi,

Ta je bijekcija izomorfizam vektorskih prostora, tj.
A+ B+— Ag+ Bg, M <+— M\g.
Buduéi da je matrica produkta operatora produkt pripadnih matrica, tj.
(AB)g = AgBg, to imamo
AB +— ApBg.
To znaéi da su algebra operatora L(V') i algebra matrica M,, izomorfne,

L(V) 2 M,.

2.12. Unutarnji automorfizmi algebre. Ako je V kona¢no dimen-
zionalni vektorski prostor s uredenim bazama E i F', onda imamo dva izo-
morfizma

Ap +— A<+— Ap.
No tada je njihova kompozicija
A E A F

automorfizam algebre n x n matrica. Ako je T matrica prijelaza iz baze E
u bazu F, onda za matrice operatora A € L(V) imamo Ap = T~ 'AgT, pa
gornji automorfizam algebre n x n matrica mozemo zapisati formulom

B~ T~ 'BT.

Opéenito, ako je A asocijativna algebra s jedinicom i T € A regularni ele-
ment3, onda je preslikavanje

B— T 'BT

automorfizam (dokazite!) kojeg zovemo wunutarnjim automorfizmom algebre
A ili konjugacijom regularnim elementom T u algebri A.

2.13. Podalgebra. Ako je A algebra, onda kazemo da je potprostor B
podalgebra ako je zatvoren i za operaciju mnozenja, tj. ako je AB € B kad
su oba elementa A i B u B. Nas ¢e najvise zanimati podalgebre s jedinicom,
tj. podalgebre koje sadrze jedinicu I algebre A.

3Kao u slu¢aju linearnih operatora, regularan element asocijativne algebre s jedinicom
znaci invertibilan element te algebre, tj. element koji ima inverz.
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2.14. Komutativna podalgebra dijagonalnih matrica. Za matricu
A = (ayj) kazemo da je dijagonalna ako je a;; = 0 za i # j, odnosno

a1 0 e 0
0 a9 ... 0
A= ) ) .
0 0 ... opn
Vidimo da je matrica A dijagonalna ako i samo ako za kanonsku bazu
e1,...,en preslikavanje A ¢uva 1-dimenzionalne potprostore
(er), ..., (en),
tj. ako za kanonsku bazu i neke skalare a1, ..., ay, vrijedi
(21) A€1 = «11€1, A€2 = (x22€9, ey Aen = Opn€n.

Za skalar A i dijagonalnu matricu B = (f;;) iz relacije (2.1) slijedi da je za
sve j=1,...,n

(A)ej = (Aajj)ej,
(2.2) (A+ B)ej = (a5 + Bjj)ej,

(AB)ej = (3 Bj5)e;s
a to znaéi i da su matrice AA, A+ B i AB dijagonalne. Naravno, formulu
za mnozenje dijagonalnih matrica AB mozemo zapisati i kao

11 ... 0 ﬁll 0 Oé11,811 0
0 ... onn 0 ... Bun 0 cov OpnBnn
Ocito za sve dijagonalne matrice A i B vrijedi
AB = BA.

Znaci da je skup svih dijagonalnih n X n matrica komutativna podalgebra
algebre matrica M,,.

2.15. Pitanje. Ako su A i B dijagonalne n X n matrice, da li je onda
A2 - B?=(A+B)(A-B)? DA NE

2.16. Zadatak. Pokazite da je algebra dijagonalnih n X n matrica izo-

morfna algebri funkcija sa skupa {1,...,n} u polje R s operacijama defini-
ranim po tockama

zasve j =1,...,n.
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2.17. Zadatak. Pokazite da je n X n matrica A gornja trokutasta ako
i samo ako za kanonsku bazu ey, ...,e, preslikavanje A ¢uva potprostore

<61>7 <61762>7 ey <€17627--'7€n71>7
tj. akoza k =1,2,...,n — 1 vrijedi A{ey,ea,...,ex) C (e1,€2,...,ek).
2.18. Zadatak. Pokazite da su gornje trokutaste matrice podalgebra

algebre kvadratnih n x n matrica. Pokazite da algebra gornjih trokutastih
matrica nije komutativna za n > 2.

2.19. Zadatak. Nadite gornje trokutaste 2 x 2 matrice A i B takve da
je A2 -~ B2+ (A+ B)(A- B).

2.20. Algebra n x n matrica s koeficijentima u algebri. Neka je
A asocijativna algebra s jediniciom nad poljem K, ne nuzno komutativna.
Skup M,,(A) svih n x n matrica A = (a;;) s koeficijentima u A, tj.

./\/ln(.A) = {A = (aij)i,jzl,m,n | Q5 € A za sve ’i,j = 1, - ,n},

je asocijativna algebra nad poljem K s jedinicom za operacije zbrajanja,
mnozenja skalarom A € K i mnozenja n x n matrica A = (j)ij=1,..n 1
B = (Bij)ij=1,..n zadanih formulama

A+ B = (aij + Big)ij=t,..n»
A = (Aij)ij=1,..n 5
n
AB = () cikBrj)ij=1,..m -
k=1

Ako je A konaéno dimenzionalna, onda je

dim M,,(A) = n? dim A.
2.21. Zadatak. Dokazite sve iskazane tvrdnje u prethodnoj tocki.
2.22. Zadatak. Dokazite da je Ma(M2(R)) = My (R).

2.23. Zadatak. Na vektorskom prostoru kvadratnih n x n matrica de-
finiramo komutator matrica A i B kao
[A, B] = AB — BA.
Pokazite da je komutator bilinearna operacija, tj

[A, \1B1 + X2 Ba] = M[A, Bi| + X\2[A, B,
[,UlAl + N2A27B] = /'Ll[AhB] + ,U,Q[AQ,B] .
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2.24. Zadatak. Za kvadratnu n x n matricu A = («;;) definiramo trag
matrice

n
trA:ZOéu‘:an-i-'“-FOénn-

=1

Ocito je tr : M, (R) — R linearna funkcija. Iz formule za mnozenje matrica

n n n n n n
tr (AB) = Z Z a;iBji | = Z Zai]ﬂji = Z (Z 5]'@'041']') = tr (BA).
i=1 \j=1 i=1 j=1 j=1 \i=1
Odavle slijedi da za komutator matrica vrijedi
tr[A,B] =tr (AB — BA) =tr AB—tr BA=0.
2.25. Zadatak. Na vektorskom prostoru kvadratnih n x n matrica de-
finiramo antikomutator matrica A i B kao

{A,B} = AB + BA.

Pokazite da je antikomutator bilinearna operacija.

3. Hermitski adjungirana matrica

U ovom paragrafu pretpostavljamo da je V' konacno dimenzionalni uni-
tarni prostor nad poljem realnih ili kompleksnih brojeva.

3.1. Matrica operatora u ortonormiranoj bazi. Neka je
E = (e1,...,e,) ortonormirana baza od V. Tada su koordinate &; vektora

r=2E&e+ -+ &en
dane formulom
(3.1) &= (xl]e), i=1,...,n.

Ako je A: V — V linearni operator, onda je matrica Ap = (a;;) operatora
A u bazi E odredena formulom

n
Aej: E Q;5€4, jzl,...,n.
i=1

Buduéi da koordinate «;; vektora Ae; u ortonormiranoj bazi E mozemo
racunati pomoc¢u formule (1.1), to je matrica operatora u ortonormiranoj
bazi dana formulom

aj; = (Aej ), i,j=1,...,n.



3. HERMITSKI ADJUNGIRANA MATRICA 219

3.2. Lema. Neka su A i B linearni operatori na V. Tada je A = B
ako i samo ako je

(Ax |y) = (Bx|y) zasve z,y€eV.
DokAz. Neka je E = (eq,...,e,) ortonormirana baza od V. Tada je
(Aej | e;) = (Bej | €;), zasve i,j=1,...,n.

Zmnaci da su matrice Ap i Bg operatora jednake, pa slijedi i jednakost ope-
ratora A = B. Obrat je ocigledan. O

3.3. Hermitski adjungirana matrica. Neka je A = (o) realna ili
kompleksna n X n matrica. Tada matricu

A" = (Bi), Bij=0aGi, i,j=1,...,n,
zovemo hermitski adjungiranom matricom matrici A. Znaci da je A* dobi-

vena iz A transponiranjem i, ako se radi o kompleksnoj matrici, kompleksnim
konjugiranjem svakog matri¢nog elementa.

3.4. Primjer.

* *

01 -1 0 2 3 1 1 -1 -t 242t 3—1
23 2] =11 3 4],12-22 3 -2 =1 3 4
3 4 5 -1 -2 5 3+1 4 5 -1 -2 )

3.5. Hermitski adjungirani operator. Neka je A: V — V linearni
operator. Tada postoji jedinstvensi linearni operator A*: V. — V takav da je

(Az |y) = (z | A%y) zasve z,yeV.
Operator A* zovemo hermitski adjungiranim operatorom operatoru A.

Dokaz. Dokazimo prvo jedinstvenost. Pretpostavimo da su B i C' ope-
ratori na V takvi da je
(Az |y)= (x| By) 1 (Az|y)=(z|Cy) zasve z,yeV.
Tada je zbog hermitske simetrije skalarnog produkta

(By|z)=(Az|y) = (Cy|x) zasve z,yecV,

pa iz leme 1.2 slijedi B = C.
Dokazimo sada da operator A* postoji. Odaberimo neku ortonormiranu
bazu E = (ey1,...,e,) od V. Ako operator A* postoji, onda mora biti

(3.2) (Ae; | ej) = (e; | A%ej) zasve i,j=1,...,n.
Zbog hermitske simetrije skalarnog produkta to je ekvivalentno
(A%e; | e;) = (Ae; | ej) zasve i,j=1,...,n.

Zato definiramo linearan operator A* tako da mu je u bazi E matrica
(A*)E = (Bij) jednaka

(3.3) (AE = (Ap)",  Bij = (A%¢j | &) = (Ae; | €5) = oy,
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tj. jednaka adjungiranoj matrici matrice Ap = (o;) operatora A. Sada
zbog (1.2) za proizvoljne

96:2&61' i yZZ%‘@j
imamo

(Az | y) AZ&@Z | ane] Z & (Ae; | ef)

',j—l

— Z Eimjle; | A¥ej) = Zglez | A* Zn]ej (z | A%y).

,j=1

3.6. Napomena. Zbog hermitske simetrije skalarnog produkta je
(A'y |x)=(y| Az) zasve z,yeV.

3.7. Svojstva hermitskog adjungiranja.

) (A*)* = A, obic¢no pisemo A** = A i kazemo da je * involucija.

) I* = 1.

) (AB)* = B*A*, obicno kazemo da je * antiautomorfizam mnoZenja.

) (M + uB)* = AA* 4+ pB*, u kompleksnom slucaju kazemo da je *
antilinearno.

(1
(2
(3
(4

DoKkAz. Sve tvrdnje slijede iz relacija
(Az |y) = (z | Ay) 1 (A%z|y) = (x| Ay)
primjenom leme 1.2:
((A%)'z |y) = (x| A%y) = (Az [ y).
(Fz|y) = (x| 1y) = (x| y) = Iz | y).

(AB)*z | y) = (x| ABy) = (A" | By) = (B*A"z | y).

(M +pB)*x | y) = (x| (ANA+ pB)y) = Az | Ay) + fi(z | By)
= NA"z |y) + A(B'z | y) = (A" + aB")z | y).

~— ~— ~— ~—

O
3.8. Hermitske matrice. Neka je A = (o;;) realna ili kompleksna
n X n matrica. Kazemo da je A hermitska matrica ako je
A=A,
odnosno
i =y zasve i,5=1,...,n

Primijetimo da su zbog a;; = @y; svi dijagonalni elementi hermitske matrice
realni brojevi. Realne hermitske matrice zovemo i simetricnim matricama.
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3.9. Paulijeve matrice su hermitske. Paulijeve matrice su matrice
o 0 1 o — 0 —i o — 1 0
r\1ro0) Y \i 0 ) 7 L0 —-1)°
Ocito su o0y, 0y 1 0, hermitske matrice.
3.10. Zadatak. Provjerite da su matrice A i B hermitske,
9 1 0 2+2i 1
A:<1 3), B=1[2-2 3 —3i
1 3i 5

3.11. Antihermitske matrice. Neka je A = (o) realna ili komplek-
sna n X n matrica. Kazemo da je A antihermitska matrica ako je

A" =—-A,
odnosno
i = —ag; zasve 4,7 =1,...,n.
Primijetimo da su zbog «;; = —a;; svi dijagonalni elementi antihermitske

matrice ¢isto imaginarni brojevi. Realne antihermitske matrice zovemo i
antisimetriénim matricama.

3.12. Primjeri antihermitskih matrica.

0 0 1 0 i
=(o 2) = (ho) = (T0)

3.13. Zadatak. Opcenito produkt hermitskih matrica nije hermitska
matrica i produkt antihermitskih matrica nije antihermitska matrica, na
primjer

(Fo) (o 5)=(0 ) (o) (o ) =050,

Dokazite da je antikomutator hermitskih matrica hermitska matrica, te da
je komutator antihermitskih matrica antihermitska matrica. Izra¢unajte sve
antikomutatore Paulijevih matrica i sve komutatore matrica Ji, Jo i J3 iz
prethodnog primjera.

3.14. Unitarne matrice. Zakompleksnu nxn matricu A = (ay,...,an)
kazemo da je unitarna ako su vektori aq,...,a, ortonormirana baza u C".
Bududi da je kanonski skalarni produkt u C" dan formulom

(a]b)=a1Bi+ -+ anfn,

to uvjet (a; | aj) = d;; ortonormiranosti vektora mozemo zapisati kao mno-
zenje matrica

A*A =T ili ekvivalentno AA* = 1.

Realne unitarne matrice zovemo i ortogonalnim matricama.
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3.15. Primjeri unitarnih matrica.

0 0 1 0 i
=(o 2) = (ho) = (T0)

3.16. Zadatak. Dokazite da su sve ortonormirane baze u C? oblika

(5 %) laP+IP=1 =1 apcec

3.17. Grupa unitarnih matrica. Valja primijetiti da je (i) produkt
unitarnih matrica opet unitarna matrica jer

(U1 U2)" (U0 Up) = UsUTU Uy = UylUy = UsUp = I,

da je (ii) jedini¢na matrica I unitarna i da je (iii) inverz unitarne matrice
U~! = U* unitarna matrica jer

U Yt =U)yUr=uUr=1.
Drugim rijec¢ima, skup U(n) svih unitarnih n x n matrica je grupa.
3.18. Zadatak. Dokazite da je skup SU(n) svih unitarnih nxn matrica
determinante 1 takoder grupa.
4. Kompleksni brojevi kao 2 x 2 realne matrice

4.1. Kompleksni brojevi. Kompleksni brojevi su uredeni parovi (a, 3)
realnih brojeva koje zapisujemo kao

z=a+1ip.

Operacije zbrajanja i mnozenja kompleksnih brojeva definirane su formu-
lama

(a+iB)+ (o +if) = (a+ ) +i(B+ ),

(a+1iB) - (/ +if") = (ad — BB) +i(af’ + Ba).
Skup svih kompleksnih brojeva s tako definiranim operacijama zbrajanja i
mnozenja oznacavamo sa C.

4.2. Skup C kao R?. Kompleksne brojeve x = & +i€, mozemo zapisati
kao vektor-stupce
&1
xTr =
(&

u R?. Tada je zbrajanje kompleksnih brojeva a’ + z” zbrajanje vektora u
R?, a mnozenjem kompleksnog broja x = & +i&y realnim brojem A\ = A 40
dobivamo

Az = (A +10)(&1 +i€2) = (A& — 0€2) + (A& + 0&1),

Sto zapisujemo kao
&1 A1
Az = A\ = , AeR.
v <£2 A
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Znaéi da je skup C vektorski prostor R? s operacijama zbrajanja i mnozenja
realnim brojevima \. Kanonsku bazu oznacavamo s

-0 -0

4.3. Mnozenje kompleksnim brojem je linearni operator na R2.
Buduéi da je mnozenje kompleksnih brojeva distributivno prema zbrajanju
te asocijativno i komutativno, za kompleksni broj z vrijedi

zo(@+2")y=z2-2"+2-2", z-(Az) = Nz - 1),
pa je preslikavanje
(4.1) 2R R% zez-ox
linearan operator. Za kompleksni broj
z=a+1if

suz-l=a+if1iz-i=—p+ia vrijednosti linearnog preslikavanja (4.1)
na kanonskoj bazi, pa je

a —f

6«

matrica tog linearnog preslikavanja.

4.4. Kompleksni brojevi kao 2 x 2 realne matrice. Oc¢ito mozemo
identificirati kompleksne brojeve i realne 2 x 2 matrice oblika

. a —f
a+if +— ( 3 a ) .
Pri toj identifikaciji zbrajanju kompleksnih brojeva z+ 2z’ odgovara zbrajanje
preslikavanja po tockama
z+2)z=z22+72

dakle zbrajanje matrica
) P a —-f o —-pg
(a+1if) + (&' +if") +— (ﬂ o ) + (5' o
a mnozenju kompleksnih brojeva z - 2’ odgovara kompozicija preslikavanja

(2-2)2=2-(¢ ),

dakle mnozenje matrica

(a+iB)- (o +if) <g :f) (g: _f,/>
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4.5. Kompleksni brojevi jesu 2x2 realne matrice. Svo gornje raz-
glabanje mogli smo preskociti da smo rekli da kompleksni brojevi naprosto
jesu realne 2 x 2 matrice oblika

(g'jﬁ, a,B ER,

s operacijama zbrajanja i mnozenja matrica. Pri tome bi trebalo provjeriti
da je suma i produkt takvih matrica istog oblika i da za

—1
(g _046> £ 0 imamo inverz <g —f) :Oﬂ}r52<—a5 g)

Sva ostala svojstva zbrajanja i mnozenja kompleksnih brojeva, ukljucujuci
komutativnost mnozenja, slijede iz opcih svojstava zbrajanja i mnozenja
kvadratnih matrica.

4.6. Primjedba. Buduéi da je algebra kompleksnih brojeva C podal-
gebra algebre Ma(R), to algebru Mo (C) kompleksnih 2 x 2 matrica mozemo
shvatiti kao podalgebru algebre My(R) realnih 4 x 4 matrica. Posebno za

zij = ayj + iBij, aij, B €R, 4,7 =1,2
imamo identifikaciju

a1 _/311 a2 _/812
(le Zl2>_ 511 anl ﬂlQ 12
221 222 N Q21 _/321 Q22 _/822
621 Q21 /822 Q22

5. Kvaternioni kao 2 x 2 kompleksne matrice

5.1. Imaginarne jedinice. Oznacimo s Mz(C) algebru 2 x 2 komplek-
snih matrica

a
(,y 5 >7 a76?775€C'

Stavimo

10 i 0 0 1 0 i
(o) o=(o ) m=(ha) = (T0)

Taj skup vektora je baza kompleksnog vektorskog prostora My (C). Vrijede
relacije

(5.1) JP=—1, Ji=-1, J2=-I,

J1Jo = —JoJ1 = J3,
(5.2) JoJs = —J3Jy = Ju,
J3J1 = —J1J3 = Jo.
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5.2. Algebra kvaterniona. Iz relacija (5.1) i (5.2) vidimo da je realan
4-dimenzionalan vektorski prostor

H = {aol + anJ1 + agJa + azJs | ag, a1, a0, a3 € R}
=RI+RJ; +RJy +RJ3

zatvoren za mnozenje matrica, tj. da je realna algebra. Algebru H zovemo
algebrom kvaterniona ili algebrom hiperkompleksnih brojeva®. Jedinéna ma-
trica I je jedini¢ni element algebre H, a kvaternione Ji, Jo, J3 zovemo ima-
ginarnim jedinicama. Iz relacija (5.2) vidimo da algebra kvaterniona nije
komutativna. Algebru kvaterniona mozemo zapisati i kao skup matrica

H:{(_“ﬁ— g)\a,ﬁec}.

5.3. Zadatak. Stavite a« = o + i1 1 —f = ag + iy 1 napisite kvater-
nione kao realne 4 x 4 matrice.

5.4. Apsolutna vrijednost kvaterniona. Za kvaternion Z defini-
ramo apsolutnu vrijednost (ili normu) |Z| relacijom

Z = ( o ) 1217 = [af? + |81 = det Z.

Ocito je |Z| = 0 ako i samo ako je Z = 0. Takoder vrijedi |Z1 22| = |Z1] | Z2|
za 21,29 € H, kao i

(| = |Ji| = | 2] = | J3] = 1.

5.5. Zadatak. Izracunajte norme kvaterniona

3+ 0 3 1 3 q
0 3—7¢ )’ -1 3 )’ i 3 )
5.6. Konjugacija kvaterniona. Za kvaternion Z je hermitski adjun-
girana matrica Z* takoder kvaternion pa imamo konjugaciju kvaterniona
(OéoI +a1J1 + agds + O£3J3)* = ool — a1 J1 — asdy — ags.

Buduéi da mnozenje nije komutativno, vazno je primijetiti da je (Z122)* =
Z5 7. Takoder vrijedi

(5.3) ZZ*_<_a5 g)(g ‘j)qzﬁ(é (1)>_\Z|2I.

4ili Hamiltonovim brojevima
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5.7. Invertiranje kvaterniona. Iz (5.3) slijedi da je svaki kvaternion

Z # 0 invertibilan:

1
Z'= —- 7"
|1Z|?

Za Z = apl + a1J1 + asJs + asJs to mozemo zapisati i kao
1
ool — a1 J1 — agdy — agJs).
ag+a%+a%+a§( )
Izuzev komutativnosti mnozenja, kvaternioni zadovoljavaju sve ostale aksi-

ome polja. Umjesto “nekomutativnog polja” govorimo da kvaternioni zado-
voljavaju aksiome tijela.

AR

5.8. Zadatak. Invertirajte kvaternione

<3+i o) (3 1) <32>
0 3—7¢ )’ -1 3 )’ i 3 )
5.9. Pitanje. Mozemo li rijeSiti sistem jednadzbi
AnZy + Ai12Zs = By,
A217Z1 + AgaZ2 = By,
gdje su zadani kvaternioni A;; i B;, a nepoznanice su kvaternioni Z;?
5.10. Zadatak. Rijesite sistem jednadzbi
Z1+ 125 =0,
JoZy + J3Z = 2.,
gdje su nepoznanice kvaternioni Z7 i Zs.

5.11. Polarna forma kvaterniona. Bududéi da je |Z*| = | Z|, svi kva-
ternioni norme 1 ¢ine grupu, ispada da je to SU(2):

SU(Z)—{g— (g g)‘gg*—l,detg—l}
~{a= (1§ 2 ) llaP 182 = 1icl = 1.detg =1}

o _B
~{a=(§ 7 )P +1se=1}
={ZecH||Z| =1}
Analogno kompleksnim brojevima, svaki kvaternion Z # 0 mozemo na je-
dinstveni nacin zapisati u “polarnom obliku”
1

1]

5.12. Zadatak. Napisite u polarnoj formi kvaternione

(i) () )

Z=rg, r=I\Z|, g Z e SU(2).
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5.13. Skalarni i vektorski dio kvaterniona. Stavimo

V={a1Ji + asJs + a3Js | oy, a2, a3 € R}
=RJ; +RJy +RJ;3
= {K € My(C) | K* = K, tr K = 0},

gdje je tr K trag kvadratne matrice K, tj. suma dijagonalnih elemenata
matrice K. OCcito se svaki kvaternion na jedinstveni na¢in moze prikazati
kao

Z=al+K, a€eR, KEeV,
gdje je
ol =32+ 2%, K=3(Z-2

(analogno rastavu kompleksnog broja na realan i imaginaran dio). Bududi
da je I jedini¢ni element algebre, ¢esto se matrica ol identificira sa skalarom
a € R i zove se skalarni (ili realni) dio kvaterniona Z. Zato Cesto pisemo
1 umjesto I. FElement K € V zove se vektorski dio kvaterniona Z. Za
kvaternion K € V imamo |K|? = KK* = —K?. Posebno je

K*=-1 za KeV, |K|=1

pa kazemo da je K imaginarna jedinica.

5.14. Zadatak. Napisite skalarni i vektorski dio kvaterniona
1—4 —2-3i
2—3i 1+4 )°

5.15. Eksponencijalni zapis kvaterniona. Za imaginarnu jedinicu
K €V, |K|=11irealan broj ¢ stavimo

(5.4) e?K = cos I + (sinp)K.
Ocito je
2 .
|e‘pK’ = | cos p|*|T|? + | sinp*| K> = 1.
Takoder je jasno da svaki kvaternion norme 1 mozemo prikazati u obliku
(5.4): ako je K' = 5(Z~Z%) # 0, stavimo K = g K' i 5(Z+2*) = cos pl.
Tada je Z = e¥X. Ocito je
(e“"K)* = cospl — (sinp)K.
Adicioni teoremi za funkcije sin i cos daju
e?K eV — (cos oI + (sin o) K)(cos I + (sin ) K)
= (cospcost) —sinpsin)I + (cos psiny + sin p cos ) K
— elptY)K
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5.16. Zadatak. NapiSite eksponencijalni zapis kompleksnog broja
V3 5
:V/3
7,7 )
{ .
2

z= % + 15> i kvaterniona
5.17. Skalarni produkt na H. Lako se provjeri da je formulom

w
w

oo
w

(21| Zo) = 342 (2 Zo + Z521)

definiran skalarni produkt na realnom vektorskom prostoru H i da za ranije
definiranu normu vrijedi |Z|> = (Z | Z). Takoder se lako vidi da imamo
ortogonalnu sumu potprostora

H=RI®YV,
te da vektori I, Ji, Jo, J3 ¢ine ortonormiranu bazu. Preslikavanje V — R3,
(5.5) o1 Jy + oo + asJs — e + ases + azes
je3izom0rﬁzam unitarnih prostora, pri ¢emu je ej, es, es kanonska baza u
R-.
5.18. Antikomutator i skalarni produkt vektora. Neka su K;j i
K5 iz V. Tada je
(K1 Ky + KoK )" = K5 K] + KT K5 = K1 Ko + Ko K.
Zmaci da je antikomutator
{K1, K2} = K1 Ko + Ko K
hermitski element u H, pa mora biti
{K1, Ky} = )\I
za neki realni broj A\. No tada je
2 A =tr(\) = tr (K 1 Koy + Ko Ky) = —tr (K] Ko + K5 K1) = —4(K; | K»),
pa imamo relaciju

{Kl,KQ} = —Q(Kl ’ Kg) za Ki,Ks€V.

5Zacp:7r/3 imamo cos ¢ = % isinp = %=

S
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5.19. Komutator i vektorski produkt vektora. Neka je K1, Ko €
V. Komutator

(K1, Ko = K1 K9 — KoK

je bilinearna operacija i potpuno je odredena na bazi od V. Primijetimo da
je [K, K] = 0. Bududi da za izomorfizam (5.5) vrijedi

[J1,J2] = J3 > e3 = e1 X e,

[JQ,Jg] = Jl — e1 = eg X €3,

NI N~ N

[Jg,Jl] = J2 — €9 = e3 X ey,
gdje je v x w vektorski produkt na R?, operaciju
Kl X K2 = %[K]_,KQ]

zovemo vektorskim produktom vektora u V.

5.20. Mnozenje vektora pomocu skalarnog i vektorskog pro-
dukta. Neka je K1, Ko € V. Bududi da je

HK1, Ko} + §[K1, Ko| = $(K1Ka + Ko K1) + 3(K1 Ko — Ko Kq) = K1 Ko,

mnozenje vektora u V C H mozemo zapisati pomocu skalarnog i vektorskog
produkta kao

KKy = —(Kl | KQ)I“I—Kl x Ks.

Iz ove formule vidimo da kvaternione mozemo definirati, koristeéi izomorfi-
zam (5.5), kao zbroj skalara i vektora

3
ap + ajer + azes + azes, ap €R, aje; + azes +agez € R,
s operacijama zbrajanja i mnozenja zadanim formulama

(a+a)+ (B+b)=(a+8)+ (a+Db),
(a+a)-(B+0) = (af — (a| b))+ (ab+ Ba+a xb).

5.21. Paulijeve matrice i imaginarne jedinice. Ponekad se uzima
drugu ortonormirana baza u V:

. 0 — . 0 -1 . -1 0
Jx——wx—(_i 0 >,J ——wy—<1 0 >,Jz——wz—( 0 i)’

gdje su o, 0y, 0, Paulijeve matrice

(01 (0 i (1 0
2=\ 10) %=\ o) %27\ o0 -1)

te odgovarajuéi izomorfizam unitarnih prostora V — R3,

(5.6) gty + oy dy + oz, = ager + ayes + ages.
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5.22. Diracove matrice. U realnoj asocijativnoj algebri s jedinicom
2 x 2 matrica Ma(H) nad kvaternionima matrice

(0 (0, (0 L (-1 0
o () e (G 8 s (G 6) = (0 9)

zovemo Diracovim matricama. RaspiSite te matrice kao 4 x 4 kompleksne
matrice ili 8 x 8 realne matrice. Izracunajte njihove antikomutatore i komu-
tatore.



POGLAVLJE 11

Dijagonalizacija operatora

U ovom poglavlju uvodimo pojmove svojstvenog polinoma, svojstvene
vrijednosti i svojstvenog vektora kvadratne matrice i linearnog operatora.
Na primjerima pokazujemo da za linearni operator moze postojati i ne po-
stojati baza prostora u kojoj mu je matrica dijagonalna. Nakon toga pokazu-
jemo vezu svojstvenih vrijednosti i svojstvenih vektora s rjeSenjima sistema
diferencijalnih jednadzbi prvog reda.

1. Svojstvene vrijednosti linearnog operatora

1.1. Teorem. Neka je A = (aj) realna ili kompleksna n x n matrica.
Tada je funkcija
Py(x) = det (zI — A)
od variyjable x polinom n-tog stupnja oblika

Pa(z) = 2"+ 012" '+ + 017 + 0p,s

pri ¢emu je o1 = —trA i o, = (—1)"det A. Polinom Py4(x) zovemo svoj-
stvenim ili karakteristicnim polinomom matrice A.

DokAz. Prvo primijetimo da su x — «;; dijagonalni elementi matrice
xl — A, a da elementi —a;; van dijagonale ne sadrze x. Buduéi da je de-
terminanta matrice suma produkata n matri¢nih elemenata pomnozenih s
g(o) = %1, to je jasno da je det (zI — A) polinom stupnja < n. Jedini nacin
da u polinomu P4(z) dobijemo potenciju z™ je da mnozimo dijagonalne
elemente, $to u formuli

(1.1) det A = Z 6(0)0&0(1)1 cee aa(n)n
oeS(n)

odgovara sumandu za ¢ = id i e(id) = 1. Znaci da je P4(x) oblika 2" + . ...
Da bismo u polinomu P4 (z) dobili potenciju 2”1, moramo zbrojiti sumande
u formuli (1.1) koji kao faktore imaju n — 1 dijagonalnih elementa. No to
je opet moguce jedino ako mnozimo sve dijagonalne elemente. Znaci da je
P4(z) oblika 2™ + o121 + ..., gdje je o1 koeficijent uz "1 u polinomu

(x—a11) ... (T—0pp) = 2"+ o2 T =" —(ap a2 L

Znaci da je 01 = —(aq1 + -+ + apn) = —trdA. Na kraju, o, = P4(0) =
det(—A) = (—1)"det A. O

231
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1.2. Primjer. Za 2 x 2 matricu A = (11 1) imamo
1 0 1 1 zx—1 -1
xl—A—x(o 1)‘(—1 1)‘( 1 x—l)’
pa je
z—1 -1 2 2
Py(x) = det(xl — A) = det 1 2o =(xz-1)°"+1=2"-2x+2.

1.3. Zadatak. Neka je A kvadratna n x n matrica i T' regularna n x n
matrica. Dokazite da A i T~'AT imaju iste svojstvene polinome, tj. da je

Py(z) = Pr-147(2).
1.4. Zadatak. Dokazite da ne postoji regularna 2 x 2 matrica 7" takva

da je B =T"'AT za matrice A = (1 1> iB= (1 _1>.
11 1 -1
1.5. Svojstvene vrijednosti matrice. Neka je A realna ili kompleks-
na kvadratna matrica. Nultocke svojstvenog polinoma Py4(x) matrice A
zovemo svojstvenim vrijednostima matrice A, a skup svih svojstvenih vri-
jednosti zovemo spektrom matrice A.

1.6. Zadatak. Nadite svojstvene polinome i svojstvene vrijednosti ima-
ginarnih jedinica Ji, J3, J3 kvaterniona.

1.7. Zadatak. Nadite svojstvene polinome i svojstvene vrijednosti Pa-
ulijevih matrica.

1.8. Svojstveni polinom linearnog operatora. Neka je V realni ili
kompleksni konacno dimenzionalni vektorski prostor i A: V' — V linearan
operator. Polinom

Py(z) = det (21 — A)
zovemo svojstvenim polinomom operatora A. Podsjetimo se da je determi-
nanta operatora definirana kao determinanta matrice operatora u nekoj bazi
E prostora V', pa onda i za svojstveni polinom operatora imamo

Py(z) = det (zI — Ag).

1.9. Invarijante linearnog operatora. Vazno je primijetiti da svoj-
stveni polinom
det (I — A) = det (xI — Ap)
ne ovisi o izboru baze F od V u kojoj ratunamo matricu Ag operatora A.
Zmaci da koeficijenti svojstvenog polinoma

o1 =—trA=—trdg, o9,..., op-1, op=(—1)"detA=(—1)"detAp

ne ovise zovemo o izboru baze E. No onda ni bilo koja funkcija tih koefici-
jenata f(o1,...,0p), na primjer

flo1,...,00) =0} — 0, = (trA)? — (=1)"det A,



1. SVOJSTVENE VRIJEDNOSTI LINEARNOG OPERATORA 233

ne ovisi o izboru baze E prostora V u kojoj racunamo matricu operatora.
Takve funkcije zovemo invarijantama operatora A. Posebno vazne invari-
jante operatora A su trA i det A.

1.10. Spektar linearnog operatora. Neka je V' kona¢no dimenzio-
nalni vektorski prostor nad poljem realnih brojeva R ili poljem kompleksnih
brojeva C. Spektrom linearnog operatora A: V- — V zovemo skup o(A) svih
nulto¢aka svojstvenog polinoma P4(z) u polju kompleksnih brojeva, tj.

o(A) ={A e C| Pa(A) =0},

a elemente spektra zovemo svojstvenim vrijednostima od A. Prema osnov-
nom teoremu algebre spektar

o(A) ={A1,..., As}
je neprazan skup i svojstveni polinom P4 (z) mozemo faktorizirati
Pa(z) = (# = A)™ -+ (2 =A™,

gdje se sve medusobno razli¢ite svojstvene vrijednosti Ai,...,As javljaju s
algebarskim kratnostima nq,..., ng. Uocimo da je

ny+---+ns=n.

1.11. Spektar i koeficijenti svojstvenog polinoma. Vazno je pri-
mijetiti da koeficijente svojstvenog polinoma P4(z) mozZemo izraziti pomoéu
svojstvenih vrijednosti koriste¢i faktorizaciju polinoma

(z=A1)™ - (=)™ = 2" — (A - - AN )T e (=L)AL N
Posebno je

trA=mniAi + -+ ngAs 1 det A= A" AT

1.12. Primjer. Svojstveni polinom jedini¢nog operatora I na R" je
Pr(z) = (z — 1)", spektar je o(I) = {1}, algebarska kratnost svojstvene
vrijednosti 1 jen, trI=n-1=1,det] =1" = 1.

1.13. Primjer. Svojstveni polinom rotacije u ravnini za kut &
0 -1
()

je Py(x) = 2%+1, spektar je o(J) = {i, —i}, algebarske kratnosti svojstvenih
vrijednosti su 1, trJ =i+ (—i) =0, det J =7 - (—i) = 1.
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1.14. Nula nije u spektru regularnog operatora. Operator A je
regularan ako i samo ako je

det A # 0.

Zmnaci da je A regularan ako i samo ako nula nije u spektru od A, tj.
det(0-1—A) #0.
Isto mozemo zakljuéiti na mnogo kompliciraniji nacin:

det A= A"+ A}* #£0 akoisamoako 0¢o(A)={A,...,As}.

2. Svojstveni vektori linearnog operatora

2.1. Svojstveni vektori. Neka je A linearan operator na Viv € V
vektor razlic¢it od nule. Ako je za neki skalar A

Av = Ao,
onda kazemo da je v svojstveni vektor od A. Primijetimo da je tada
(M — A)v =0,
pa zbog pretpostavke v # 0 operator \I — A nije injekcija i vrijedi
Py(A) =det(AI — A) =0, tj. Xeo(A).

Zato jo§ kazemo da je v svojstveni vektor od A za svojstvenu vrijednost A.

2.2. Primjer. Spektar rotacije J u ravnini za kut 7,

0 —1
=),

je {i,—i}. Buduéi da J nema realnih svojstvenih vrijednosti, to nema ni
svojstvenih vektora.

2.3. Napomena. Ako je v svojstveni vektor od A za svojstvenu vri-
jednost A, onda je za svaki skalar p # 0 i vektor pv svojstveni vektor od A
za svojstvenu vrijednost \. Naime, iz pretpostavki slijedi

A(pv) = pAv = plv = A(pv), v # 0.

Zbog toga u unitarnom prostoru normiranjem svojstvenog vektora v dobi-
vamo normirani svojstveni vektor e = IITIHU' Stovise, potprostor

ker(Al — A) ={v eV | Av = v}

zovemo svojstvenim potprostorom za svojstvenu vrijednost A. Svojstveni se
potprostor kao skup sastoji od nule i svih svojstvenih vektora za svojstvenu
vrijednost .
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2.4. Teorem. (1) Ako je V. # 0 konacno dimenzionalni kompleksni
vektorski prostor, onda za svaku svojstvenu vrijednost postoji svojstveni vek-
tor. Posebno, postoji bar jedan v # 0 i bar jedan A € C takav da je

Av = .

(2) Ako je V # 0 konacno dimenzionalni realni vektorski prostor, onda za
svaku realnu svojstvenu vrijednost postoji svojstveni vektor.

Doxkaz. (1) Ako je V kompleksan prostor, onda je za svaki A € o(A)
definiran operator A\I — A. Buduéi da P4()\) = det(A — A) = 0 povlagi da
operator A\I — A nije injekcija, to postoji v # 0 takav da je

(M —A)v=0.

(2) Ako je V realan prostor, onda je operator AI — A definiran samo za
realne brojeve \. Ako je A € o(A) realan broj, onda P4(\) = det(AI—A) =0
povladi da operator AI — A nije injekcija, pa postoji v # 0 takav da je

(M —A)v=0.
(]

2.5. Primjer. Neka je A: C2 — C? zadan u kanonskoj bazi matricom

0 —1
1 0)°
Spektar od A je {i,—i}, pa za svojstvenu vrijednost A = i svojstveni vektor
trazimo rjesavajuéi sistem jednadzbi (A — A\ )v = 0, tj.
—i1§1 — & =0,
&1 — 12 =0.

Jedno rjeSenje tog sistema je & = 1, & = ¢, pa imamo svojstveni vektor

D000

Bududi da je dimker(il — A) = 1, to je skup svih svojstvenih vektora za
svojstvenu vrijednost ¢

1

fen(ir = 00} = {i (}) Twe € 0.

2.6. Zadatak. Neka je A: R? — R? zadan u kanonskoj bazi matricom

(i 2)

Nadite sve svojstvene vrijednosti i sve svojstvene vektore operatora A.
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2.7. Zadatak. Neka je A: V — V zadan u kanonskoj bazi matricom

210 0
120 0
000 -1
001 O

Nadite sve svojstvene vrijednosti i sve svojstvene vektore operatora A u
slucaju (a) V=R*i (b) V = C*

2.8. Lema. Neka je A: V — V linearan operator. Neka su vi,...,v,
svojstvens vektori za medusobno razlicite svojstvene vrijednosti Ai,..., Ay
operatora A, sve realne ako je V' realan prostor. Zai € {1,...,r} stavimo

1
Qi(A) = =——~—— [[(A-ND).
Hj;éi(/\j - \i) i
Tada je
v J=1,
(Aw; =<
Qi(A); {0 j#i.

DokAz. Zbog Av; = A\;v; imamo
(A=MI)...( A= N D(A=XiaD) ... (A= D) (A= N 1)y,
=(A-MID)...(A= X1 D(A=Xipal) ... (A= X1 D) (N — M)y
=N—=—A)A=-MID)...(A= N1 D)(A=X i1 D) ... (A= N1y,

= (A=A A= Aim) N = A1) - (s = X)) (A = A
Znaci da je
H(A - )\jI) V; = H()\z - /\j) Vs,
J# J#i
pa je Qi(A)v; = v;. Ako je k # i, onda zbog Avy = \jvy imamo

H(A — /\jI) (Y H(/\k - )\j) Vi = 0
J#i J#i
jer je za j = k faktor Ay —Ax = 0. Znacida za k # i imamo Q;(A)vy, =0. O

2.9. Teorem. Nekaje A: V — V linearan operator. Neka suvi,..., v,
svojstveni vektori za medusobno razlidite svojstvene vrijednosti Ay, ..., An
operatora A, sve realne ako je V realan prostor. Tada su vektori vi, ..., v,
linearno nezavisni.

Posebno, ako je n = dimV, onda su svojstveni vektori vi,...,v, baza

od V.
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Dokaz. Treba dokazati da v +---+&v, =0povlaci &g =--- =§&, =
0. Promijenimo li operator @;(A) iz leme 2.8 dobivamo

Qi(A)(&1v1 + -+ &uvn) = E1Qi(A)vr + - + £ Qi (A)vn, = &ivy = 0,
pa v; # 0 povlaci & = 0. O

2.10. Primjer. Neka je A: R? — R3 zadan u kanonskoj bazi matricom

1 -1 2
0 -1 3
0 0 2

Svojstveni polinom je P4(z) = (z — 1)(z + 1)(x — 2), pa 4 ima 3 = dimR?
medusobno razli¢ite svojstvene vrijednosti A1 = 1, Ao = —1, A3 = 2. Znaci
da A ima i tri svojstvena vektora vy, vy, v3 (za te tri svojstvene vrijednosti)
koji ¢ine bazu od R3. Bududi da je

Avy = vy = 1-v1 + 0vg + Ovg,

Avy = —v9 = 0vy + (—1) - vg + Qvs,

Avg = 2v3 = 0vy + Ovg + 2 - v3,

to je matrica Ap operatora A u bazi B = (v1,vs,v3) dijagonalna matrica

1 0 0
Ap=(0 -1 0
0 0 2
2.11. Problem dijagonalizacije. Problem dijagonalizacije linearnog
operatora je problem nalazenja baze B = (v1,...,v,) od V koja se sastoji od
svojstvenih vektora operatora A. Drugim rijeCima, problem dijagonalizacije
linearnog operatora A: V' — V je problem nalazenja baze B = (v1,...,vy)
od V u kojoj je matrica operatora dijagonalna
A 0 ..o 0
0 X ... 0
Ap=1| . . I
0 0 ... A\

pri ¢emu se na dijagonali matrice Ap javljaju svojstvene vrijednosti opera-
tora A. Ako takva baza postoji, onda kazemo da se A moze dijagonalizirati.

2.12. Napomena. Ako za A postoji baza svojstvenih vektora, onda je
svojstveni polinom
Py(z) =det(z] — A) =det ((zf — A)g) = (z — A1) (x — A2) -+ - (x — A\p),

pa zaklju¢ujemo da se svojstvena vrijednost operatora A javlja na dijagonali
matrice Ag onoliko puta koliko puta se javlja u faktorizaciji svojstvenog
polinoma Py(x).
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2.13. Napomena. Ako se operator A moze dijagonalizirati, onda se
iz dijagonalne matrice Ap operatora A u bazi svojstvenih vektora mogu
iS¢itati gotovo sva bitna svojstva operatora A. Tako odmah vidimo rang,
defekt, svojstveni polinom, trag, determinantu, spektar, algebarske krat-
nosti svojstvenih vrijednosti, itd. Ra¢unanje polinoma od A je takoder vrlo
jednostavno, npr.

A o2 .0
o - B , |0 A .0
(A%)p = (AA)p = ApAp=(AB)" = | . . E

0 0 A2

A0 ... 0

0 A3 ... 0

(A)p=(Ap)P = | . 7 :

0 0 ... X

n

Tako je za operator A: R? — R3 iz primjera 2.10 i polinom Q(z) = 2% —22+1
mnogo lakSe racunati u bazi B

1° 0 0 12 0 0 1 00
QA)B=QAp) =0 (-1)> 0]—-[0 (-1)* 0]+({0 1 0
0 0 25 0 0 22 0 0 1

nego li u kanonskoj bazi E = (e, ez, e3)

1 -1 2\° /1 -1 2\% /1 0 0
QA)E=QUAr)=(0 -1 3| =0 =1 3| +{0 1 0
0 0 2 0 0 2 00 1

Zbog svih navedenih, ali i drugih razloga, problem dijagonalizacije line-
arnog operatora je jedan od osnovnih problema linearne algebre.

2.14. Zadatak. Izracunajte

1 _1 9\ 10
0 -1 3
0 0 2

(Uputa: koristite ¢injenicu da je (T-1CT)0 = 7-1C100T))

2.15. Ne moze se svaki operator dijagonalizirati. Problem dija-
gonalizacije ne moze se rijesiti za svaki operator. Najjednostavniji primjer
operatora koji se ne moze dijagonalizirati je operator N: R? — R? zadan

matricom
01
0 0/
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Primijetimo da je N # 0, det N = 0itr N = 0. Da postoji baza B = (v1,v3)
u kojoj se N dijagonalizira, tj.
bilo bi det N =det Ng = A\iA2 =0, trN =trNg = A1 + A2 =0. No to
bi povlacilo \{ =X =0 i
00
NB - (0 0> )

tj. N =0, a §to je nemoguce jer je N # 0.

2.16. Zadatak. Neka je A: V — V zadan u kanonskoj bazi 4 X 4 ma-

tricom
N 0Y)
0 N/

pri ¢emu je N matrica iz prethodnog primjera. Dokazite da se operator A
ne moze dijagonalizirati ni u slucaju (a) V = R* niti u sluéaju (b) V = C*.

OO OO
o= OO

1
0
0
0

OO OO

3. Svojstveni vektori i rjeSenja diferencijalnih jednadzbi

3.1. Eksponencijalna funkcija. U matematickoj se analizi dokazuje
da za svaki kompleksni broj z red potencija'

>
k=0
konvergira, tj. da za svaki z postoji limes niza parcijalnih suma reda

: 22 2" ) D2k > Lk
i (e ) = i S0 =3

Eksponencijalna funkcija exp: C — C je funkcija

O _k

2 z
z*—)e:E —.
k!

k=0

Ovako definirana eksponencijalna funkcija je funkcija kompleksne varijable
z = x 41y, a veza s eksponencijalnom funkcijom e” realne varijable i trigo-
nometrijskom funkcijama cosy i siny realne varijable dana je formulom

"t = e*(cosy + isiny).

1Ovdje je k! oznaka za k faktorijela, tj. k!=1-2-3----- k.
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3.2. Osnovno svojstvo eksponencijalne funkcije. Za sve komplek-
sne brojeve z i w vrijedi

U slucaju z = ip i w = i relacija
P . i — Si(ptY)
svodi se na adicione teoreme za funkcije sinus i kosinus
(cos @ + ising) - (cosyp +isiney) = cos(p + ¥) + isin(¢ + ),
odnosno
cos(p + 1) = cos p cos ) — sin g sin 1,
sin(¢ + ) = sin p cos ) + cos @ sin 1.
3.3. Derivacija eksponencijalne funkcije. Nas ¢e posebno zanimati
funkcije oblika
f:R=C, f@t)=eM
za kompleksan broj
A=a+i8, «o,B€R.
Obicno si zamisljamo da je f funkcija vremena t, a zbog relacije
f(t) = eM = e (cos Bt + i sin Bt)
tu funkciju interpretiramo kao titranja frekvencijom B realnog i imaginarnog
dijela
e cos Bt i e sinft,

pri éemu amplituda titranja e* s vremenom eksponencijalno raste za o > 0,

eksponecijalno pada za o < 0, ili je konstantno 1 za o = 0. Derivaciju takve
funkcije po realnoj varijabli ¢ dobivamo deriviranjem realnog i imaginarnog
dijela
()= %f(t) = (e* cos ft) + i(e™ sin Bt)’

= (ae® cos ft — Be™ sin Bt)

+i(ce™ sin Bt + Be® cos Bt)

= ae™(a +iB)(cos Bt + isin ft)

= Af(1).

3.4. Harmonijski oscilator. U klasicnoj mehanici je gibanje ¢estice
u vremenu zadano jednadzbom gibanja
mr=F

u kojoj akceleracija® estice & ovisi o masi estice m i sili F koja na Cesticu

djeluje. Ako znamo jednadzbu gibanja® i polozaj i brzinu Gestice u pocetnom

2tj. druga derivacija Z(t) = 2" (t) po vremenu t polozaja cestice z(t)
3tj. zakon po kojem se Cestica giba
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trenutku, onda je polozaj Cestice u proizvoljnom trenutku dan rjeSenjem di-
ferencijalne jednadzbe sa zadanim pocetnim uvjetom. Jedan od najvaznijih
primjera je jednadzba

(3.1) t+wir=0

za 1-dimenzionalni harmonijski oscilator frekvencije w, w > 0. Ako znamo
polozaj z(0) = A i brzinu z(0) = B u trenutku ¢t = 0, onda je polozaj
Cestice z(t) u proizvoljnom trenutku ¢ dan rjesenjem diferencijalne jednadzbe
drugog reda sa zadanim pocetnim uvjetom

(3.2) () + w?z(t) =0, z(0) = A, z(0) = B.

Taj problem rjesavamo tako da pretpostavimo da postoji rjesenje oblika
x(t) = €M, pa drugu derivaciju z(t) = A\2e uvrstavamo u jednadzbu (3.1)
i dobivamo uvjet

2 2
MM 4 2 =0,
to nakon kracenja s eM #£ 0 daje

(3.3) A4 w?=0.

Ocito je x(t) = e rjesenje jednadzbe (3.1) ako i samo ako je A rjesenje jed-
nadzbe (3.3), tj. ako je A\ = +iw. Znaci da imamo dva rjesenja diferencijalne
jednadzbe

x1(t) = ™t xo(t) = e ™
No i svaka linearna kombinacija funkcija

x(t) = Cll‘l(t) + ngg(t)

je rjesenje diferencijalne jednadzbe (3.1), pa da bi zadovoljili i pocetni uvjet
trazimo konstante C7 i Cy takve da vrijedi

x(0) = C121(0) + Coz2(0) = C1 + Co = A,
£(0) = C141(0) + Coia(0) = iwCy — iwCy = B.

Taj sistem jednadzbi s nepoznanicama C; i Cs ima jedinstveno rjeSenje
1 1 1 1
Ci=-A+—B, (Cy;=-A——8B
B TR S T
i trazeno rjesenje diferencijalne jednadzbe s pocetnim uvjetom (3.2) je funk-
cija
1 1 B .
x(t) = iA(xl(t) + 29(t)) + 2%B(ajl(t) —x9(t)) = Acoswt + — sinwt.
w w

Algebarsku jednadzbu (3.3) zovemo karakteristicnom jednadzbom diferenci-
jalne jednadzbe (3.1).
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3.5. Sistem jednadzbi za harmonjski oscilator. Diferencijalnu jed-
nadzbu drugoga reda (3.1)

2" (t) +wiz(t) =0
mozemo svesti na sistem diferencijalnih jednadzbi prvoga reda tako da sta-
vimo

(3.4)

Tada je
n(t) = 2'(t) = ya(t),
a(t) = (' (1)) = 2"(t) = —w?z(t) = —w?yi (1),
pa imamo sistem jednadzbi
y1(t) = y2(1),
Yo(t) = —wyi(t)

kojeg u matricnom obliku mozemo zapisati kao

() = (e o) (o)

Ako je funkcija z(t) rjesenje diferencijalne jednadzbe (3.1), onda nam ocito
supstitucija (3.4) daje rjesenje sistema (3.5). No vrijedi i obrat: ako je par
funkcija Y = (y1,y2) rjesenje sistema (3.5), onda supstitucijom

z(t) = y1(t)

dobivamo rjesenje diferencijalne jednadzbe (3.1) jer je

2"(t) = y{(t) = (L) = (92(1)) = —wyu(t) = —w?z(t).

Na taj nacin problem rjeSavanja diferencijalne jednadzbe drugog reda svo-
dimo na rjeSavanje sistema diferencijalnih jednadzbi prvog reda. Ocito
se rjesavanje diferencijalne jednadzbe s poCetnim uvjetom (3.2) svodi na
rjeSavanje sistema s poc¢etnim uvjetom

(3.6) (yi(t)> _ < 0 1) (yl(t)> (y1(0)> _ <A> .
Ya(t) —w? 0 \52(t))" \%2(0) B
3.6. Zadatak. Nadite sva rjeSenja sistema diferemcijanih jednadzbi

() = 0 0) Gato)-

svodenjem na diferencijalnu jednadzbu z”(t) = 0.

(3.5)
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3.7. Homogeni linearni sistemi diferencijalnih jednadzbi prvog
reda. Neka je zadana n x n matrica A = (a;;). Homogeni* linearni sistem
diferencijalnih jednadzbi prvog reda s konstantnim keficijentima je problem
nalazenja svih n-torki derivabilnih funkcija Y = (y1,...,y,) takvih da vri-
jedi

Y1 (t) =aniyi(t) + - - + canyn(t),
(3.7) Yo (t) =ayi (t) + - - - + a2nyn(t)

y’;l(t) =0n1Y1 (t) +-- 4+ annyn(t)
za svaki t € R. Cesto sistem krace zapisujemo
Y/(t) =AY (t) ili Y' = AY.

Za zadanu n-torku brojeva b = (51, . .., 5,) rjeSavanje sistema (3.7) s po¢etnim
uvjetom

y1(0) =51, .., ya(0)=5n

zovemo Cauchyjevim problemom kojeg krace zapisujemo kao

Y'(t) = AY(t), Y (0)=b.

3.8. Teorem. Skup svih rjesenja homogenog linearnog sistema diferen-
cijalnih jednadzbi prvog reda je vektorski prostor.

DokaAz. Zbog linearnosti deriviranja imamo
(AMY1 + A2Ya) = M Y{ + AoY5,
a zbog linearnosti mnozenja vektora matricom imamo
A(MYT + AoYs) = M AY] + A AYs.
Zato je za dva rjeSenja sistema Y7 i Ys i njihova kombinacija opet rjeSenje:
(AMY1 + X2Ya) = MY + XYy = A\ AY] + M AYs = A\ Y] + \oYa).
O

4Ako je zadana n X n matrica A = («;) 1 funkcije f1,..., fn, onda je nehomogeni
linearni sistem diferencijalnih jednadZzbi sistem oblika

yi(t) =anyi(t) + - + ayn(t) + f1(1),
Yo (t) =az191(t) + - - + a2ayn (t) + fo(t),

Yn () =amyr (t) + -+ + cnnyn (t) + fa(t) -
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3.9. Svojstveni vektoriirjeSenja diferencijalnih jednadzbi. Neka
jev = (71,.-.,7) # 0 svojstveni vektor matrice A za svojstvenu vrijednost
A, t].

Av = Av.

Stavimo Y (t) = eMv = eM(y1,...,7,) = (M1, ..., eMy,). Tada je

Y'(t) = ((e ’Yl) ) (ekt’Yn)/) = (>\6>‘t71, .. ,)\eAt'yn)
= XeM(,. .. ,'yn) = XeMv = M = eMAv = A(eMv) = AY (1).

Znaci da je n-torka funkcija

Y (t) = eMo
rjeSenje sistema jednadzbi
= AY.
3.10. Dijagonalizacija operatora i Cauchyjev problem. Pretpo-
stavimo da za n X n matricu A postoji baza svojstvenih vektora v1,..., vy,
Avy = My, ..., Avg = Aun.

Tada imamo n rjeSenja
Yi(t) = Moy, ..., Y(t) = ety
sistema diferencijalnih jednadzbi Y’ = AY i svaka linearna kombinacija
Y=0OY1+---+CY,
tih funkcija je opet rjesenje sistema. Ako je zadan Cauchjev problem
=AY, Y(0)=hb,
onda treba treba traziti konstante C,...,C, tako da bude zadovoljen i
pocetni uvjet
Y(0) = C1Y1(0) + - -+ + Cp Y (0) = Crvg + - - - 4 Crvp = b
Buduéi da je po pretpostavci v1,...,v, baza, to gornji sistem jednadzbi s
nepoznanicama C1, ..., C, ima jedinstveno rjesenje.

Znaci da Cauchyjev problem za svaki pocetni uvjet moZemo rijesiti na
opisani nacin ako se A moze dijagonalizirati.

3.11. Napomena. Ako su A\; = a1 + 51, ..., A = @ + 15, medu-
sobno razliCite svojstvene vrijednosti operatora A, onda postoje linearno
nezavisni svojstveni vektori vi,...,v,, 1 pripadna rjeSenja Yi,...,Y,, siste-
ma Y’ = AY, pri ¢emu konstruirano rjeSenje Y} opisuje oscilacije sistema
frekvencijom Bi. Zbog te veze s “dopuStenim frekvencijama titranja siste-
ma” skup svojstvenih vrijednosti operatora A zovemo spektrom od A.

3.12. Zadatak. Pokazite da se matrica u Cauchyjevom problemu (3.6)
moze dijagonalizirati i nadite rjeSenje.
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3.13. Zadatak. Rijesite Cauchyjev problem

(=00 () Go)=G)

3.14. Napomena. Valja reéi da za svaku kvadratnu matricu A Cauc-
hyjev problem
Y =AY, Y(0)=hb
uvijek ima jedinstveno rjesenje. Jedan nacin da se to vidi je da napiSemo
eksponencijalnu funkciju operatora

X Lk Ak 2 A2 m Am
th A t“A t"A
3.8 tA — — =14+tA+—+4---
(3.8) e ol +tA+ 5 + -+ oy
k=0
i pomocu nje rjeSenje Cauchyjevog problema
Y (t) = et.

Naravno, za to bi za pocetak trebalo definirati i dokazati konvergenciju reda
operatora.

3.15. Zadatak. Koristec¢i definiciju (3.8) izra¢unajte e za A= (8 (1))

i provjerite da je Y(t) = e4b rjesenje Cauchyjevog problema Y’ = AY,
Y (0) = b. Usporedite to rjesenje s rjeSenjima dobivenim u zadatku 3.6.






POGLAVLJE 12

Operatori na unitarnim prostorima

U ovom poglavlju pretpostavljamo da je V' kona¢no dimenzionalni uni-
tarni prostor nad poljem realnih ili kompleksnih brojeva. Pokazujemo da
svaki operator A ima jedinstveni hermitski adjungirani operator A*. Defi-
niramo hermitske operatore i kvadratne forme na R” i za njih dokazujemo
teoreme dijagonalizacije. Uvodimo pojam unitarnog operatora i pokazujemo
da oni ¢ine grupu. Dokazujemo da su elementi grupe SO(3) rotacije u R3,

1. Hermitski adjungirani operator

1.1. Matrica operatora u ortonormiranoj bazi. Neka je
E = (ey,...,e,) ortonormirana baza od V. Tada su koordinate &; vektora

r=28er+ -+ &ney
dane formulom
(1.1) &= (xl]e), i=1,...,n.

Ako je A: V — V linearni operator, onda je matrica Ag = (o;) operatora
A u bazi E odredena formulom

n
AEjZ E Qij€4, jzl,...,n.
=1

Buduéi da koordinate «;; vektora Ae; u ortonormiranoj bazi E mozemo
racunati pomoc¢u formule (1.1), to je matrica operatora u ortonormiranoj
bazi dana formulom

a;j = (Aej | e), 4,5=1,...,n.
1.2. Lema. Neka su A i B linearni operatori na V. Tada je A = B
ako i samo ako je
(Az |y) = (Bzx |y) zasve z,yeV.
DokAz. Neka je E = (eq,...,e,) ortonormirana baza od V. Tada je
(Aej | e;) = (Bej | €;), zasve i,j=1,...,n.

Znaci da su matrice Ag i Bg operatora jednake, pa slijedi i jednakost ope-
ratora A = B. Obrat je oc¢igledan. O

247
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1.3. Hermitski adjungirana matrica. Neka je A = (o) realna ili
kompleksna n x n matrica. Tada matricu

A" = (Bij), Biy=a, i,j=1,...,n,

zovemo hermitski adjungiranom matricom matrici A. Znaci da je A* dobi-
vena iz A transponiranjem i, ako se radi o kompleksnoj matrici, kompleksnim
konjugiranjem svakog matricnog elementa.

1.4. Primjer.

01 —1\" 0o 2 3 i 1 -1\~ —i 242 3—1i
23 -2 =1 3 4|,[2-2 3 2| =1 3 4
3 4 5 -1 -2 5 3+i 4 5 -1 -2 5

1.5. Hermitski adjungirani operator. Neka je A: V — V linearni
operator. Tada postoji jedinstvensi linearni operator A*: V. — V takav da je

(Az |y) = (z | A"y) zasve z,y€eV.
Operator A* zovemo hermitski adjungiranim operatorom operatoru A.

Dokaz. Dokazimo prvo jedinstvenost. Pretpostavimo da su B i C ope-
ratori na V takvi da je

(Az |y) = (z|By) i (Az|y)=(x|Cy) zasve z,yeV.
Tada je zbog hermitske simetrije skalarnog produkta

(By | z) = (Az [y) = (Cy | x) zasve z,yeV,

pa iz leme 1.2 slijedi B = C.
Dokazimo sada da operator A* postoji. Odaberimo neku ortonormiranu
bazu E = (eq1,...,e,) od V. Ako operator A* postoji, onda mora biti

(1.2) (Ae; | ej) = (e; | A%ej) zasve i,j=1,...,n.
Zbog hermitske simetrije skalarnog produkta to je ekvivalentno
(A%e; | e;) = (Ae; | ej) zasve i,j=1,...,n.

Zato definiramo linearan operator A* tako da mu je u bazi E matrica
(A*)E = (Bij) jednaka

(13)  (A)p=(Ap)\  By=(A%|ea) = (Ae | ¢;) = ag,

tj. jednaka adjungiranoj matrici matrice Ap = (o;) operatora A. Sada
zbog (1.2) za proizvoljne

n n
r=Y &Gei 1 y=) ne,
i1 =1
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imamo

(Az | y) AZ&ez | Zmeg > &mi(Ae; | ej)

z’jﬂ

—mey (i ] A%ej) = Z@mA Zme] (x | Ay).

1,j=1

1.6. Napomena. Zbog hermitske simetrije skalarnog produkta je

(A'y | z) = (y | Az) zasve z,yeV.

1.7. Svojstva hermitskog adjungiranja.

) (A*)* = A, obi¢no pisemo A** = A i kazemo da je * involucija.

) I* = 1.

) (AB)* = B*A*, obicno kazemo da je * antiautomorfizam mnoZenja.

) (M + uB)* = AA* 4+ pB*, u kompleksnom slucaju kazemo da je *
antilinearno.

Dokaz. Sve tvrdnje slijede iz relacija
(Az |y) = (x| A%) 1 (A'z|y)=(z|Ay)
primjenom leme 1.2:

(A")"x |y) =
(IF'z |y) =

x| AMy) = (Az | y).
x| ly) = (z|y) =z |y).
(AB)*z | y) = (z | ABy) = (A™z | By) = (B" A"z | y).
(M +pB)*z|y) = (z | M+ pB)y) = Mz | Ay) + fi(z | By)
= MNAz | y) + p(B*z | y) = (A" + aB")z | y).

—_— — — —
~—~~ I~

]

Pojam hermitski adjungiranog operatora mozemo definirati i za linearno
preslikavanja izmedu dva unitarna kona¢no dimenzionalna prostora V i W
sa skalarnim produktima ( | )y i (| )w:

1.8. Hermitski adjungirano preslikavanje. Neka je A: V. — W
linearni operator. Tada postoji jedinstveni linearni operator A*: W — V
takav da je'

(Az |y)w = (x| A™y)y zasve zeV,yeW.
LObi¢no pisemo samo (Az | y) = (x | A"y) podrazumijevajuéi da jednakost vrijedi za

sve x € V iy € W, te da je na lijevoj strani skalarni produkt vektora iz W, a na desnoj
strani skalarni produkt vektora iz V.
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Operator A* zovemo hermitski adjungiranim operatorom operatoru A. Na
primjer, za operator A: C3 — C? zadan matricom

0 2¢ 1
A= (2 3 —32')
imamo hermitski adjungirani operator A*: C? — C3 zadan hermitski adjun-
giranom matricom

0 2
A*=1|-2i 3
1 3

Opéenito za ortonormirane baze £ u V i F u W matrica adjungiranog ope-
ratora A* je transponirana i konjugirano kompleksna matrica operatora A,
odnosno

(A")gpr = (Arg)* = (Arp)".
Sve do sada iskazane tvrdnje za hermitski adjungirani operator dokazujemo
na isti nacin i u ovom opéenitijem slucaju, samo Sto trebamo paziti na kojem
unitarnom prostoru ra¢unamo skalarni produkt, jer imamo

v A w,
V+—W.
A*

1.9. Teorem. Neka suV i W konacno dimenzionalni unitarni prostori
i A: V. — W linearni operator. Tada je

V =ker A ®im A, W = ker A* & im A.
DoOKAZ. Prvo uo¢imo da je
rekerAs Ar=0< (Az |y)=0Vy e W
(x| A%y)=0VyeW < (z]2)=0VzeimA*™.

Znaci da je ker A = (im A*)*, pa prva jednakost vrijedi zbog teorema o

projekciji. Druga tvrdnja slijedi iz upravo dokazane prve tvrdnje za operator
A* i jednakosti (A*)* = A. O

1.10. Primjer. Za operator A: R? — R? zadan matricom

11 1
A:<1 2 —1)

imamo hermitski adjungirani operator A*: R? — R? zadan transponiranom
matricom

1 1
At=11 2
1 -1

Tada je im A* razapet stupcima matrice A, a rjeSavanjem homogenog si-
stema linearnih jednadzbi vidimo da je prostor svih rjeSenja ker A razapet
vektorom (—3,2,1).
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1.11. Zadatak. Odredite potprostore ker A i im A* za linearno presli-
kavanje A: R3 — R3 zadano matricom
11 1
A=11 2 -1
23 0
2. Hermitski operatori i kvadratne forme

2.1. Hermitske matrice. Neka je A = (a;j) realna ili kompleksna
n X n matrica. Kazemo da je A hermitska matrica ako je

A=A,

odnosno
i =y zasve 4,5 =1,...,n.
Primijetimo da su zbog a;; = @;; svi dijagonalni elementi hermitske matrice

realni brojevi. Realne hermitske matrice zovemo i simetricnim matricama.

2.2. Zadatak. Provjerite da su matrice A i B hermitske,

9 1 0 242 1
A:<1 3), B=12-2i 3 —3i
1 3i 5
2.3. Hermitske matrice Cine realan vektorski prostor. Za her-
mitske matrice A i B i realne brojeve A vrijedi
(A+B)*=A"4+B*=A+ B, (M)*=)M*=)\A,

pa je skup svih kompleksnih n x n hermitskih matrica realan vektorski
prostor. No opéenito produkt hermitskih matrica nije hermitska matrica,

na primjer
01 1 0 (0 -1
10 0o -1) \1 0 '
2.4. Zadatak. Pokazite da jedini¢na matrica zajedno s Paulijevim ma-
tricama

(10 (01 (0 —i (1 0
“Lo1) % \10) %=\ 0 ) %227\0 -1

¢ini bazu realnog 4-dimenzionalnog prostora hermitskih 2 x 2 matrica.

2.5. Zadatak. Pokazite da je skup realnih simetricnih n x n matrica
realni (”;rl)—dimenzionalni prostor, a da je skup kompleksnih hermitskih
n x n matrica realni n?-dimenzionalni prostor.



252 12. OPERATORI NA UNITARNIM PROSTORIMA

2.6. Hermitski operatori. Za linearan operatora A: V — V kazemo
da je hermitski operator ako je

A* = A

Zbog veze (1.3) je operator A hermitski ako i samo ako mu je matrica Ap
u ortonormiranoj bazi B hermitska matrica. Zbog definicije A*, operator A
je hermitski ako i samo ako je

(2.1) (Az |y) = (z | Ay) zasve z,y€V.

2.7. Lema. Neka je A = (ayj;) realna ili kompleksna n x n hermitska
matrica. Tada su svojstvene vrijednosti od A realni brojevi.

Dokaz. Neka je A linearan operator
A:C"—>C"

zadan u kanonskoj ortonormiranoj bazi matricom A. S obzirom na kanonski
skalarni produkt u C™ operator A je hermitski. Ako je A svojstvena vrijed-
nost matrice A, onda prema teoremu 11.2.4 postoji svojstveni vektor v # 0
u C" za tu svojstvenu vrijednost. Tada je zbog (2.1)

A [v) =W |v) = (Av |v) = (v] Av) = (v | 2v) = A(v | v),

pa kraéenjem s (v | v) # 0 dobivamo da je A = A, odnosno da je \ realan
broj. O

2.8. Teorem o dijagonalizaciji hermitskog operatora. Neka je A
hermitski operator na realnom ili kompleksnom unitarnom konacéno dimenzi-
onalnom prostoru V. Tada postoji ortonormirana baza od V' koja se sastoji
od svojstvenih vektora operatora A.

DoxkAz. Teorem dokazujemo indukcijom pon = dim V. Ako je dimV =
11 e; normirani vektor koji razapinje V', onda je Ae; = Aej i vrijedi tvrdnja
teorema.

Pretpostavimo sada da za svaki hermitski operator A; na (n—1)-dimen-
zionalnom unitarnom prostoru W postoji ortonormirana baza svojstvenih
vektora. Neka je dimV =n i

AV =V

hermitski operator. Prema teoremu 2.4 postoji svojstveni vektor e; # 0 u
V' za svojstvenu vrijednost Ap, tj.

A€1 = )\161.

Smijemo pretpostaviti da je ||lei|| = 1. Neka je W potprostor okomit na e,
tj.
W={veV|(v]|e) =0}

Prema teoremu o projekciji imamo

V={e)®dW, dmW =mn-—1.
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Za w e W, tj. (w|e1) =0, imamo
(Aw | e1) = (w | Aey) = (w | Ae1) = A (w | e1) =0.
Znaci da je
AW C W,
pa imamo dobro definirani linearni operator
A W = W, Ajw=Aw za weW.
To je hermitski operator na W jer za u,w € W vrijedi
(Aju | w) = (Au | w) = (u | Aw) = (u | Ajw).

Sada po pretpostavci indukcije postoji ortonormirana baza eo, ..., e, svoj-
stvenih vektora od A;

Alei:Aei:Aiei, i:2,...,n.

No onda je ey, e, ..., e, ortonormirana baza od V koja se sastoji od svoj-
stvenih vektora operatora A. O

2.9. Primjer. Matricu A = ima ortonormiranu bazu svojstve-

2 1
1 2
. 1 (1Y) . 1 (1 . - .
nih vektora f; = 7 <1> ifo = 7 <_1) za koje vrijedi Af; = 3f;1 i
Afs = fa

2.10. Zadatak. Nadite ortonormiranu bazu svojstvenih vektora za ma-

. 1 1
trlcuA—<1 1).

2.11. Zadatak. Na realnom n-dimenzionalnom unitarnom prostoru za
vektor a norme ||a|| = 1 imamo definiranu tzv. ortogonalnu refleksiju T, s
obzirom na hiperravninu (a)*

T,(x) =z —2(x | a)a.

(i) Interpretirajte geometrijski djelovanje T}, u sluc¢aju n = 2,3. (ii) Dokazite
da je Ty hermitski operator. (iii) Nadite neku ortonormiranu bazu svojstve-
nih vektora.

2.12. Kvadratne forme na R". Neka je A = (oy;) realna n X n ma-
trica. Funkciju

n

Qa:R" =R, z=(&,....6)— Qax) =Qal&,....&) =Y ai&é;

ij=1
zovemo kvadratnom funkcijom ili kvadratnom formom. Na primjer, funkcija

(£0>£17£2a§3) = Q(S()agl?g?agfi) = 53 - g% - gg - 5??

je kvadratna forma na R*.
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2.13. Kvadratne forme i simetricne matrice. U kvadratnoj formi
za ¢ < j imamo dva sumanda

@ij&i&j + i€ = (uj + ai)&i§;
koji daju jedan koeficijent uz kvadratni monom &;§;. Zbog toga je obicaj
da za A uzimamo simetri¢nu matricu kod koje je aj; = aj; tako da je

i€k + jiki&i = 206;6&;-
Tako, na primjer, za kvadratnu formu

Q(&,&) =8 +2646+ &

na R? uzimamo simetriénu matricu
1 1
a=(1 1),
1 2 1 tri 1 3
0 1 ili matricu 1 1)

Zbog toga imamo bijekciju izmedu simetriénih matrica i (koeficijenata) kva-
dratnih formi

a ne matricu

A+—Qa.

2.14. Zadatak. NapiSite simetri¢nu matricu kvadratne forme
Q(§07§17£27§3> = §§ - g% - f% - ég

2.15. Zadatak. Skup kvadratnih funkcija na R" je vektorski prostor s
operacijama zbrajanja i mnozenja skalarom definiranim po tockama

(@1 +Q2)(z) = Q1(z) + Q2(z), (AQ)(z) = AQ(z),
a i skup simetri¢nih matrica je vektorski prostor. Dokazite da je bijekcija

A +— @ 4 izomorfizam tih vektorskih prostora.

2.16. Kvadratne forme i skalarni produkt. Ocito je kvadrat norme
za kanonski skalarni produkt

2l = (z |2) =€+ + &

kvadratna forma na R". StoviSe, za simetri¢nu n x n matricu A = («ayj) je

n

(Az | 2) = (A _&es) | Y &rer) = () aig&jer | Y &rer)
=1 P k=1

ij=1
n n
= > gl (eiler) = ) gt
i,9,k=1 i,j=1

Znaci da kvadratnu formu Qa zadanu simetricnom matricom A moZemo
zapisati pomocéu kanonskog skalarnog produkta na R™ formulom

Qa(z) = (Az | x).
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2.17. Dijagonalizacija kvadratne forme. Simetri¢cna matrica A se
dijagonalizira u nekoj ortonormiranoj bazi fi,..., f, od R™ tako da je

Afl:)\lfla sy Afn:)\nfn
Za vektor x = n1 f1 + - -+ + np fn zapisan u toj bazi imamo
Qa(x) = (Az | x)
Almfr+-+mfa) | mfi+ -+ nnfn)

= (
= (mAfi+-FmAafo) | mfi+F0nfn)
= M7 + -+ Al

pa kazemo da smo kvadratnu formu dijagonalizirali u ortonormiranoj bazi?
prostora R™.

2.18. Primjer. Za matricu A = (? ;) iz primjera 2.9 imamo kva-

dratnu formu

Qa(&1, &) = 267 + 268 + 265

Matrica A ima ortonormiranu bazu svojstvenih vektora

=7 0) = ()

za koje vrijedi Af1 = 3f1 1 Afs = fo, pa se Q4 u toj bazi dijagonalizira
Qa(x) = 3 +15.

Buduéi da su koordinate xp = (n1,m2) vektora z = (§1,&2) u bazi F =
(f1, fo) dane formulom xp = F~1x, tj.

(&1 + &), (61— &2),

1 1
771—5 771—%

za kvadratnu formu imamo dijagonalni oblik
3 2 1 2
Qa(z) = 5(& + &)+ 56 — &)

2.19. Zadatak. Dijagonalizirajte u ortonormiranoj bazi kvadratnu formu

Qal&1, &) =& +264& + 6.

2Vadja re¢i da kvadratnu formu mozemo dijagonalizirati i u drugim bazama.
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2.20. Glavne osi elipse u R?. Neka je A realna simetri¢na 2 x 2 ma-
trica i pretpostavimo da su joj obje svojstvene vrijednosti A1 i Ao pozitivne.
Tada postoji ortonormirana baza fi i f» od R? u kojoj se kvadratna forma
Q4 dijagonalizira, tj.

Q(m f1 + maf2) = Mant + Aars.
Buduéi da je po pretpostavci Ay Ao > 0, skup tocaka
{z =mfi+mn2fo € R? | Qalx) = Ani + Aom3 = A Ao}

je elipsa s glavnim osima u smjeru vektora fi i fo. Jednadzbu te elipse
mozemo zapisati u obliku

2 2
< m > i ( 2 > 1
VA2 VAL
2.21. Primjer. Iz prethodnog primjera 2.18 vidimo da je skup tocaka
r = (&1,&) € R? zadan kvadratnom jednadzbom

27 + 2606 + 262 =3

elipsa s glavnim osima odredenim jednadzbama & = —&2 i & = &o.

2.22. Zadatak. Dijagonalizirajte u ortonormiranoj bazi kvadratnu formu

Q(&,&) =8 +446+ &

i pokazite da su skupovi u R? zadani kvadratnim jednadzbama Q(z) = 3 i
Q(x) = —3 hiperbole.

3. Unitarni operatori

3.1. Unitarne i ortogonalne matrice. Za kompleksnu n x n matricu
A= (ay,...,ay) kazemo da je unitarna ako su vektori ay, . .., a, ortonormi-
rana baza u C". Bududi da je kanonski skalarni produkt u C™ dan formulom

(a|b)=a1fi+-+anb,

to uvjet (a; | a;) = d;; ortonormiranosti vektora mozemo zapisati kao mno-
Zenje matrica

A*A=1.
No za kvadratne matrice to je ekvivalentno uvjetu
AA* =1

ili uvjetu A* = A~!. Realne unitarne matrice zovemo i ortogonalnim ma-
tricama.

3.2. Primjeri unitarnih matrica.

i 0 0 1 0 i
=(o 2) = (ho) = (T0)
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3.3. Zadatak. Dokazite da su sve ortonormirane baze u C? oblika
a —f¢ 2 2
= ’ ) ol + =1, =1, o, 8, € C.
o= (5 25) Pl =1 =1 s
Primijetite da unitarna matrica g kao gore ima determinantu det g = (.

3.4. Unitarni i ortogonalni operatori. Za linearan operatora U na
kompleksnom ili realnom unitarnom kona¢no dimenzionalnom prostoru V
kazemo da je unitaran operator ako ¢uva skalarni produkt, tj. ako je

(Ux|Uy)=(x|y) zasvex,yeV.
Ovaj uvjet je ekvivalentan
(UUz |y)=(r|y) zasvex,yeV,
odnosno
U'U =1.

Kao i u slu¢aju matrica, to je ekvivalentno uvijetu UU* = I ili uvjetu
U* = U~'. Odavle ocito slijedi da je operator U unitaran ako i samo ako u
nekoj/svakoj ortonormiranoj bazi ima unitarnu matricu. U slu¢aju realnog
unitarnog prostora unitarne operatore zovemo i ortogonalnim operatorima.

3.5. Teorem. Za linearan operatora U na kompleksnom ili realnom
unitarnom n-dimenzionalnom prostoru V sljedece su tvrdnje ekvivalentne:

(i) U ¢uva normu, tj. ||Uz|| = ||z|| za svaki z € V.

(i) U ¢uva skalarni produkt, tj. (Uz | Uy) = (x| y) za sve x,y € V.

(iii) U ¢éuva ortonormirane baze, tj.

(Ue; | Uej) =05 ako je (e;|ej) =10y z2a 4,j=1,...,n.

Doxkaz. (i) povlaéi (ii). Ako je V realan unitaran prostor, onda nam
formula za polarizaciju norme daje

Az |y) = [z +yl* = [lo -yl
Sada iz pretpostavke da U ¢uva normu slijedi
AUz | Uy) =||Uz +Uy)||* - [|[Uz — Uy)||?
= ||U(z+yI° = U@z — )|
= ||z +yl[* = ||z — yII”
=4(z | y).

Na slican nac¢in dokazujemo i tvrdnju za kompleksan prostor.
Ocito (ii) povlaéi (iii).
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(iii) povlaci (i). Neka je ey, ..., e, ortonormirana baza u V. Tada je po
pretpostavci i Ueyq, ..., Ue, ortonormirana baza u V i za vektor x imamo

U] = Uz | Uz) = (U &Gei | U &e,)
i=1 j=1

=Y && Uei | Uey) = D & (ei | ) = |||

ij=1 ij=1
g

3.6. Lema. Svojstvene vrijednosti unitarnog operatora su kompleksni
brojevi apsolutne vrijednosti 1.

DokAz. Neka je A svojstvena vrijednost unitarnog operatora U. Prema
teoremu 11.2.4 postoji svojstveni vektor v # 0 za tu svojstvenu vrijednost,

Uv = .
Tada iz definicije slijedi
(v]v)=(Uv|Uv)=Av]| )= A\(v]|v),
pa kraéenjem s (v | v) # 0 dobivamo da je A\ = |A|2 = 1. O
3.7. Zadatak. Na n-dimenzionalnom unitarnom prostoru za vektor a
norme ||a|| = 1 imamo definiranu unitarnu refleksiju T,
To(z) =z —2(z | a)a.

(i) Dokazite da je T, unitarni operator i nadite mu spektar.

3.8. Grupe unitarnih i ortogonalnih matrica. Za unitarne n x n
matrice vrijede sljede¢a svojstva:
(i) produkt unitarnih matrica je opet unitarna matrica jer

(U1 U2)*(U1Us) = UsUTUWU = U5 1Uy = UsUs = 1,
(ii) jedini¢na matrica I je unitarna matrica jer je I* =1 i
iii) inverz unitarne matrice U™+ = je unitarna matrica jer je
e . .t t . U 1 U* . .t t . . .
U YUt =(U)UT=U0U" =1
Drugim rijecima, skup U(n) svih unitarnih kompleksnih n X n matrica je

grupa, a isto tako je grupa i skup O(n) svih ortogonalnih realnih n x n
matrica. 1z Binet-Cauchyjevog teorema

det(UlUQ) = det Uy det Uy

sligedi da je skup SU(n) svih unitarnih n x n matrica determinante 1 grupa,
a isto tako je grupa i skup SO(n) svih ortogonalnih realnih n X n matrica
determinante 1.
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3.9. Grupe O(1)iSO(1). Skalarni produkt na realnom 1-dimenzionalnom

prostoru je mnozenje brojev v-w, a linearan operator A ¢uva skalarni produkt
M- dw = N (v - w)
ako i samo ako je A2 = 1. Zna¢i da imamo grupe

o) ={1,-1}, SO(1) = {1}.

3.10. Grupe O(2) i SO(2). Ve¢ smo vidjeli da su sve ortonormirane
baze u R?, ili, §to je isto, sve ortogonalne 2 x 2 matrice oblika

0(2): C.OSQO —sin e 7 Cpsgp sin ‘ oeR L.
siny  cosp Siny —Cosy

Bududi da je det (COW _Singp) =11 det (COW sinp ) = —1, to je

siny cosg sinp —cos g

SO(2) = {(Cf’w _Sm‘p) ‘ g €R }
sinp  cosp
Geometrijski elemente grupe SO(2) interpretiramo kao rotacije u euklidskoj
ravnini za kut ¢. S druge strane operatore

cosp  sinp

sinp —cosp
geometrijski interpretiramo (nacrtajte sliku!) kao refleksije u ravnini u od-
nosu na os razapetu vektorom (cos %(p, sin %gp) Oznacimo li s T refleksiju u

R? u odnosu na z-os, tj.
1 0
(o 5)

cosp sing \ (1 0 cosp —sing
sinp —cosp) \0 -1 sing cosp )’
pa imamo

0(2) = SO(2) UT - SO(2) = SO(2) U{Tyg | g € SO(2)}.

Koristeéi adicione teoreme za funkcije sinus i kosinus dobivamo da je svaka
rotacija u R? produkt dvije refleksije:

cos %@ sin%gp cos%gp —sin %cp __ [cosp —singp
sin 5 —cos%np —sin%gp —coszp)  \sing cosp )’
3.11. Determinanta ortogonalne matrice. Za realnu ortogonalnu
matricu g vrijeds

onda je

detg € {1,—1}.

Naime, za realnu ortogonalnu matricu ¢ po definiciji vrijedi gg' = I, pa iz
Binet-Cauchyjevog teorema slijedi

(det g)® = det gdet g = det(gg') = det I = 1.
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3.12. Grupe O(3) i SO(3). Oznacimo s T ortogonalnu refleksiju u R?
s obzirom na xy-ravninu, tj.

1 0 0
T=10 1 0
00 —1
i primijetimo da je T ortogonalna matrica, 72 = I i det T = —1. Ako je orto-

gonalna matricu g ima determinantu —1, onda je prema Binet-Cauchyjevom
teoremu det(Tg) = 1, tj. h = Tg € SO(3). No onda je g = T%2g = Th €
T -S50(3). Znaci da je

0(3) = SO(3) UT - SO(3).

Teorem Svaki element g € SO(3) je rotacija u R oko neke osi (v) za neki
kut .

Dokaz. Teorem dokazujemo u tri koraka.
(1) Matrica g ima svojstvenu vrijednost A = 1. Neka je

Py(xz) =det(z] — g) = (x — M) (z — A2)(z — A3)

svojstveni polinom matrice g i A1, A2, A3 svojstvene vrijednosti. Znamo da
je detg = AA2A3 = 1. Polinom Py(x) je polinom s realnim koeficijen-
tima neparnog stupnja 3, pa mora imati bar jednu realnu nultoc¢ku, recimo
A1. Bududi da za svojstvenu vrijednost A unitarnog operatora g mora biti
I\l =1, to je Ay = 11ili Ay = —1. Ako su i druge dvije nultocke Ay i A3
svojstvenog polinoma Py(z) realne, one su i one jednake 1 ili —1, a zbog
uvjeta A1A9A3 = 1 bar je jedna svojstvena vrijednost jednaka 1. Ako pak
druge dvije nultocke Ay i Az polinoma P,(x) s realnim koeficijentima nisu
realne, one su medusobno konjugirano kompleksne, tj. A3 = A2, pa uvijet
1= )\1)\2)\3 = )\1)\2)\72 = )\1|)\2|2 daje A > 0, tj. A= 1.

(2) Postoji os (v) koju operator g ostavlja fiksnom po tockama. Naime, za
svojstvenu vrijednost A = 1 postoji svojstveni vektor v tako da je
gv =",

pa je onda i g(uv) = pv za svaki pv € (v). Smijemo pretpostaviti da je
|[v]] = 1.
(3) Operator g ¢uva ravninu (v)~*
. Naime,

i u toj ravnini rotira vektore za neki kut

(W)={w|peR} i ()" ={aeR’|(a|v)=0}

pa za (a | v) = 0 imamo (ga | v) = (ga | gv) = (a | v) = 0, tj. a € (v)*
povladi ga € (v). Znaci da g ¢uva ravninu (v)*. Oznacimo s g; restrikciju
preslikavanja ¢ na tu ravninu,

g1: <U>L - <U>L7 gi: ar— ga.
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Zbog teorema o projekciji imamo
R® = (v) & (v)*,
pa za vektor x € R3 imamo jedinstveni rastav
2 2 2
= +a, |lz|["=Ipol]”+al]".
Buduéi da je gv = v, da g éuva ravninu (v)* i da g éuva normu, imamo
rastav
gz = o+ ga, ||z|* = [lgz[|* = |luo]| + ||gall?,
odakle slijedi da g; ¢uva normu vektora ||ga||? = ||a||* u ravnini (v)*. Znaéi
da je g; unitaran operator na ravnini (v)*. Odaberemo u toj ravnini neku

ortonormiranu bazu F' = (f1, f2). Tada u toj bazi F' operator g; ima orto-
gonalnu matricu

(91)F € O(2).
S druge strane, u ortonormiranoj bazi B = (v, f1, f2) od R? operator g ima
blok-matricu

1 0 1 0
95 (0 (91)F> evgB = e (0 (91)F> et(g1)r

Odavle det g = det g = 1 povlaédi det(g;)r = 1, odnosno
(91)F € SO(2).

No to nam i znaéi tvrdnja da je g; rotacija u ravnini (v)* za neki kut ¢. O

3.13. Primjer. Neka je g; rotacija oko z-osi za kut 7/2 i go rotacija
oko z-osi za kut 7/2. Tada je i g = g1g2 rotacija oko neke osi (v) za neki
kut ¢. Da ih odredimo prvo izra¢unamo

0 -1 0 1 0 O 0 0 1
g=qggp=|{(1 0 0 00 —-1])]=1(1 00
0O 0 1 01 O 010

Homogeni sistem jednadzbi

gu =20
ima ocigledno rjesenje v = (1,1,1), i to je vektor koji odreduje os rotacije
g. Da bismo odredili kut rotacije ¢ odaberimo neki vektor a | v i zavrtimo
ga u vektor b = ga. Bududi da g ¢uva ravninu ¥ okomitu na vektor v, to su
oba vektora u ravnini ¥ i kut ¢ izmedu njih je

(a]b)

COSp = ———"— .
[lall - [1o]]
Konkretno mozemo izabrati a = (1, —1,0). Tada je b = ga = (0,1, —1) i
—1 1
cos p =

NCRVC R

pa je kut rotacije ¢ = 27/3.

3.14. Zadatak. Neka je g; rotacija oko z-osi za kut 7/2 i go rotacija
oko z-osi za kut 7/2. Nadite os i kut rotacije g = g291.
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3.15. Zadatak. Dokazite da je svaka rotacija g € SO(3) produkt dviju
refleksuja u R3.

3.16. Zadatak. Za permutaciju o € S3 je matrica permutacije 7, orto-
gonalna matrica, tj. T,, € O(3). Za svaku matricu permutacije T, € SO(3)
odredite os i kut rotacije.

3.17. Grupe U(1)iSU(1). Skalarni produkt na kompleksnom 1-dimenzionalnom
prostoru je mnozenje brojev v-w, a linearan operator A ¢uva skalarni produkt

v - dw = A\ (v - W)
ako i samo ako je |A\|? = 1. Znaci da imamo grupe
U ={AeC|N=1}={c"|peR},  SUQ)={1}.
Odavle prepoznajemo izomorfne grupe
U1) = SO(2).

3.18. Grupe U(2) i SU(2). Ve¢ smo vidjeli da su sve ortonormirane
baze u C2, ili, to je isto, sve unitarne 2 x 2 matrice oblika

_ (> & _ _
U(2)_{(6 54( > ‘ |a’2+‘ﬁ|2_17 |<|_17 avﬁvCEC}-
Odavle slijedi da je

SU(2):{<%‘ _/3> ‘ la)? + 8> =1, a,BE(C}.

(07

Grupu SU(2) smo susreli ranije kao grupu kvaterniona norme 1.

3.19. Grupe SU(2) i SO(3). Podsjetimo se da je vektorski dio kva-
terniona 3-dimenzionalni realni vektorski prostor

V= {a1J1 + agJs + agJs | a1, 09,03 € R}

= {( _a;ilmg az——;—ojla?’ ) ’ ay,ag,a3 €R }
={K e MyC) | K*=-K,tr K =0}

ida je

00 Qo + i

det K = det < ) )
—Q9 + 103 —10

>:a§+a§+a§:|ymyz.

Ako je g € SU(2), onda je za K € V
(9Kg*)" = g"K*g" = —gKg* i trgKg"*=trgKg ' =trK =0,

pa je i gKg* € V. Znaci da imamo linearno preslikavanje preslikavanje na
3-dimenzionalni realni unitarnom prostoru

R;: V=V, K Ry(K)=gKg".
Zbog Binet-Cauchyjevog terema imamo
1Ry (K)|[2 = lgK g*[2 = det gKg* = det g det g~* = det K = ||K][2
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To znaci da R, cuva normu, tj. da je
R, € O(3).

Moze se pokazati da je R, rotacija, tj. R, € SO(3), da se svaka rotacija u
V moze dobiti na taj nacin i da je

R, =Ry,

ako i samo ako je h = *g.

3.20. Zadatak. Dokazite da je preslikavanje

R:SU(2) = SO(3), R:g— R,
homomorfizam grupa, tj. da za sve g1, g2 € SU(2) vrijedi
Ry 4, = Ry Ry, .
3.21. Zadatak. Odredite matricu rotacije
K s %92 K90z

u ortonormiranoj bazi J;, Jy, J, prostora V. Odredite os i kut te rotacije.



