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SADRŽAJ 5
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Linearna algebra 1





POGLAVLJE 1

Rješavanje sistema linearnih jednadžbi

U ovom je poglavlju opisan postupak rješavanja proizvoljnog sistema
linearnih algebarskih jednadžbi Gaussovom metodom eliminacija nepozna-
nica. Dokazano je da homogeni sistemi s vǐse nepoznanica nego li jednadžbi
uvijek imaju netrivijalno rješenje.

1. Sistemi linearnih jednadžbi

1.1. Sistem linearnih jednadžbi. Neka je zadano m×n realnih bro-
jeva αij za i = 1, . . . ,m i j = 1, . . . , n i još m realnih brojeva β1, . . . , βm.
Sistem ili sustav jednadžbi

α11ξ1 + · · ·+ α1nξn = β1 ,

α21ξ1 + · · ·+ α2nξn = β2 ,(1.1)

. . .

αm1ξ1 + · · ·+ αmnξn = βm

je problem kod kojeg treba naći sve n-torke realnih brojeva x = (ξ1, . . . , ξn)
takve da vrijedi relacija (1.1). Obično govorimo da su ξ1, . . . , ξn nepoznanice
sistema1, premda je u stvari nepoznata n-torka brojeva x = (ξ1, . . . , ξn).
Ponekad sistem od m jednadžbi s n nepoznanica zovemo kraće sistemom
tipa m× n.

1.2. Pitanje. Da li je sistem jednadžbi ξ1 − ξ2 = 1, ξ2 − ξ3 = 1,
ξ3 − ξ4 = 1, ξ4 − ξ5 = 1 tipa 5× 4 ? DA NE

1.3. Primjer. Sustav jednadžbi

(1.2)
3ξ1 + ξ2 − ξ3 = 5,

− ξ1 + ξ3 = 0

1Nepoznanice sistema se vrlo često pǐsu kao x1, . . . , xn i sistem se zapisuje kao

a11x1 + · · ·+ a1nxn = b1 ,

a21x1 + · · ·+ a2nxn = b2 ,

. . .

am1x1 + · · ·+ amnxn = bm ,

no mi ćemo realne brojeve obično označavati malim grčkim slovima, kao što smo u (1.1)
koristili alfa α, beta β i ksi ξ s jednim ili dva indeksa.
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10 1. RJEŠAVANJE SISTEMA LINEARNIH JEDNADŽBI

ima dvije jednadžbe s tri nepoznanice ξ1, ξ2, ξ3. Očito trojke x = (1, 3, 1) i
x = (2, 1, 2) zadovoljavaju uvjet (1.2). No da bismo riješili sustav jednadžbi
(1.2) trebamo naći sve trojke x = (ξ1, ξ2, ξ3) tako da vrijedi (1.2).

Dok sustav jednadžbi (1.2) ima barem dva rješenja, sustav

(1.3)
3ξ1 + ξ2 − ξ3 = 5,

3ξ1 + ξ2 − ξ3 = 6

očito nema ni jedno rješenje jer ne postoji trojka brojeva x = (ξ1, ξ2, ξ3)
takva da bi jedan te isti izraz jednom bio jednak 5, a drugi put 6. No ovaj
smo put sustav riješili: skup svih rješenja sustava (1.3) je prazan skup!

1.4. Homogeni sistemi jednadžbi. Kažemo da je sistem jednadžbi

α11ξ1 + · · ·+ α1nξn = 0 ,

α21ξ1 + · · ·+ α2nξn = 0 ,(1.4)

. . .

αm1ξ1 + · · ·+ αmnξn = 0

homogen sistem. Uočimo da je x = (0, . . . , 0) rješenje homogenog sistema,
zovemo ga trivijalnim rješenjem. Rješenje x = (ξ1, . . . , ξn) homogenog si-
stema zovemo netrivijalnim ako je ξi 6= 0 za neki i ∈ {1, . . . , n}.

1.5. Primjer. (0, 0, 0, 0) je trivijalno rješenje homogene jednadžbe

3ξ1 − ξ2 + ξ3 + 0ξ4 = 0,

a (1, 3, 0, 0) je jedno netrivijalno rješenje.

1.6. Ekvivalentni sistemi. Za dva sistema jednadžbi od n nepozna-
nica kažemo da su ekvivalentni sistemi ako imaju iste skupove rješenja. Na
primjer, ako drugu jednadžbu ξ1 = ξ3 sistema (1.2) uvrstimo u prvu, dobi-
vamo ekvivalentni sistem

2ξ1 + ξ2 = 5,

−ξ1 + ξ3 = 0.

1.7. Matrica sistema. Brojeve αij zovemo koeficijentima sistema, a
zapisane u pravokutnom obliku

A =


α11 α12 . . . α1n

α21 α22 . . . α2n
...

...
...

αm1 αm2 . . . αmn


zovemo matricom sistema (1.1). Obično kažemo da je matrica sistema tipa
m × n. Brojeve β1, . . . , βm zovemo slobodnim članovima sistema. Koefici-
jente sistema i desnu stranu obično zapisujemo u pravokutnom obliku, kako
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se i pojavljuju u zapisu jednadžbi,

(A, b) =


α11 α12 . . . α1n β1

α21 α22 . . . α2n β2
...

...
...

...
αm1 αm2 . . . αmn βm

 i b =


β1

β2
...
βm


i zovemo ih proširenom matricom sistema i desnom stranom sistema (1.1).
Često sistem kraće zapisujemo kao

Ax = b,

misleći pritom da je A matrica sistema, x = (ξ1, . . . , ξn) zapisan kao stupac

x =

ξ1
...
ξn


i b desna strana sistema. Matricu sistema u kojoj su svi koeficijenti sistema
jednaki nuli zapisujemo kratko kao A = 0, a slično i za desnu stranu ho-
mogenog sistema pǐsemo kratko b = 0. Za matricu A = 0 kažemo da je
nul-matrica. Ako su svi koeficijenti nekog retka matrice jednaki nuli, onda
ćemo reći da je to nul-redak. Isto tako za stupac kojemu su svi koeficijenti
nula kažemo da je nul-stupac.

1.8. Primjer. Matrica, proširena matrica i desna strana sistema (1.2)
su

A =

(
3 1 −1
−1 0 1

)
, (A, b) =

(
3 1 −1 5
−1 0 1 0

)
, b =

(
5
0

)
.

1.9. Zadatak. Napǐsite proširenu matricu sustava jednadžbi

ξ1 + ξ2 = 1, ξ2 + ξ3 = 1, ξ3 + ξ4 = 1, ξ4 + ξ1 = 1.

1.10. Zadatak. Napǐsite sustav jednadžbi kojemu je proširena matrica
0 1 −1 5
3 1 0 0
1 1 −1 5
−1 0 1 0

 .

Da li je to sustav tipa 4× 4 ?

2. Trokutasti sistemi jednadžbi

Neke posebne tipove sistema linearnih jednadžbi lako je riješiti, a po-
sebno su važni trokutasti i stepenasti sistemi.
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2.1. Jedna jednadžba s jednom nepoznanicom. Najjednostavniji
je 1× 1 “sistem”

αξ = β

od jedne jednadžbe s jednom nepoznanicom. Ako je α 6= 0, onda imamo
jedinstveno rješenje ξ = −β/α. Ako je α = 0, onda za svaki ξ imamo αξ = 0
i svaki broj ξ je rješenje u slučaju β = 0, a ni jedan broj ξ nije rješenje u
slučaju β 6= 0.

2.2. Zadatak. Riješite jednadžbe
a) 1ξ = 1, b) 1ξ = 0, c) 0ξ = 1 i d) 0ξ = 0.

2.3. Sistem jednadžbi s jednom nepoznanicom. Kao i u prethod-
nom slučaju, lako je riješiti m× 1 sistem od m jednadžbi

αiξ = βi, i = 1, . . . ,m

s jednom nepoznanicom ξ. Na primjer, od tri sistema tipa 2× 1

0ξ = 0,

2ξ = 2,

0ξ = 0,

0ξ = 0,

0ξ = 2,

2ξ = 0,

prvi ima jedinstveno rješenje ξ = 1, drugi ima beskonačno rješenja ξ ∈ R, a
treći nema ni jedno rješenje.

2.4. Jedna jednadžba s vǐse nepoznanica. Promatrajmo 1× n
“sistem” od jedne jednadžbe s n nepoznanica

α1ξ1 + · · ·+ αj−1ξj−1 + αjξj + αj+1ξj+1 + · · ·+ αnξn = β

i pretpostavimo da je αj 6= 0. Tada rješavanjem po j-toj nepoznanici dobi-
vamo

ξj =
1

α j
(β − (α1ξ1 + · · ·+ αj−1ξj−1 + αj+1ξj+1 + · · ·+ αnξn)) ,

pa za svaki izbor brojeva ξ1, . . . , ξj−1, ξj+1 . . . , ξn možemo odrediti ξj da
jednadžba bude zadovoljena. Tako dobivamo sva rješenja jednadžbe.

2.5. Primjer. Homogenu jednadžbu

3ξ1 − ξ2 + ξ3 + 0ξ4 = 0

možemo rješavati po prvoj nepoznanici ξ1 tako da po volji biramo vrijednosti
za ξ2, ξ3, ξ4 i onda izračunamo

ξ1 = (ξ2 − ξ3)/3.

Znači da je skup svih rješenja jednadžbe jednak

{(1
3(ξ2 − ξ3), ξ2, ξ3, ξ4) | ξ2, ξ3, ξ4 ∈ R}.

Jednadžbu možemo rješavati i po drugoj nepoznanici ξ2 tako da po volji
biramo vrijednosti za ξ1, ξ3, ξ4 i onda izračunamo

ξ2 = 3ξ1 + ξ3.
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Tako opet dobijemo sva rješenja, samo je sada skup svih rješenja jednadžbe
drugačije zapisan:

{(ξ1, 3ξ1 + ξ3, ξ3, ξ4) | ξ1, ξ3, ξ4 ∈ R}.

Jasno je da jednadžbu ne možemo riješiti po nepoznanici ξ4.

2.6. Zadatak. Riješite jednadžbu ξ1 + ξ2 + 2ξ3 = 1.

2.7. Matrica sistema je nul-matrica. Sistem

0x = b

nema rješenja kada sistem nije homogen, a svaki n-torka x = (ξ1, . . . , ξn)
realnih brojeva jest rješenje kad je b = 0. Na primjer, sistem(

0 0 0
0 0 0

)ξ1

ξ2

ξ3

 =

(
5
0

)
nema rješenja.

2.8. Trokutaste matrice. Kažemo da je n × n matrica A = (αij)
donja trokutasta matrica ako je αij = 0 za i < j. Na primjer, svaka od
matrica 1 0 0

1 1 0
1 1 1

 ,

1 0 0
1 1 0
0 0 1

 ,

0 0 0
1 0 0
0 1 0

 ,

0 0 0
0 0 0
0 0 0


je donja trokutasta jer je za svaku α12 = α13 = α23 = 0. Kažemo da je n×n
matrica A = (αij) gornja trokutasta matrica ako je αij = 0 za i > j. Tako
imamo 4× 4 gornje trokutaste matrice

α11 α12 α13 α14

0 α22 α23 α24

0 0 α33 α34

0 0 0 α44

 .

2.9. Sistemi jednadžbi s trokutastom matricom sistema. Siste-
me jednadžbi kojima su matrice sistema gornje trokutaste zovemo trokutas-
tim sistemima. Rješavanje n × n trokutastog sistema svodi se, u n koraka,
na rješavanje jedne jednadžbe s jednom nepoznanicom. Kada je, na primjer,
matrica sistema gornja trokutasta kojoj su dijagonalni elementi različiti od
nule, tj.

α11 6= 0, α22 6= 0, . . . , αnn 6= 0,
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rješavanje sistema

α11ξ1 + α12ξ2 + · · ·+ α1,n−1ξn−1 + α1,nξn = β1 ,

α22ξ2 + · · ·+ α2,n−1ξn−1 + α2nξn = β2 ,

...

αn−1,n−1ξn−1 + αn−1,nξn = βn−1 ,

αnnξn = βn

započinjemo rješavanjem zadnje jednadžbe

αnnξn = βn.

Ta jednadžba ima jedinstveno rješenja ξn koje uvrštavamo u predzadnju
jednadžbu i rješavamo jednadžbu s nepoznanicom ξn−1

αn−1,n−1ξn−1 = −αn−1,nξn + βn−1.

Nastavljajući taj postupak do prve jednadžbe dobivamo jedinstveno rješenje
sistema. Na primjer, rješavanje sistema

(2.1)

ξ1 − ξ2 + 2ξ3 = −1,

2ξ2 − ξ3 = 3,

2ξ3 = 2

započinjemo rješavanjem treće jednadžbe

2ξ3 = 2.

Jedinstveno rješenje ξ3 = 1 uvrštavamo u drugu jednadžbu i dobivamo

2ξ2 = ξ3 + 3 = 1 + 3 = 4.

Jedinstveno rješenje ξ2 = 2 uvrštavamo u prvu jednadžbu i dobivamo jed-
nadžbu

ξ1 = ξ2 − 2ξ3 − 1 = 2− 2− 1 = −1

koja ima jedinstveno rješenje ξ1 = −1. Sada zaključujemo da sistem ima
jedinstveno rješenje x = (−1, 2, 1).

Kod gornje trokutastog sistema odredivali smo redom što su vrijednosti
nepoznanica ξn, ξn−1, . . . , ξ1. Kod trokutastih sistema kojima su neki dija-
gonalni elementi nula može se desiti da tek u kasnijoj fazi rješavanja usta-
novimo da sistem nema rješenja ili da neke nepoznanice nemaju proizvoljne
vrijednosti. Na primjer, kod trokutastih sistema za β = 0 i β = 1

0ξ1 − ξ2 − ξ3 + ξ4 = −1,

0ξ2 + ξ3 − ξ4 = β,

ξ3 + ξ4 = 2,

2ξ4 = 2,

iz zadnje jednadžbe jednoznačno dobivamo ξ4 = 1, a onda iz predzadnje
ξ3 = 1. Sada u slučaju β = 1 vidimo da sistem nema rješenja, a u slučaju
β = 0 je ξ2 proizvoljan, no onda iz prve jednadžbe zaključujemo ξ2 = 1
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i ξ1 proizvoljan. Takav nedostatak nema stepenasti sistem kojeg u našem
primjeru dobijemo oduzimanjem druge jednadžbe od treće

−ξ2 − ξ3 + ξ4 = −1,

ξ3 − ξ4 = β,

2ξ4 = 2− β,
2ξ4 = 2

i onda oduzimanjem treće jednadžbe od četvrte

−ξ2 − ξ3 + ξ4 = −1,

ξ3 − ξ4 = β,

2ξ4 = 2− β,
0 = β.

Zadnja jednadžba tog sistema u stvari glasi

0ξ1 + 0ξ2 + 0ξ3 + 0ξ4 = β,

pa za β = 1 jednadžba (i sistem) nema rješenja, a za β = 0 to nije nikakav
uvjet na nepoznanice, treća jednadžba daje ξ4 = 1, druga ξ3 = 1, te na
kraju prva ξ2 = 1 i ξ1 po volji.

2.10. Stepenaste matrice. Za m × n matricu kažemo da je gornja
stepenasta po recima ako je svaki nul-redak niže od svih redaka koji nisu
nula i u svakom retku prvi element različit od nule stoji desno od prvog
elementa različitog od nule u prethodnom retku. To za matricu A = (αij)
možemo zapisati kao uvjet da za svaki i = 1, . . . ,m− 1 i svaki k = 1, . . . , n

αij = 0 za sve 1 ≤ j < k povlači αi+1,j = 0 za sve 1 ≤ j ≤ k.

Prvi element u retku koji je različit od nule zove se ugaoni ili stožerni element
matrice.

Na primjer, imamo 3 × 4 gornje stepenaste matrica kod kojih su svi
ugaoni elementi 11 2 2 2 0

0 1 0 0 0
0 0 1 2 2

 ,

1 2 2 2 0
0 0 1 2 2
0 0 0 0 1

 ,

1 2 2 2 2
0 0 0 1 2
0 0 0 0 0

 ,

a u prethodnoj smo točki imali primjer sistema sa stepenastom proširenom
matricom sistema 

0 −1 −1 1 −1
0 0 1 −1 β
0 0 0 2 2− β
0 0 0 0 β

 .
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2.11. Stepenasti sistemi jednadžbi. Sisteme kojima su matrice si-
stema stepenaste po recima zovemo stepenastim sistemima. Takve sisteme
riješavamo na sličan način kao i trokutaste sisteme. Na primjer, od dva
stepenasta sistema

ξ1 − ξ2 + 2ξ3 = −1,

2ξ2 − ξ3 = 3,

2ξ3 = 2,

0ξ3 = 1

i

ξ1 − ξ2 + 2ξ3 = −1,

2ξ2 − ξ3 = 3,

2ξ3 = 2,

0ξ3 = 0

prvi nema rješenja jer jednadžba 0ξ3 = 1 nema rješenja, a drugi ima jedins-
tveno rješenje x = (−1, 2, 1) jer je zadnja jednadžba 0ξ3 = 0 zadovoljena za
svaki ξ3, a iz prethodnog primjera (2.1) znamo jedinstveno rješenje preostale
tri jednadžbe.

Kod rješavanja stepenastih sistema može se dogoditi da u pojedinom
koraku trebamo riješiti jednadžbu s vǐse nepoznanica. Na primjer, rješavanje
stepenastog sistema

ξ1 − ξ2 + 2ξ3 = −1,

2ξ2 − ξ3 = 3

započinjemo rješavanjem druge jednadžbe

2ξ2 − ξ3 = 3.

Rješavanjem te jednadžbe po nepoznanici ξ2 vidimo da imamo rješenje

ξ2 = (λ+ 3)/2

za svaki izbor realnog broja ξ3 = λ. Uvrštavanjem rješenja u prvu jednadžbu
dobivamo

ξ1 = ξ2 − 2ξ3 − 1 = (λ+ 3)/2− 2λ− 1 = −3λ/2 + 1/2.

2.12. Zadatak. Riješite stepenasti sistem jednadžbi

ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 = 6,

ξ3 + ξ4 + ξ5 + ξ6 = 4,

ξ5 + ξ6 = 2.

3. Gaussova metoda eliminacije

3.1. Gaussove eliminacije. Pretpostavimo da matrica sistema (1.1)
nije nul-matrica. To znači da u bar jednom retku matrice sistema postoji
bar jedan element različit od nule. Smijemo pretpostaviti da je za neki j
element α1j iz prvog retka različit od nule (jer inače promijenimo redoslijed
pisanja jednadžbi, ne mijenjajući pritom skup svih rješenja sistema). Budući
da je α1j 6= 0, prvu jednadžbu možemo rješavati po nepoznanici ξj :
(3.1)

ξj =
1

α1j
(β1 − (α11ξ1 + · · ·+ α1,j−1ξj−1 + α1,j+1ξj+1 + · · ·+ α1nξn)) .
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Uvrstimo li ξj u preostale jednadžbe, dobivamo sistem:
(3.2)
α11ξ1 + · · ·+ α1,j−1ξj−1 + α1jξj + α1,j+1ξj+1 + · · ·+ α1nξn = β1 ,

α′21ξ1 + · · ·+ α′2,j−1ξj−1 + α′2,j+1ξj+1 + · · ·+ α′2nξn = β′2 ,

α′31ξ1 + · · ·+ α′3,j−1ξj−1 + α′3,j+1ξj+1 + · · ·+ α′3nξn = β′3 ,

. . .

α′m1ξ1 + · · ·+ α′m,j−1ξj−1 + α′m,j+1ξj+1 + · · ·+ α′mnξn = β′m .

Nakon uvrštavanja i sredivanja dobivamo da su za i > 1 i k 6= j koeficijenti
α′ik (uz nepoznanicu ξk) i β′i u i-toj jednadžbi dani formulom

α′ik = αik − αij
α1k

α1j
, β′i = βi − αij

β1

α1j
,

odnosno

(3.3) α′ik = αik + λiα1k i β′i = βi + λiβ1 za λi = −αij
α1j

.

Ovaj rezultat interpretiramo na sljedeći način: Pribrajanjem i-toj jednadžbi
u sistemu (1.1) prve jednadžbe pomnožene s λi dobivamo novu jednadžbu u
kojoj nema nepoznanice ξj; kažemo da smo eliminirali nepoznanicu ξj. U
Gaussovom postupku eliminacije na ovaj način eliminiramo jednu te istu
nepoznanicu ξj u svim jednadžbama za i = 2, . . . ,m.

3.2. Primjer. Neka je 
0 0 5 0
0 0 −1 2
0 1 −1 5
0 2 1 0


matrica sistema jednadžbi s nepoznanicama ξ1, ξ2, ξ3, ξ4.

Kao prvo vidimo da se nepoznanica ξ1 “zapravo ne pojavljuje” u siste-
mu jednadžbi, pa sve ovisi o rješenju sistema s nepoznanicama ξ2, ξ3, ξ4 i
matricom sistema 

0 5 0
0 −1 2
1 −1 5
2 1 0

 .

Koristeći prvu jednadžbu mogli bismo eliminirati nepoznanicu ξ3 u ostalim
jednadžbama. No, kako se često radi, možemo treću jednadžbu premjestiti
na prvo mjesto, dobivši novi sistem s matricom

0 1 −1 5
0 0 5 0
0 0 −1 2
0 2 1 0

 ,

a onda u ostalima jednadžbama eliminirati nepoznanicu ξ2.
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3.3. Gaussove eliminacije daju ekvivalentni sistem jednadžbi.
Ako je x rješenje početnog sistema jednadžbi (1.1), onda je jasno da je
x rješenje i novog sistema (3.2) dobivenog pribrajanjem i-toj jednadžbi u
sistemu (1.1) prve jednadžbe pomnožene s λi. No početni sistem jednadžbi
(1.1) možemo rekonstruirati iz novog sistema pribrajanjem i-toj jednadžbi u
sistemu (3.2) prve jednadžbe pomnožene s −λi. To znači da je svako rješenje
x novog sistema (3.2) ujedno i rješenje početnog sistema (1.1). Znači da
početni sistem (1.1) i novi sistem (3.2) imaju isti skup rješenja.

3.4. Elementarne transformacije sistema jednadžbi. Na sistemi-
ma jednadžbi možemo izvoditi tako zvane elementarne transformacije.

Prvi tip elementarne transformacije sistema je zamjena redosljeda pisa-
nja dviju jednadžbi u sistemu. Takva je transformacija razmatrana u pri-
mjeru 3.2. Jasno je da je takvom transformacijom dobiven ekvivalentan
sistem.

Drugi tip elementarne transformacije sistema je množenje jedne jed-
nadžbe sistema brojem λ 6= 0. Očito je da “staru” jednadžbu možemo
rekonstruirati iz “nove” množenjem brojem λ−1, pa je zato “novi” sistem
ekvivalentan “starom”. Takvu transformaciju obično izvodimo kada želimo
da koeficijent αij 6= 0 u i-toj jednadžbi uz j-tu nepoznanicu “postane” 1, pa
onda i-tu jednadžbu množimo s 1

αij
.

Treći tip elementarne transformacije sistema je dodavanje jednoj jed-
nadžbi sistema neke druge jednadžbe pomnožene s nekim brojem λ. Upravo
taj tip transformacije koristimo u Gaussovom postupku eliminacije nepo-
znanica opisanom u prethodnoj točki.

3.5. Obratni hod u Gaussovoj metodi. Ponekad se opisani postu-
pak eliminacija nepoznanica zove direktni hod u Gaussovoj metodi, a postu-
pak nalaženja rješenja početnog sistema (1.1) iz novog sistema (3.2) zove se
obratni hod u Gaussovoj metodi. Tu valja primijetiti da je x = (ξ1, . . . , ξn)
rješenje novog sistema (3.2) ako i samo ako je (ξ1, . . . , ξj−1, ξj+1, . . . , ξn)
rješenje sistema

(3.4)

α′21ξ1 + · · ·+ α′2,j−1ξj−1 + α′2,j+1ξj+1 + · · ·+ α′2nξn = β′2 ,

α′31ξ1 + · · ·+ α′3,j−1ξj−1 + α′3,j+1ξj+1 + · · ·+ α′3nξn = β′3 ,

. . .

α′m1ξ1 + · · ·+ α′m,j−1ξj−1 + α′m,j+1ξj+1 + · · ·+ α′mnξn = β′m

i ako je

ξj =
1

α1j
(β1 − (α11ξ1 + · · ·+ α1,j−1ξj−1 + α1,j+1ξj+1 + · · ·+ α1nξn)) .

Znači da iz rješenja sistema (3.4) možemo naći rješenje početnog sistema
(1.1). Time je problem rješavanja sistema od m jednadžbi s n nepoznanica
sveden na problem rješavanja sistema od m−1 jednadžbi s n−1 nepoznanica.
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3.6. Gaussova metoda. Kada matrica sistema nije nula, primjenom
Gaussovih eliminacija problem rješavanja sistema od m jednadžbi s n nepo-
znanica svodimo na problem rješavanja sistema od m−1 jednadžbi s n−1 ne-
poznanica. Ako je matrica manjeg sistema nula, onda sistem znamo riješiti.
Ako matrica manjeg sistema nije nula, onda ponovo primijenimo Gaussove
eliminacije. Na kraju postupka dobivamo ili matricu sistema nula, ili sistem
s jednom nepoznanicom, ili jednu jednadžbu. U svakom od tih slučajeva
znamo riješiti sistem, a rješenje početnog sistema dobivamo obratnim ho-
dom.

3.7. Primjer. Neka je zadan sistem od 4 jednadžbe s 3 nepoznanice
ξ1, ξ2, ξ3

ξ1 − ξ2 + 2ξ3 = −1,

ξ1 + 2ξ2 − ξ3 = 2,

−ξ1 + ξ2 + ξ3 = 0,

−ξ1 + ξ2 + 2ξ3 = 2.

Odaberemo α11 = 1 6= 0 i pomoću prve jednadžbe eliminiramo nepoznanicu
ξ1 u ostalima. U prvom koraku mijenjamo drugu jednadžbu: množimo prvu
jednadžbu s λ = −1 i pribrajamo drugoj jednadžbi. U drugom koraku
mijenjamo treću jednadžbu i biramo λ = 1. U trećem koraku biramo λ = 1.

ξ1 − ξ2 + 2ξ3 = −1,

3ξ2 − 3ξ3 = 3,

−ξ1 + ξ2 + ξ3 = 0,

−ξ1 + ξ2 + 2ξ3 = 2;

ξ1 − ξ2 + 2ξ3 = −1,

3ξ2 − 3ξ3 = 3,

3ξ3 = −1,

−ξ1 + ξ2 + 2ξ3 = 2;

ξ1 − ξ2 + 2ξ3 = −1,

3ξ2 − 3ξ3 = 3,

3ξ3 = −1,

4ξ3 = 1.

U sljedećem ciklusu eliminirali bismo drugu nepoznanicu u trećoj i četvrtoj
jednadžbi, koristeći za to drugu jednažbu. No u ovom se je primjeru desilo
da u trećoj i četvrtoj jednadžbi već nema nepoznanice ξ2. Odaberemo
α33 = 3 6= 0 i pomoću treće jednadžbe eliminiramo nepoznanicu ξ3 u
četvrtoj.

ξ1 − ξ2 + 2ξ3 = −1,

3ξ2 − 3ξ3 = 3,

3ξ3 = −1,

0 = 7
3 .

Zadnji redak na kraju procesa Gaussovih eliminacija označuje jednadžbu

0ξ3 = 7
3

koja nema rješenja. Znači da i početni sistem nema rješenja.
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3.8. Primjer. Neka je zadan sistem od 3 jednadžbe s 3 nepoznanice
ξ1, ξ2, ξ3

ξ1 − ξ2 + 2ξ3 = −1,

ξ1 + 2ξ2 − ξ3 = 2,

−ξ1 + ξ2 + ξ3 = 0.

To su prve tri jednadžbe iz prethodnog primjera, pa Gaussovim eliminaci-
jama dobijamo ekvivalentan sistem

ξ1 − ξ2 + 2ξ3 = −1,

3ξ2 − 3ξ3 = 3,

3ξ3 = −1.

Sada primijenimo obratni hod: iz treće jednadžbe dobijamo ξ3 = −1/3.
Uvrštavanjem dobivenog ξ3 u drugu jednadžbu dobijamo ξ2 = 2/3. Uvršta-
vanjem dobivenih ξ2, ξ3 u prvu jednadžbu dobivamo ξ1 = 1/3. Dobiveno
rješenje x = (1/3, 2/3,−1/3) jedinstveno je rješenje početnog sistema.

3.9. Gaussova metoda i proširena matrica sistema. Valja primi-
jetiti da je kod primjene Gaussovih eliminacija na sistem (1.1) bilo dovoljno
zapisivati samo proširenu matricu sistema (A, b). Zato rješavanje sistema u
primjeru 3.7 zapisujemo ovako:

(A, b) =


1 −1 2 −1
1 2 −1 2
−1 1 1 0
−1 1 2 2

 7→


1 −1 2 −1
0 3 −3 3
−1 1 1 0
−1 1 2 2

 7→

7→


1 −1 2 −1
0 3 −3 3
0 0 3 −1
−1 1 2 2

 7→


1 −1 2 −1
0 3 −3 3

0 0 3 −1
0 0 4 1

 7→


1 −1 2 −1
0 3 −3 3
0 0 3 −1
0 0 0 7

3

 .

U ovom primjeru prvo odaberemo α11 = 1 6= 0 i pomoću prve jednadžbe
eliminiramo nepoznanicu ξ1 u ostalima. U prvom koraku mijenjamo drugi
redak: množimo prvi redak s λ = −1 i pribrajamo drugom retku. U drugom
koraku mijenjamo treći redak i biramo λ = 1. U trećem koraku biramo
λ = 1.

U sljedećem ciklusu eliminirali bismo drugu nepoznanicu u trećoj i če-
tvrtoj jednadžbi, koristeći za to drugu jednažbu. No u ovom se je primjeru
desilo da u trećoj i četvrtoj jednadžbi već nema nepoznanice ξ2.

Odaberemo α33 = 3 6= 0 i pomoću treće jednadžbe eliminiramo nepo-
znanicu ξ3 u četvrtoj. Zadnji redak na kraju procesa Gaussovih eliminacija
označuje jednadžbu

0ξ1 + 0ξ2 + 0ξ3 = 7
3

koja nema rješenja, pa onda ni početni sistem nema rješenja.
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3.10. Svodenje sistema na stepenasti oblik. Obično je najjednos-
tavnije sistem jednadžbi rješavati tako da proširenu matricu sistema elemen-
tarnim transformacijama redaka svedemo na stepenastu matricu po recima.
Tako matricu sistema iz primjera 3.2 svodimo na gornji stepenasti oblik

0 0 5 0
0 0 −1 2
0 1 −1 5
0 2 1 0

 7→


0 1 −1 5
0 0 5 0
0 0 −1 2
0 2 1 0

 7→


0 1 −1 5
0 0 5 0
0 0 −1 2
0 0 3 −10

 7→

7→


0 1 −1 5
0 0 1 0
0 0 −1 2
0 0 3 −10

 7→


0 1 −1 5
0 0 1 0
0 0 0 2
0 0 0 −10

 7→


0 1 −1 5
0 0 1 0
0 0 0 2
0 0 0 0

 .

Gornji primjer nam pokazuje kako proizvoljni sistem možemo svesti na ste-
penasti: Ako matrica sistema nije nula, onda u prvom stupcu matrice koji
nije nula (u gornjem je primjeru to drugi stupac) odaberemo koeficijent koji
nije nula (u primjeru je to 1 u trećoj jednadžbi) i pripadnu jednadžbu/redak
premjestimo na prvo mjesto. Pomoću odabranog koeficijenta eliminiramo
sve koeficijente ispod njega. Postupak nastavimo s preostalim jednadžbama
ne mijenjajući vǐse prvu.

3.11. Zadatak. Riješite homogeni sistem jednadžbi

ξ1 − ξ2 + 2ξ3 = 0,

−ξ1 + ξ2 + 2ξ3 = 0

svodenjem na stepenasti sistem.

3.12. Zadatak. Riješite homogeni sistem jednadžbi

ξ1 − ξ2 + 2ξ3 = 0,

−ξ1 + ξ2 + ξ3 = 0,

−ξ1 + ξ2 + 2ξ3 = 0,

3ξ2 − 3ξ3 = 0

svodenjem na stepenasti sistem.

4. Homogeni m× p sistemi za m < p

4.1. Homogeni sistem s matricom sistema nula. Očito je svaki
izbor n-torke brojeva (λ1, . . . , λn) rješenje homogenog sistema jednadžbi

0λ1+ · · ·+ 0λn = 0,

...

0λ1+ · · ·+ 0λn = 0

s matricom sistema nula. Posebno, takav sistem uvijek ima netrivijalno
rješenje.
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4.2. Homogena jednadžba s vǐse od jedne nepoznanice. Očito
jedna homogena jednadžba

α1λ1 + · · ·+ αnλn = 0

s barem dvije nepoznanice λ1, . . . , λn ima netrivijalno rješenje.

4.3. Teorem. Homogeni sistem od m jednadžbi
p∑
j=1

αijλj = 0, i = 1, . . . ,m

i p > m nepoznanica uvijek ima netrivijalno rješenje (λ1, . . . , λp).
Naime, ili na kraju Gaussovog postupka eliminacije imamo jednu homo-

genu jednadžbu s p−m+ 1 ≥ 2 nepoznanica koja ima netrivijalno rješenje,
ili je postupak eliminacije prekinut ranije jer smo dobili homogeni sistem s
matricom sistema nula, a koji takoder ima netrivijalno rješenje.

4.4. Primjer. Neka je zadan homogeni sistem od 2 jednadžbe s 3 nepo-
znanice

λ1 − λ2 + 2λ3 = 0,

λ1 + 2ξ2 − λ3 = 0.

Gaussovom eliminacijom dobijamo ekvivalentan sistem

λ1 − λ2 + 2λ3 = 0,

3λ2 − 3λ3 = 0

koji ima netrivijalno rješenje λ3 = 1 6= 0, λ2 = λ3, λ1 = λ2 − 2λ3.



POGLAVLJE 2

Vektorski prostor Rn

U ovom poglavlju uvodimo operaciju zbrajanja na skupu Rn svih ure-
denih n-torki realnih brojeva i operaciju množenja n-torki realnim broje-
vima. Te dvije operacije na skupu Rn nasljeduju neka dobra svojstva zbra-
janja i množenja u polju realnih brojeva, pa Rn s uvedenim operacijama
zovemo vektorskim prostorom. Koristeći te operacije definiramo geometrij-
ske objekte u Rn kao što su pravci i ravnine. Pomoću operacija zbrajanja
i množenja skalarom definiramo i elementarne transformacije na matricama
te linearne kombinacije vektora. Na kraju uvodimo pojam linearne ljuske
vektora i pojam potprostora prostora Rn.

0.1. Pojam preslikavanja. Neka su A i B dva skupa. Ako svakom
elementu a skupa A pridružimo neki element f(a) skupa B, pǐsemo

a 7→ f(a),

onda kažemo da je zadano preslikavanje f sa skupa A u skup B i pǐsemo

f : A→ B.

Kažemo da su dva preslikavanja f : A→ B i g : A→ B jednaka ako je

f(a) = g(a)

za sve elemente a skupa A.

0.2. Konačni nizovi elemenata u skupu. Neka je S neki skup. Tada
preslikavanje f : {1, 2, . . . , k} → S zovemo nizom od k članova u skupu S,
ili samo konačnim nizom u S. Preslikavanje f je u potpunosti zadano ako
znamo

f(1) = s1, f(2) = s2, f(3) = s3, . . . , f(k) = sk,

pa obično kažemo da je

s1, s2, s3, . . . , sk ili (s1, s2, s3, . . . , sk)

niz u S, a elemente s1, s2, s3, . . . , sk skupa S zovemo članovima niza.
Takoder kažemo da je prvi član niza s1, drugi član niza s2 itd. Iz opće
definicije jednakosti preslikavanja slijedi da su nizovi

f : {1, 2, . . . , k} → S i g : {1, 2, . . . , k} → S

jednaki ako i samo ako je

f(1) = g(1), f(2) = g(2), f(3) = g(3), . . . , f(k) = g(k).

23
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Nizove (s1, . . . , sk) od k članova u skupu S zovemo i uredenom k-torkom
elemenata iz S. Skup svih k-torki elemenata iz S označavamo sa Sk i čitamo
“skup es na katu potenciju” ili samo “es na katu”.

0.3. Primjer. Za skup S = {0, 1} imamo niz

0, 0, 0, 1, 0, 1, 1

od sedam članova, pri čemu je prvi član niza 0, drugi član niza isto 0 itd.
Jasno je da je

1, 0, 1, 1, 0, 0, 0

drugi niz u skupu S jer se radi o drugom preslikavanju {1, 2, . . . , 7} → S.

0.4. Primjer. Za skup S = {0, 1} skup S2 sastoji se od uredenih parova

(0, 0), (0, 1), (1, 0), (1, 1).

0.5. Zadatak. Za skup S = {0, 1} ispǐsite sve elemente skupa S3.

0.6. Razlika izmedu skupa od n elemenata i niza od n članova.
Kad govorimo o skupu {s1, s2, . . . , sn} od n elemenata, onda podrazumije-
vamo da su svi elementi tog skupa medusobno različiti i ne podrazumije-
vamo nikakav poredak medu njima. Kad govorimo o nizu (s1, s2, . . . , sn) od
n članova, onda podrazumijevamo da je s1 prvi član niza, s2 drugi član niza
itd, a ne podrazumijevamo da su ti članovi medusobno različiti.

0.7. Zadatak. Za skup S = {0, 1} ispǐsite sve dvočlane podskupove
skupa S i sve dvočlane nizove u S.

1. Vektori u Rn i matrice tipa n× k

1.1. Skup Rn. Neka je n fiksan prirodan broj. Elementi skupa Rn
(čitamo “er na entu” ili samo “er en”) su sve uredene n-torke realnih bro-
jeva (α1, α2, . . . , αn). Uredenu n-torku realnih brojeva a = (α1, α2, . . . , αn)
obično zovemo točkom ili vektorom u Rn, a realne brojeve α1, α2, . . . , αn
koordinatama vektora (točke) a, pri čemu je prva koordinata α1, druga ko-
ordinata je α2 itd.

1.2. Primjer. (0, 1, 1,−1,
√

3) i (0, 1, 1,−1, 0) su dvije različite petorke
realnih brojeva, ili dvije različite točke u R5.

1.3. Zadatak. Napǐsite dvije različite točke u R8.
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1.4. Skupovi Rn javljaju se u geometriji i analizi. Skupove R1,
R2 i R3 možemo si predočiti geometrijski. Tako si, na primjer, skup R2 svih
uredenih parova realnih brojeva a = (α1, α2) možemo zamisliti kao skup
točaka a u euklidskoj ravnini s koordinatama α1 i α2 u odabranom Kartezi-
jevom sustavu koordinata. Na sličan si način uredene trojke realnih brojeva
(α1, α2, α3) iz R3 zamǐsljamo kao točke euklidskog prostora s koordinatama
α1, α2 i α3 u odabranom Kartezijevom sustavu koordinata. U slučaju n > 3
za skup Rn nemamo neposredne geometrijske predodžbe, no još uvijek neka
svojstva tog skupa interpretiramo “geometrijski”, po analogiji s R2 i R3.

Skupovi Rn javljaju se prirodno u matematičkoj analizi i njenim primje-
nama kao skupovi parametara (o kojima ovise neke veličine). Tako je, na
primjer, brzina vjetra (vx, vy, vz) u trenutku t u točki prostora s koordina-
tama x, y, z “točka” (vx, vy, vz, t, x, y, z) u R7.

1.5. Zapisivanje uredenih n-torki brojeva. U matematičkoj ana-
lizi i geometriji je običaj uredene n-torke brojeva a ∈ Rn zvati točkama i
zapisivati ih kao retke

a = (α1, α2, . . . , αn),

a u linearnoj je algebri običaj uredene n-torke brojeva a ∈ Rn zvati vekto-
rima i zapisivati ih kao stupce, kažemo vektor-stupce

a =


α1

α2
...
αn

 .

Mi ćemo, prema prilici, koristiti oba načina zapisivanja. Kasnije ćemo go-
voriti i o vektor-recima

a =
(
α1 α2 . . . αn

)
,

što su takoder n-torke brojeva.

1.6. Primjer.

a =


0
1
1
−1√

3

 i b =


0
1
1
−1
0


su dva različita vektora u R5.

1.7. Konačni nizovi vektora u Rn. Pored pojedinih vektora u Rn
često ćemo pisati i nizove vektora u Rn, kao što je, na primjer, niz od četiri
vektora

(1.1)

(
2
1

)
,

(
1
−1

)
,

(
1
1

)
,

(
5
6

)
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u R2. Želimo li općenito za niz vektora

a1, a2, . . . , ak

u Rn zapisati koordinate tih vektora, onda je običaj da koristimo (odgova-
rajuća mala grčka) slova s dva indeksa

a1 =


α11

α21
...
αn1

 , a2 =


α12

α22
...
αn2

 , . . . , ak =


α1k

α2k
...
αnk

 .

Dogovor je da αij označava i-tu koordinatu j-tog člana niza aj .

1.8. Matrica tipa n× k. Konačan niz vektora a1, a2, . . . , ak u Rn, ili,
što je isto, k-torku vektora

(a1, a2, . . . , ak)

zovemo i matricom realnih brojeva tipa n×k. Zapisujući koordinate vektora
imali bismo prevǐse (suvǐsnih) zagrada i zareza


α11

α21
...
αn1

 ,


α12

α22
...
αn2

 , . . . ,


α1k

α2k
...
αnk


 ,

pa radije pǐsemo samo 
α11 α12 . . . α1k

α21 α22 . . . α2k
...

...
...

αn1 αn2 . . . αnk

 .

Kažemo da matrica (a1, . . . , ak) ima n redaka i k stupaca. Ponekad matricu
(a1, . . . , ak) kraće zapisujemo kao

(αij)i=1,...,n
j=1,...,k

ili samo (αij).

Za i-tu koordinatu αij vektor-stupca aj obično kažemo da je element matrice
u i-tom retku i j-tom stupcu. Obično ćemo matrice označavati velikim
latinskim slovima, na primjer

A = (a1, . . . , ak)

ili

A =


α11 α12 . . . α1k

α21 α22 . . . α2k
...

...
...

αn1 αn2 . . . αnk

 .
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1.9. Primjer. Niz vektora (1.1) zovemo i matricom tipa 2× 4 i kratko
zapisujemo kao (

2 1 1 5
1 −1 1 6

)
.

1.10. Pitanje. Da li je matrica 1 0 0 1
0 1 1 0

−2 2 3
√

3


tipa 4× 3? DA NE

1.11. Jednakost matrica. U skladu s općom definicijom iz točke 0.2,
za dvije matrice A = (a1, . . . , ak) i B = (b1, . . . , bk) istoga tipa n×k kažemo
da su jednake i pǐsemo A = B ako su im pripadni vektor-stupci jednaki:

a1 = b1, . . . , ak = bk.

1.12. Nul-matrica. Vektor (0, . . . , 0) u Rn kojem su sve koordinate
nula zovemo nul-vektorom ili nulom i kratko označavamo s 0. Matricu
(0, . . . , 0) kojoj su svi stupci nul-vektori zovemo nul-matricom ili nulom i
označavamo je s 0:

0 = (0, 0, . . . , 0) =


0 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

 .

Tako je, na primjer,

0 =

0 0 0 0
0 0 0 0
0 0 0 0


3× 4 nul-matrica.

1.13. Kvadratne matrice. Matrice tipa n×n zovemo kvadratnim ma-
tricama. Elemente α11, . . . , αnn kvadratne matrice A = (αij) zovemo dija-
gonalom od A, elemente αij , i < j gornjim trokutom od A, a elemente αij ,
i > j donjim trokutom od A. Elemente donjeg trokuta, dijagonale i gornjeg
trokuta 4× 4 matrice možemo si predočiti kao zvjezdice

· · · ·
∗ · · ·
∗ ∗ · ·
∗ ∗ ∗ ·

 ,


∗ · · ·
· ∗ · ·
· · ∗ ·
· · · ∗

 ,


· ∗ ∗ ∗
· · ∗ ∗
· · · ∗
· · · ·

 .

Kvadratne matrice kojima donji trokut ima matrične elemente 0 zovemo
gornjim trokutastim matricama, matrice kojima gornji trokut ima matrične
elemente 0 zovemo donje trokutastim matricama, a matrice kojima i gornji
i donji trokut ima matrične elemente 0 zovemo dijagonalnim matricama.
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Tako, na primjer, imamo donje trokutaste, dijagonalne i gornje trokutaste
4× 4 matrice:


α11 0 0 0
α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44

 ,


α11 0 0 0
0 α22 0 0
0 0 α33 0
0 0 0 α44

 ,


α11 α12 α13 α14

0 α22 α23 α24

0 0 α33 α34

0 0 0 α44

 .

1.14. Pitanje. Koja je matrica donja trokutasta, a koja nije:

0 0 0
0 0 0
0 0 0

 ,

(
0 0 0
0 0 0

)
?

2. Vektorski prostor Rn

2.1. Zbrajanje vektora i množenje vektora skalarom. Na skupu
Rn definiramo operaciju zbrajanju po pravilu

a+ b =


α1

α2
...
αn

+


β1

β2
...
βn

 =


α1 + β1

α2 + β2
...

αn + βn

 .

Takoder definiramo operaciju množenja vektora realnim brojem λ, obično
kažemo skalarom λ, po pravilu

λa = λ


α1

α2
...
αn

 =


λα1

λα2
...

λαn

 .

Ponekad je zgodno pisati λ · a umjesto λa, kao na primjer 1 · a umjesto 1a
kad želimo naglasiti da vektor a množimo brojem 1. Kada na skupu Rn
koristimo operacije zbrajanje vektora i množenje vektora skalarom, onda je
običaj elemente od Rn zvati vektorima, a ne točkama. Da bismo u formu-
lama odmah vidjeli zbrajamo li vektore ili brojeve, bit će zgodno vektore
označavati malim latinskim slovima, na primjer a, b, c, ili malim latinskim
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slovima s indeksima, na primjer a1, a2, a3, a brojeve i koordinate vektora
malim grčkim slovima1.

2.2. Primjer. U R4 imamo
1
−2
0
2

+


3
3
5
−1

 =


1 + 3
−2 + 3
0 + 5

2 + (−1)

 =


4
1
5
1

 , 3


1
−2
0
2

 =


3 · 1

3 · (−2)
3 · 0
3 · 2

 =


3
−6
0
6

 .

2.3. Algebarska svojstva zbrajanja i množenja skalarom. Bu-
dući da je operacija zbrajanja vektora a+ b definirana kao zbrajanje odgo-
varajućih koordinata αi+βi, to iz svojstava asocijativnosti i komutativnosti
za zbrajanje brojeva slijede svojstva asocijativnosti

(a+ b) + c = a+ (b+ c)

i komutativnosti
a+ b = b+ a

za zbrajanje vektora. Na primjer, zbog komutativnosti zbrajanja brojeva
vrijedi

α1

α2
...
αn

+


β1

β2
...
βn

 =


α1 + β1

α2 + β2
...

αn + βn

 =


β1 + α1

β2 + α2
...

βn + αn

 =


β1

β2
...
βn

+


α1

α2
...
αn

 .

To smo mogli kraće zapisati provjeravajući samo jednakost i-te koordinate

αi + βi = βi + αi

u vektorima a+ b i b+ a za svaki i = 1, 2, . . . , n.
Vektor kojemu su sve koordinate nula zovemo nul-vektorom ili nulom u

Rn

0 =


0
0
...
0

 .

1Mala grčka slova

α alfa

β beta

γ gama

δ delta

ε, ε epsilon

ζ zeta

η eta

ϑ, θ theta

ι iota

κ kapa

λ lambda

µ mi

ν ni

ξ ksi

π pi

ρ, % ro

σ, ς sigma

τ tau

υ ipsilon

ϕ, φ fi

χ hi

ψ psi

ω omega
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Tako je 0 = ( 0
0 ) nula u R2, a 0 =

(
0
0
0

)
je nula u R3. Očito je za vektore a i

0 iz Rn
a+ 0 = 0 + a = a.

Takoder je očito da svaki vektor a u Rn ima jedinstveni suprotni element

−a = −


α1

α2
...
αn

 =


−α1

−α2
...
−αn


sa svojstvom

−a+ a = a+ (−a) = 0.

Kao i za brojeve, obično pǐsemo a− b umjesto a+ (−b).
S druge strane, operacija množenja skalarom nasljeduje neka svojstva

množenja brojeva:
1 · a = a, λ(µa) = (λµ)a,

te

0 ·a =


0 · α1

0 · α2
...

0 · αn

 = 0, (−1) ·a =


(−1) · α1

(−1) · α2
...

(−1) · αn

 = −a, λ ·0 =


λ · 0
λ · 0

...
λ · 0

 = 0.

Zbog distributivnosti množenja brojeva prema zbrajanju imamo dvije
distributivnosti množenja skalarom: u odnosu na zbrajanje u R i u odnosu
na zbrajanje u Rn

(λ+ µ)a = λa+ µa, λ(a+ b) = λa+ λb.

Zbog navedenih svojstava zbrajanja vektora i množenja vektora skalarom
skup Rn zovemo vektorskim prostorom Rn. Grubo govoreći, s vektorima
računamo “kao s brojevima”.

2.4. Proporcionalni vektori. Kažemo da su vektori a i b u Rn pro-
porcionalni ako je a = λb za neki realan broj λ ili je b = µa za neki realan
µ. Valja primijetiti da su po ovoj definiciji svaki a i 0 proporcionalni jer je
0 = 0a, a za a 6= 0 nije a = µ0. No ako su a i b različiti od nule, onda a = λb
povlači λ 6= 0 i b = λ−1a.

2.5. Pitanje. Koja svojstva množenja realnih brojeva i množenja vek-
tora realnim brojem koristimo u dokazu tvrdnje: “Ako su a i b različiti od
nule, onda a = λb povlači λ 6= 0 i b = λ−1a.” ?

2.6. Pitanje. Da li svojstvo komutativnosti zbrajanja vektora u Rn
glasi da za neke vektore a i b u Rn vrijedi a+ b = b+ a? DA NE

2.7. Pitanje. Da li je 0 u R2 jednaka 0 u R3? DA NE

2.8. Pitanje. Da li za vektor a u Rn vrijedi a = −(−a)? DA NE
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2.9. Vǐsestruke sume vektora. Operacija zbrajanja vektora je bi-
narna operacija, što znači da je definirano zbrajanje dva vektora. Imamo li
vǐse vektora a1, a2, . . . ak u Rn, onda definiramo

a1 + a2 + · · ·+ ak = (. . . ((a1 + a2) + a3) + . . .+ ak−1) + ak.

Budući da smo na isti način definirali i vǐsestruke sume brojeva, sumu vǐse
vektora računamo tako da računamo odgovarajuće sume koordinata. Na
primjer, za četiri vektora u R2 imamo(

2
1

)
+

(
1
−1

)
+

(
1
1

)
+

(
5
6

)
=

(
2 + 1 + 1 + 5
1− 1 + 1 + 6

)
=

(
9
7

)
.

2.10. Asocijativnost za vǐsestruke sume vektora. Za sve prirodne
brojeve k i m i vektore a1, . . . , ak+m ∈ Rn vrijedi

(a1 + a2 + · · ·+ ak) + (ak+1 + ak+2 + · · ·+ ak+m)

= a1 + a2 + · · ·+ ak + ak+1 + ak+2 + · · ·+ ak+m.

To svojstvo vrijedi zbog analognog svojstva brojeva. Na primjer((
2
1

)
+

(
1
−1

))
+

((
1
1

)
+

(
5
6

))
=

(
2 + 1
1− 1

)
+

(
1 + 5
1 + 6

)
=

(
9
7

)
.

2.11. Komutativnost za vǐsestruke sume vektora. Za sve permu-
tacije2 σ skupa {1, 2, . . . , k} i vektore a1, . . . , ak ∈ Rn vrijedi

aσ(1) + aσ(2) + · · ·+ aσ(k) = a1 + a2 + · · ·+ ak.

Tako je, na primjer,

a2 + a3 + a1 = a1 + a2 + a3.

2.12. Oznaka za vǐsestruke sume vektora. Kao i za brojeve, vǐse-
struke sume vektora možemo zapisati pomoću znaka sumacije

∑
:

k∑
j=1

aj = a1 + a2 + · · ·+ ak.

Podsjetimo se da nije važno koji indeks sumacije koristimo:

k∑
i=1

ai = a1 + a2 + · · ·+ ak.

2.13. Distributivnost za vǐsestruke sume. Za vǐsestruke sume bro-
jeva ili vektora vrijede svojstva distributivnosti množenja skalarom prema
zbrajanju (

k∑
i=1

λi

)
a =

k∑
i=1

λia, λ

(
k∑
i=1

ai

)
=

k∑
i=1

λai.

2Permutacija σ skupa {1, 2, . . . , k} je bijekcija σ : {1, 2, . . . , k} → {1, 2, . . . , k}. Na pri-
mjer, σ(1) = 2, σ(2) = 3 i σ(3) = 1 je permutacija skupa {1, 2, 3} koju obično zapisujemo
kao niz brojeva 231.
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3. Geometrijska interpretacija R2, R3 i Rn

3.1. Geometrijska interpretacija polja realnih brojeva R. Posto-
je razne konstrukcije ili definicije polja realnih brojeva i sve su one mate-
matički ekvivalentne. U geometrijskoj interpretaciji skup realnih brojeva je
bilo koji izabrani pravac p u euklidskoj ravnini na kojem su izabrane bilo
koje medusobno različite točke 0 i 1. Točke na tom pravcu p zovemo realnim
brojevima.

Zbroj α + β realnih brojeva α, β ∈ p definiramo tako da odmjerimo

usmjerenu dužinu (strelicu, vektor)
−→
0β i prenesemo njen početak na točku

α, a kraj te prenesene usmjerene dužine proglasimo zbrojem α+ β.
Množenje realnih brojeva definiramo koristeći teorem o sličnosti trokuta:

Neka su α, β ∈ p. Odaberemo drugi pravac q, q 6= p, koji siječe pravac p u
točki 0. Na pravcu q odaberemo točku 1′ tako da su duljine 01 i 01′ jednake,
te točku β′ ∈ q tako da su duljine 0β i 0β′ jednake, pazeći pritom da su
1′ i β′ na istoj strani (zraci) pravca q u odnosu na 0 ako i samo ako su 1
i β na istoj strani (zraci) pravca p u odnosu na 0. Sada povučemo pravac
r kroz točke 1′ ∈ q i α ∈ p i njemu paralelan pravac s kroz točku β′ ∈ q.
Tada pravac s siječe pravac p u jednoj točki X koju proglasimo umnoškom
X = α · β ∈ p. Zbog teorema o sličnosti trokuta vrijedi 0β : 01 = 0X : 0α,
što i jest motivacija naše definicije množenja.

Vǐsekratnim nanošenjem usmjerene dužine
−→
01, počevši od točke 0, dobit

ćemo brojeve 1, 2, 3, . . . . Dakle

N ⊂ R.
Nanošenjem na drugu stranu usmjerene dužine

−→
10 dobit ćemo −1,−2, . . . .

Dakle
Z ⊂ R.

Korǐstenjem teorema o sličnosti trokuta možemo konstruirati racionalne bro-
jeve 1

2 , ili 3
5 , ili bilo koji p

q . Dakle

Q ⊂ R.
Geometrijski definirane operacije zbrajanja i množenja na R su asoci-

jativne i komutativne i množenje je distributivno u odnosu na zbrajanje.
Nadalje, obje operacije imaju neutralne elemente nulu i jedan. S obzirom
na zbrajanje svaki realni broj α ima suprotni element −α, a s obzirom na
množenje svaki realni broj broj α 6= 0 ima recipročni element α−1. Zbog na-
vedenih svojstava zbrajanja i množenja govorimo da je skup realnih brojeva
polje.

Za realan broj α pǐsemo α ≥ 0 ako i samo ako se nalazi na zraci s
početkom u točki (broju) 0 koja prolazi točkom 1. Općenito pǐsemo α ≥ β
ako i samo ako je α− β ≥ 0.

3.2. Geometrijska interpretacija R2. Vektorski si prostor R2 zami-
šljamo kao euklidsku ravninu u kojoj smo izabrali pravokutni Kartezijev
koordinatni sustav, pa uredeni par brojeva a = (α1, α2) ∈ R2 predstavlja
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koordinate točke a u ravnini. Obično si točku a u ravnini zamǐsljamo kao

vektor-strelicu
−→
0a. Tada zbrajanje vektora a + b u R2 odgovara zbrajanju

vektor-strelica
−→
0a +

−→
0b u ravnini po pravilu paralelograma: a + b je četvrti

vrh paralelograma kojemu su tri vrha točke 0, a i b. Tako je, na primjer,
zbroj vektora u ravnini (

2
1

)
+

(
1
1

)
=

(
3
2

)
geometrijski dobiven kao četvrti vrh paralelograma kojemu su zadana tri
vrha (

0
0

)
,

(
2
1

)
i

(
1
1

)
.

Množenje vektora a skalarom λ je produljivanje strelice
−→
0a za faktor λ. Tako

je, na primjer, vektor

3

(
2
1

)
=

(
6
3

)
geometrijski dobiven produljivanjem 3 puta vektora a = ( 2

1 ). Općenito se
za realan broj λ vektor λa nalazi na pravcu p kroz ishodǐste 0 i točku a,
a geometrijski λa konstruiramo tako tako da prvo kroz točku 1 na x-osi i
točku a povučemo pravac r i onda konstruiramo njemu paralelan pravac s
kroz točku λ na x-osi: zbog teorema o sličnosti trokuta pravci p i s sijeku
se u točki λa.

3.3. Pravci u R2. U prethodnoj smo se točki podsjetili da je u euklid-
skoj ravnini za vektor a 6= 0 skup točaka

p = {λa | λ ∈ R}
pravac kroz točku a (za λ = 1) i ishodǐste 0 Kartezijevog sustava (za λ = 0).
Zato za vektor a 6= 0 u R2 skup točaka

p = {λa ∈ R2 | λ ∈ R}
zovemo pravacem u R2 kroz točke a i 0, ili samo pravacem kroz ishodǐste, a
vektor a zovemo vektorom smjera pravca p. Ako je

c = µa, µ 6= 0,

onda je i c vektor smjera pravca p jer je

{λc | λ ∈ R} = {λµa | λ ∈ R} = {λa | λ ∈ R},
pri čemu druga jednakost vrijedi jer je za µ 6= 0 preslikavanje λ 7→ µλ
bijekcija na R.

Budući da je u euklidskoj ravnini zbrajanje vektora definirano po pravilu
paralelograma, proizvoljan pravac q u euklidskoj ravnini možemo opisati kao
skup

q = {b+ λa ∈ R2 | λ ∈ R}
za neke vektore b i a 6= 0, pri čemu su pravci

q = {b+ λa ∈ R2 | λ ∈ R} i p = {λa ∈ R2 | λ ∈ R}



34 2. VEKTORSKI PROSTOR Rn

paralelni. Zato za vektore b i a 6= 0 u R2 skup točaka

q = {b+ λa ∈ R2 | λ ∈ R}
zovemo pravacem u R2, ili pravcem kroz točku3 b, a vektor a zovemo vektorom
smjera pravca p. Ako je d ∈ p neka točka na pravcu p i c = µa za neki µ 6= 0,
onda pravac p možemo prikazati i kao

p = {b+ λa ∈ R2 | λ ∈ R} = {d+ λc ∈ R2 | λ ∈ R},
tj. kao pravac kroz točku d s vektorom smjera c. Za različite pravce koji
imaju proporcionalne vektore smjera kažemo da su paralelni pravci u R2.

3.4. Geometrijska interpretacija R3. Vektorski si prostor R3 zami-
šljamo kao euklidski prostor u kojem smo izabrali pravokutni Kartezijev ko-
ordinatni sustav, pa uredena trojka brojeva a = (α1, α2, α3) ∈ R3 predstav-
lja koordinate točke a u prostoru. Obično si točku a u prostoru zamǐsljamo

kao vektor-strelicu
−→
0a. Tada zbrajanje vektora a+ b u R3 odgovara zbraja-

nju vektor-strelica
−→
0a+

−→
0b u prostoru po pravilu paralelograma, a množenje

skalarom λ kao produljivanje strelice λ puta.

3.5. Ravnine u R3. Kao i u slučaju euklidske ravnine, za vektor a 6= 0
u euklidskom prostoru skup točaka

p = {λa | λ ∈ R}
je pravac kroz ishodǐste 0 Kartezijevog sustava. Ako vektor c 6= 0 nije pro-
porcionalan vektoru a, onda je pravac

q = {µc | µ ∈ R}
različit od pravca p i ta dva pravca odreduju ravninu Π u prostoru koja
prolazi ishodǐstem 0. Za realne brojeve λ i µ imamo

λa+ µc ∈ Π

jer je to četvrti vrh paralelograma kojem su tri vrha 0, λa i µc u ravnini Π.
Štovǐse, geometrijski je jasno da svaku točku ravnine Π možemo napisati na
taj način, tj. da je

Π = {λa+ µc | λ, µ ∈ R}.
Za točku prostora b koja nije u ravnini Π imamo ravninu

Σ = {b+ λa+ µc | λ, µ ∈ R}
koja je paralelna s ravninom Π. Zato za dane vektore a 6= 0 i b 6= 0 u R3

koji nisu proporcionalni skup točaka

Π = {λa+ µc ∈ R3 | λ, µ ∈ R}.
zovemo ravninom kroz ishodǐste. Za točku b ∈ R3 koja nije u ravnini Π skup

Σ = {b+ λa+ µc ∈ R3 | λ, µ ∈ R}
zovemo ravninom kroz točku b. Kažemo da su Σ i Π paralelne ravnine.

3Jer za λ = 0 imamo b+ λa = b ∈ p .



3. GEOMETRIJSKA INTERPRETACIJA R2, R3 I Rn 35

3.6. Geometrijska interpretacija Rn. U geometriji, osim samog pro-
stora koji se sastoji od točaka, proučavamo i familije skupova kao što su
pravci, ravnine, kružnice, sfere itd. Kao što smo već rekli, u slučaju n > 3
za skup Rn nemamo neposredne geometrijske predodžbe, no po analogiji s R2

i R3 možemo uvesti geometrijske pojmove koji imaju slična svojstva4 onima
iz euklidske ravnine i euklidskog prostora. Ovdje ćemo, koristeći operacije
zbrajanja i množenja skalarom, definirati pravce, segmente, zrake, ravnine i
paralelograme u Rn.

3.7. Pravci u Rn. Za vektore v 6= 0 i a u Rn skup točaka

(3.1) p = {a+ tv | t ∈ R}.
zovemo pravcem u Rn. Kažemo da smo pravac p zadali parametarski5. Ako
si parametar t zamislimo kao vrijeme, onda se točka x(t) = a + tv giba u
vremenu po pravcu jednolikom brzinom v jer je

1
t2−t1 (x(t2)− x(t1)) = 1

t2−t1 (t2 − t1)v = v.

U trenutku t = 0 je x(0) = a, pa kažemo da pravac p prolazi točkom a ili da
točka a leži na pravcu p. Vektor v zovemo vektorom smjera pravca.

3.8. Pravac kroz dvije točke. Neka su a i b dvije različite točke u
Rn. Stavimo v = b− a. Tada je

(3.2) p = {a+ t(b− a) | t ∈ R} = {(1− t)a+ tb | t ∈ R}
pravac u Rn. Ako si parametar t zamislimo kao vrijeme, onda se točka
x(t) = (1 − t)a + tb giba po pravcu tako da je u trenutku t = 0 u položaju
x(0) = a, a u trenutku t = 1 u položaju x(1) = b. Znači da pravac p prolazi
točkama a i b.

3.9. Zadatak. Napǐsite parametarsku jednadžbu pravca u R4 kroz točke

a =


2
1
0
−1

 i b =


1
0
2
2

 .

3.10. Jedinstvenost pravca kroz dvije točke. Kroz svake dvije točke
prolazi jedan i samo jedan pravac.

Dokaz. Neka su a i b dvije različite točke u Rn. Tada je formulom (3.2)
zadan pravac p koji prolazi kroz te dvije točke, pa nam preostaje dokazati
da je taj pravac jedinstven. Pretpostavim zato da su točke a i b i na pravcu
q = {c+ tv | t ∈ R}. Tada je za neke λ i µ

a = c+ λv, b = c+ µv.

4Primjer takvog svojstva je da kroz dvije različite točke prolazi jedan i samo jedan
pravac.

5Ponekad kažemo da je formula (3.1) parametarska jednadžba pravca.
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Znači da je b− a = (µ− λ)v, pa zbog pretpostavke a 6= b imamo λ 6= µ i

v = 1
µ−λ(b− a), c = a− λv = a− λ

µ−λ(b− a).

Sada iz činjenice da je preslikavanje s 7→ t = 1
µ−λ(s−λ) bijekcija na R slijedi

{c+ sv | s ∈ R} = {a− λ
µ−λ(b− a) + s 1

µ−λ(b− a) | s ∈ R}

= {a+ 1
µ−λ(s− λ)(b− a) | s ∈ R}

= {a+ t(b− a) | t ∈ R}.

Znači da je pravac q jednak pravcu p zadanom formulom (3.2). �

3.11. Segmenti na pravcu. Neka su a i b dvije različite točke na
pravcu

p = {(1− t)a+ tb | t ∈ R}.

Ako si parametar t zamislimo kao vrijeme, onda se točka x(t) = (1− t)a+ tb
giba po pravcu od točke a u trenutku t = 0 do točke b u trenutku t = 1.
Zato kažemo da je točka c na pravcu p izmedu a i b ako i samo ako je

c = (1− t)a+ tb za neki 0 < t < 1.

Segmentom (na pravcu) zovemo skup oblika

[a, b] = {(1− t)a+ tb | 0 ≤ t ≤ 1}.

3.12. Pitanje. Da li je skup S u R3 segment,

S =
{2− t

t− 1
1

 ∣∣∣ 1 ≤ t ≤ 3
}

?

Pokušajte “vidjeti” taj skup u euklidskom prostoru sa zadanim Kartezijevim
koordinatnim sustavom. Ako S jest segment, da li je paralelan6 xy-ravnini.

3.13. Zrake na pravcu. Ako je p = {a + tv | t ∈ R} pravac, onda
skupove

{a+ tv | t < 0} i {a+ tv | t > 0}

zovemo zrakama7 na pravcu p s ishodǐstem u točki a. Još kažemo da točka
dijeli pravac na dvije zrake.

6Paralelnost pravca i ravnine u R3 nismo definirali. Kako bi glasila dobra definicija?
7Ponekad zrakama na pravcu p zovemo skupove

{a+ tv | t ≤ 0} i {a+ tv | t ≥ 0}.
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3.14. Kolinearnost triju točaka. Kažemo da su tri medusobno različite
točke a, b i c u Rn kolinearne ako leže na istom pravcu. Budući da točke a
i b odreduju jedinstveni pravac

p = {(1− t)a+ tb | t ∈ R}

na kojem leže, to su a, b i c kolinearne ako i samo ako je

c = a+ t(b− a), odnosno c− a = t(b− a)

za neki t ∈ R.

3.15. Zadatak. Da li su u R2 kolinearne točke

a =

(
2
1

)
, b =

(
3
2

)
i c =

(
1
0

)
?

Ako jesu, da li je b izmedu a i c? Nacrtajte sliku.

3.16. Zadatak. Da li su u R4 kolinearne točke

a =


2
1
2
1

 , b =


3
2
3
2

 i c =


1
0
1
0

 ?

Ako jesu, da li je c izmedu a i b?

3.17. Ravnine u Rn. Za dane vektore v1 6= 0 i v2 6= 0 u Rn koji nisu
proporcionalni skup

(3.3) Σ = {a+ λ1v1 + λ2v2 ∈ Rn | λ1, λ2 ∈ R}

zovemo ravninom u Rn. Kažemo da smo ravninu zadali parametarski8. Za
vrijednosti parametara λ1 = λ2 = 0 dobivamo a, pa kažemo da ravnina Σ
prolazi točkom a ili da točka a leži u ravnini Σ.

3.18. Ravnina kroz tri točke. Neka su a, b i c tri točke u Rn koje
nisu kolinearne. Stavimo v1 = b− a i v2 = c− a. Prema točki 3.14 vektori
v1 i v2 nisu proporcionalni i ravnina

(3.4) {a+ λ1(b− a) + λ2(c− a) | λ1, λ2 ∈ R}

prolazi kroz točke a (za λ1 = λ2 = 0), b (za λ1 = 1, λ2 = 0) i c (za
λ1 = 0, λ2 = 1). Kasnije ćemo vidjeti da je ravnina koja sadrži te tri točke
jedinstvena.

3.19. Paralelogram u Rn. Za dane vektore v1 6= 0 i v2 6= 0 u Rn koji
nisu proporcionalni skup

(3.5) {λ1v1 + λ2v2 ∈ Rn | 0 ≤ λ1, λ2 ≤ 1}

zovemo paralelogramom u Rn sa stranicama v1 i v2.

8Ponekad kažemo da je formula (3.3) parametarska jednadžba ravnine.



38 2. VEKTORSKI PROSTOR Rn

3.20. Zadatak. Nacrtajte paralelogram u ravnini sa stranicama(
2
1

)
i

(
1
2

)
.

3.21. Zadatak. Kao što točka dijeli pravac na dvije zrake, tako i pra-
vac dijeli euklidsku ravninu na dvije poluravnine. Definirajte parametarski
poluravnine u R2.

4. Elementarne transformacije

Koristeći operacije zbrajanja vektora i množenja vektora skalarom, na
konačnim nizovima vektora iz Rn možemo izvoditi elementarne transforma-
cije ili elementarne operacije

v1, . . . , vm 7→ v′1, . . . , v
′
m

koje su slične elementarnim transformacijama sistema jednadžbi9 u Gausso-
voj metodi. Te su transformacije definirane na sljedeći način:

4.1. Zamjena mjesta dvaju vektora. Za proizvoljne indekse i < j
definiramo transformaciju

v1, . . . , vi−1, a, vi+1, . . . , vj−1, b, vj+1, . . . , vm

7→ v1, . . . , vi−1, b, vi+1, . . . , vj−1, a, vj+1, . . . , vm,

gdje smo stavili a = vi i b = vj . Ova transformacija je sama svoj inverz; dva
puta primijenjena daje identitetu.

4.2. Množenje jednog vektora skalarom različitim od nule. Za
proizvoljni indeks i i skalar λ 6= 0 definiramo transformaciju

v1, . . . , vi−1, a, vi+1, . . . , vm 7→ v1, . . . , vi−1, λa, vi+1, . . . , vm,

gdje smo stavili a = vi. Ova transformacija ima inverznu istoga tipa; za isti
indeks biramo skalar 1

λ , pa sa čime smo prije množili, s time sada dijelimo:

v1, . . . , vi−1, a, vi+1, . . . , vm 7→ v1, . . . , vi−1,
1
λa, vi+1, . . . , vm.

4.3. Pribrajanje jednog vektora pomnoženog skalarom drugom
vektoru. Za proizvoljne indekse i 6= j i skalar λ definiramo transformaciju

v1, . . . , vi−1, a, vi+1, . . . , vj−1, b, vj+1, . . . , vm

7→ v1, . . . , vi−1, a, vi+1, . . . , vj−1, b+ λa, vj+1, . . . , vm,

gdje smo stavili a = vi i b = vj . Ova transformacija ima inverznu istoga tipa;
za iste indekse biramo skalar −λ, pa što smo prije dodali sada oduzmemo:

v1, . . . , vi−1, a, vi+1, . . . , vj−1, b, vj+1, . . . , vm

7→ v1, . . . , vi−1, a, vi+1, . . . , vj−1, b− λa, vj+1, . . . , vm.

9vidi točku 1.3.4
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4.4. Zadatak. Interpretirajte geometrijski u R2 i R3 elementarne tran-
sformacije na parovima vektora

(a, b) 7→ (λa, b), (a, b) 7→ (a, µb), (a, b) 7→ (a, b+λa), (a, b) 7→ (a+µb, b).

Kako se je promijenila površina paralelograma koje odreduju vektori prije i
nakon transformacije?

4.5. Elementarne transformacije na stupcima matrice. Budući
da je matrica tipa n × m niz od m vektora iz Rn, elementarne transfor-
macije možemo primijeniti i na stupce matrice. Tako, na primjer, imamo
elementarnu transformaciju zamjene prvog i trećeg stupca matrice 1 0 0 1

0 1 1 0

−2 2 3
√

3

 7→
0 0 1 1

1 1 0 0

3 2 −2
√

3

 .

4.6. Pitanje. Da li je1 0 0 1
0 1 1 0
1 2 3 1

 7→
1 0 0 1

0 1 1 0
1 2 3 1


elementarna transformacija? DA NE

4.7. Pitanje. Da li je1 0 0 1
0 1 1 0
1 2 3 1

 7→
1 0 0 1

2
0 1 1 0
1 2 3 1

2


elementarna transformacija? DA NE

4.8. Primjer. Elementarna transformacija (a, b, c, d) 7→ (a − c, b, c, d)
daje 1 0 0 1

0 1 1 0
1 2 3 1

 7→
 1 0 0 1
−1 1 1 0
−2 2 3 1

 ,

a njoj inverzna transformacija (a, b, c, d) 7→ (a+ c, b, c, d) daje 1 0 0 1
−1 1 1 0
−2 2 3 1

 7→
1 0 0 1

0 1 1 0
1 2 3 1

 .
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4.9. Kompozicija elementarnih transformacija. Za početni niz
vektora (v1, . . . , vm) uzastopnom primjenom elementarnih transformacija
dobivamo novi niz vektora (w1, . . . , wm) :

(v1, . . . , vm) 7→ (v′1, . . . , v
′
m) 7→ . . . 7→ (w1, . . . , wm).

Činjenicu da je (w1, . . . , wm) dobiven iz (v1, . . . , vm) kompozicijom elemen-
tarnih transformacija zapisujemo kraće kao relaciju

(v1, . . . , vm) ∼ (w1, . . . , wm).

Očito vrijedi svojstvo tranzitivnosti relacije ∼
(v1, . . . , vm) ∼ (w1, . . . , wm) i (w1, . . . , wm) ∼ (u1, . . . , um)

povlači (v1, . . . , vm) ∼ (u1, . . . , um).

Budući da elementarne transformacije oblika 4.2 za λ = 1 i transformacije
oblika 4.3 za λ = 0 daju identitetu10, to relacija ∼ ima svojstvo refleksivnosti

(v1, . . . , vm) ∼ (v1, . . . , vm),

a zbog toga što svaka elementarna transformacija ima inverznu, vrijedi i
svojstvo simetričnosti relacije ∼

(v1, . . . , vm) ∼ (w1, . . . , wm) povlači (w1, . . . , wm) ∼ (v1, . . . , vm).

4.10. Zadatak. Interpretirajte geometrijski u R2 elementarne transfor-
macije na stupcima matrica(

1 −1
1 1

)
7→
(

1 0
1 2

)
7→
(

1 0
1 1

)
7→
(

1 0
0 1

)
.

4.11. Zadatak. Interpretirajte geometrijski u R3 elementarne transfor-
macije na stupcima matrica1 −1 1

1 1 1
0 0 1

 7→
1 0 1

1 2 1
0 0 1

 7→
1 0 0

1 2 0
0 0 1

 .

4.12. Primjer. U ovom ćemo primjeru pokazati da kompozicijom ele-
mentarnih transformacija niz vektora

v1 =

1
2
1

 , v2 =

 1
−1
−1

 , v3 =

2
1
2


možemo prevesti u matricu11

(e1, e2, e3) =

1 0 0
0 1 0
0 0 1

 .

10Zbog toga je na pitanje 4.6 odgovor DA, a u tom primjeru je odgovor DA i zbog
transformacije oblika 4.1.

11To je jedinična 3×3 matrica kojoj su stupci elementi kanonske baze u R3, vidi malo
niže primjer 6.6.
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Postupak je sličan Gaussovim eliminacijama nepoznanica, samo što sve tran-
sformacije izvodimo na stupcima matrice. Prvo ponǐstavamo elemente u
gornjem trokutu matrice (v1, v2, v3)1 1 2

2 −1 1
1 −1 2

 7→
1 0 2

2 −3 1
1 −2 2

 7→
1 0 0

2 −3 −3
1 −2 0

 7→
1 0 0

2 −3 0
1 −2 2

 .

U prvom i drugom koraku izvodimo elementarne transformacije (a, b, c) 7→
(a, b − a, c) i (a, b, c) 7→ (a, b, c − 2a) koristeći prvi stupac da bismo dobili
nule u prvom retku. U trećem koraku izvodimo transformaciju (a, b, c) 7→
(a, b, c − b) koristeći drugi stupac da bismo dobili nulu u drugom retku, ne
“kvareći” pritom već dobivene nule u prvom retku. Zatim nastavljamo s
elementarnim transformacijama, prvo “popravljajući” treći stupac transfor-
macijom tipa 4.2, a potom ponǐstavajući elemente u donjem trokutu matrice
u trećem retku koristeći treći stupac1 0 0

2 −3 0
1 −2 2

 7→
1 0 0

2 −3 0
1 −2 1

 7→
1 0 0

2 −3 0
1 0 1

 7→
1 0 0

2 −3 0
0 0 1

 .

Pomoću drugog stupca dovršimo postupak1 0 0
2 −3 0
0 0 1

 7→
1 0 0

2 1 0
0 0 1

 7→
1 0 0

0 1 0
0 0 1

 .

4.13. Svodenje matrice na trokutastu ili stepenastu formu pri-
mjenom elementarnih transformacija. Kod rješavanja niza problema
u linearnoj algebri primijenjivat ćemo kompozicije elementarnih transfor-
macija tako da konačan rezultat bude donja trokutasta ili donja stepenasta
matrica, kao što je kompozicija elementarnih transformacija iz prethodnog
primjera1 1 2

2 −1 1
1 −1 2

 7→
1 0 2

2 −3 1
1 −2 2

 7→
1 0 0

2 −3 −3
1 −2 0

 7→
1 0 0

2 −3 0
1 −2 2

 .

Za n× k matricu

(a1, a2, . . . , ak) =


α11 α12 . . . α1k

α21 α22 . . . α2k
...

...
...

αn1 αn2 . . . αnk


je postupak sljedeći12:

12Ovdje opisani postupak po stupcima matrice je potpuno analogan postupku
svodenja matrice na stepenasti oblik, ali po recima, opisan u točki 1.3.10 prethodnog
poglavlja.
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1) Ako je α11 6= 0, onda prvi stupac matrice množimo s 1/α11 i dobivamo
α11 α12 . . . α1k

α21 α22 . . . α2k
...

...
...

αn1 αn2 . . . αnk

 7→


1 α12 . . . α1k

α′21 α22 . . . α2k
...

...
...

α′n1 αn2 . . . αnk

 = (a′1, a2, . . . , ak).

Nakon toga, koristeći 1 iz prvog stupca, “eliminiramo” redom sve preostale
elemente iz prvog retka dodavanjem −α12a

′
1 drugom stupcu, −α13a

′
1 trećem

stupcu, . . . , −α1ka
′
1 zadnjem stupcu:

1 α12 . . . α1k

α′21 α22 . . . α2k
...

...
...

α′n1 αn2 . . . αnk

 ∼


1 0 . . . 0
α′21 α′22 . . . α′2k

...
...

...
α′n1 α′n2 . . . α′nk

 = (a′1, a
′
2, . . . , a

′
k).

Sada postupak nastavljamo na n× (k − 1) matrici

(a′2, . . . , a
′
k) =


0 . . . 0
α′22 . . . α′2k

...
...

α′n2 . . . α′nk

 .

Valja primijetiti da elementarne transformacije na stupcima a′2, . . . , a
′
k neće

“kvariti” već dobivene nule u prvoj koordinati.
2) Ako je α11 = 0 i α1j 6= 0 za neki indeks stupca j, onda zamijenimo prvi i
j-ti stupac i nastavimo kao pod 1).
3) Ako je čitav prvi redak nula, tj.

(a1, a2, . . . , ak) =


0 0 . . . 0
α21 α22 . . . α2k

...
...

...
αn1 αn2 . . . αnk

 ,

onda smo gotovi ako je matrica nula, a ako (a1, a2, . . . , ak) nije nul-matrica,
onda postupak provodimo za prvi netrivijalni redak kao u 1) ili 2).

Konačni će rezultat biti u donjoj stepenastoj formi po stupcima kod koje su
svi nul-stupci desno od svih stupaca koji nisu nula i u svakom stupcu prvi
element različit od nule stoji niže od prvog elementa različitog od nule u
prethodnom stupcu.

Prvi element u stupcu koji je različit od nule zove se ugaoni ili stožerni
element matrice.
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Na primjer, za proizvoljne brojeve na mjestu zvjezdica imamo 6×5 donju
stepenastu matricu kod koje su svi ugaoni elementi jednaki 1

0 0 0 0 0
1 0 0 0 0
∗ 0 0 0 0
∗ 1 0 0 0
∗ ∗ 1 0 0
∗ ∗ ∗ 0 0

 .

Na sličan način elementarnim transformacijama matricu možemo svesti
na gornju stepenastu formu po stupcima13 započinjući postupak sa zadnjim
retkom koji nije nula i zadnjim stupcem.

4.14. Reducirana stepenasta forma matrice. U prethodnoj smo
točki opisali kako elementarnim transformacijama stupaca matricu možemo
svesti na donju stepenastu formu po stupcima. Taj postupak možemo nas-
taviti tako da svaki ugaoni element bude 1 i da onda s tom jedinicom elimi-
niramo sve ostale ne-nul elemente u tom retku. Za dobivenu matricu kažemo
da je u reduciranom stepenastom obliku.

U slučaju 6 × 5 donje stepenaste matrice iz prethodne točke dobivamo
reduciranu stepenastu matricu

0 0 0 0 0
1 0 0 0 0
∗ 0 0 0 0
0 1 0 0 0
0 0 1 0 0
∗ ∗ ∗ 0 0

 .

4.15. Primjer svodenja 2×4 matrice na donju stepenastu formu.(
1 2 1 5
1 1 −1 1

)
∼
(

1 0 0 0
1 −1 −2 −4

)
∼
(

1 0 0 0
1 −1 0 0

)
,

a reducirana stepenasta forma je(
1 0 0 0
0 1 0 0

)
.

Matricu smo mogli svesti i na gornju stepenastu po stupcima(
1 2 1 5
1 1 −1 1

)
∼
(
−4 −3 6 5
0 0 0 1

)
∼
(

0 0 6 5
0 0 0 1

)
,

a reducirana stepenasta forma je(
0 0 1 0
0 0 0 1

)
,

13U gornjoj stepenastoj formi po stupcima svaki nul-stupac stoji lijevo od svih stupaca
koji nisu nula i u svakom stupcu zadnji element različit od nule stoji vǐse od zadnjeg
elementa različitog od nule u slijedećem stupcu. Valja primijetiti da gornja stepenasta
forma po stupcima nije (nužno) isto što i gornja stepenasta forma po recima.
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4.16. Primjer svodenja 4×2 matrice na donju stepenastu formu.
1 1
2 1
1 −1
5 6

 7→


1 0
2 −1
1 −2
5 1

 ,

a reducirana stepenasta forma je

7→


1 0
2 1
1 2
5 −1

 7→


1 0
0 1
−3 2
7 −1

 .

Matricu smo mogli svesti i na gornju stepenastu po stupcima
1 1
2 1
1 −1
5 6

 7→


1 1/6
2 1/6
1 −1/6
5 1

 7→


1/6 1/6
7/6 1/6
11/6 −1/6

0 1

 ,

a reducirana stepenasta forma je

7→


1/11 1/6
7/11 1/6

1 −1/6
0 1

 7→


1/11 12/66
7/11 18/66

1 0
0 1

 .

4.17. Zadatak. Elementarnim transformacijama na stupcima svedite
na reducirani donji stepenasti oblik matricu1 2 2 1

2 0 1 −1
1 −1 0 1

 .

4.18. Primjedba. Posebno su važne donje trokutaste matrice (αij) sa
svim dijagonalnim elementima αii različitim od nule. Takva je trokutasta
matrica i donje stepenasta, a njenim svodenjem na reducirani donji stepe-
nasti oblik dobivamo tzv. jediničnu matricu s jedinicama na dijagonali i s
ostalim elementima jednakim nuli. Raspisano za 4× 4 matricom imamo

α11 0 0 0
α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44

 ∼


1 0 0 0
α′21 1 0 0
α′31 α′32 1 0
α′41 α′42 α′43 1

 ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

gdje jedinice na dijagonali dobivamo dijeljenjem j-tog stupca s αjj , a potom
eliminiramo redom sve nedijagonalne elemente α′4j u zadnjem tetku, α′3j u
predzadnjem retku, itd.
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4.19. Zadatak. Elementarnim transformacijama na stupcima svedite
na gornji trokutasti oblik matricu1 1 2

2 −1 1
1 −1 2

 .

4.20. Elementarne transformacije na recima matrice. Budući da
matricu tipa n×m možemo shvatiti i kao niz od n vektor-redaka iz Rm, to
elementarne transformacije možemo primijeniti i na retke matrice. Tako,
na primjer, imamo elementarnu transformaciju zamjene prvog i trećeg retka
matrice  1 0 0 1

0 1 1 0

−2 2 3
√

3

 7→
−2 2 3

√
3

0 1 1 0
1 0 0 1

 .

4.21. Pitanje. Da li je1 0 0 1
0 1 1 0
1 2 3 1

 7→
1 0 0 1

2
0 1 1 0
1 2 3 1

2


elementarna transformacija redaka matrice? DA NE

4.22. Elementarne transformacije redaka i Gaussove eliminaci-
je. U točki 1.3.4 prethodnog poglavlja opisane su elementarne transforma-
cije sistema jednadžbi koje koristimo u Gaussovoj metodi rješavanja sistema
jednadžbi. Ako kod Gaussovih eliminacija zapisujemo samo koeficijente ma-
trice sistema, kao u točki 1.3.9 prethodnog poglavlja, onda su elementarne
transformacije sistema jednadžbi upravo elementarne transformacije redaka
matrice sistema.

4.23. Elementarne transformacije prostora Rn. Elemente od Rn
obično zapisujemo kao vektor-stupce, odnosno n × 1 matrice. Na takvim
matricama možemo provoditi elementarne transformacije po recima, kao
što je, na primjer, zamjena i-te i j-te koordinate vektora

x =



α1
...
αi
...
αj
...
αn


7→ x′ =



α1
...
αj
...
αi
...
αn


.

Znači da imamo preslikavanje

x 7→ x′, Rn → Rn
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koje zovemo elementarnom transformacijom prostora Rn. Budući da svaka
elementarne transformacija ima inverznu, elementarna transformacija pro-
stora Rn je bijekcija na Rn. Primijetimo da za svaku elementarnu transfor-
maciju prostora Rn vrijedi tzv. svojstvo linearnosti

a+ b 7→ a′ + b′, λa 7→ λa′.

Na primjer, ako se radi o elementarnoj transformaciji množenja i-te koordi-
nate skalarom µ 6= 0, onda je

a+ b =


α1 + β1

...
αi + βi

...
αn + βn

 7→


α1 + β1
...

µ(αi + βi)
...

αn + βn

 =


α1
...
µαi

...
αn

+


β1
...
µβi

...
βn

 = a′ + b′ ,

a slično se provjeri i svojstvo λa 7→ λa′.

5. Linearne kombinacije i sistemi jednadžbi

5.1. Linearne kombinacije vektora u Rn. Ako su zadani vektori a1,
a2, . . . , as u Rn i skalari λ1, λ2, . . . , λs, onda možemo računati vektor

λ1a1 + λ2a2 + · · ·+ λsas.

Takav izraz ili vektor zovemo linearnom kombinacijom vektora a1, a2, . . . , as
s koeficijentima λ1, λ2, . . . , λs.

5.2. Primjer. Vektor(
4
0

)
= 2

(
2
1

)
+

(
1
−1

)
−
(

1
1

)
+ 0

(
5
6

)
je linearna kombinacija vektora

(5.1)

(
2
1

)
,

(
1
−1

)
,

(
1
1

)
i

(
5
6

)
u R2 s koeficijentima 2, 1, −1 i 0. U ovoj kombinaciji možemo izostaviti
sumand 0 · ( 5

6 ) = 0 i pisati(
4
0

)
= 2

(
2
1

)
+

(
1
−1

)
−
(

1
1

)
,

a da još uvijek kažemo da je to linearna kombinacija četiri vektora (5.1).

5.3. Zadatak. Izračunajte linearnu kombinaciju vektora(
2
1

)
,

(
1
−1

)
,

(
1
1

)
i

(
5
6

)
s koeficijentima 0, 0, 2 i 2.
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5.4. Trivijalna linearna kombinacija vektora. Linearnu kombina-
ciju

0a1 + · · ·+ 0as

vektora a1, . . . , as u kojoj su svi koeficijenti nula zovemo trivijalnom line-
arnom kombinacijom vektora a1, . . . , as. Očito je trivijalna kombinacija vek-
tora jednaka nuli, tj.

0a1 + · · ·+ 0as = 0.

5.5. Netrivijalna linearna kombinacija vektora. Kažemo da je li-
nearna kombinacija vektora

λ1a1 + λ2a2 + · · ·+ λsas

netrivijalna ako je barem jedan od skalara λi 6= 0. Tako je, na primjer,

1a1 + 0a2 · · ·+ 0as

netrivijalna kombinacija vektora a1, a2, . . . , as.

5.6. Pitanje. Da li je linearna kombinacija

0

(
0
0

)
−
(

0
0

)
+

(
0
0

)
netrivijalna? DA NE

5.7. Primjer. Može se dogoditi da netrivijalna linearna kombinacija
vektora bude jednaka nuli:

2

(
1
1

)
−
(

1
5

)
+

(
−1
3

)
=

(
0
0

)
.

5.8. Računanje linearne kombinacije elementarnim transfor-
macijema. Za zadane vektore a1, a2, . . . , as u Rn i skalari λ1, λ2, . . . , λs
linearnu kombinaciju

b = λ1a1 + λ2a2 + · · ·+ λsas

možemo računati koristeći elementarne transformacije

(a1, a2, . . . , as, 0)

7→ (a1, a2, . . . , as, λ1a1)

7→ (a1, a2, . . . , as, λ1a1 + λ2a2)

...

7→ (a1, a2, . . . , as, λ1a1 + λ2a2 + · · ·+ λsas)

= (a1, a2, . . . , as, b).
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Tako bi linearnu kombinaciju iz primjera 5.2 računali pomoću tri elemen-
tarne transformacije(

2 1 1 5 0
1 −1 1 6 0

)
7→
(

2 1 1 5 4
1 −1 1 6 2

)
7→
(

2 1 1 5 5
1 −1 1 6 1

)
7→
(

2 1 1 5 4
1 −1 1 6 0

)
.

Ovdje se prirodno nameće pitanje: možemo li elementarnim transformaci-
jama stupaca matrice (a1, . . . , as, b) utvrditi da je zadani vektor b linearna
kombinacija vektora a1, . . . , as, ili, drugim riječima, utvrditi da postoje ska-
lari ξ1, . . . , ξs takvi da je

(5.2) ξ1a1 + · · ·+ ξsas = b ?

Odgovor na to pitanje dajemo u točki 6.16 niže, a u sljedećoj točki o pro-
blemu (5.2) razmǐsljamo na drugi način:

5.9. Linearne kombinacije u Rm i sistemi jednadžbi. Neka je za-
dan sistem jednadžbi

α11ξ1 + · · ·+ α1nξn = β1 ,

α21ξ1 + · · ·+ α2nξn = β2 ,(5.3)

. . .

αm1ξ1 + · · ·+ αmnξn = βm .

Označimo li s a1, . . . , an stupce matrice sistema i s b desnu stranu, onda
sistem jednadžbi (5.3) možemo zapisati i kao problem nalaženja svih linernih
kombinacija vektora a1, . . . , an koje daju vektor b :

ξ1a1 + · · ·+ ξnan = b.(5.4)

5.10. Primjer. Sistem jednadžbi

3ξ1 + ξ2 − ξ3 = 5,

− ξ1 + ξ3 = 0

istovjetan je problemu nalaženja svih linearnih kombinacija stupaca matrice
sistema koje su jednake desnoj stranu sistema, odnosno problemu nalaženja
svih koeficijenata ξ1, ξ2, ξ3 takvih da je

(5.5) ξ1

(
3
−1

)
+ ξ2

(
1
0

)
+ ξ3

(
−1
1

)
=

(
5
0

)
.

5.11. Primjer. Pitanje da li je vektor b linearna kombinacija vektora
a1, a2 i a3 za

b =

(
5
0

)
, a1 =

(
3
−1

)
, a2 =

(
1
0

)
, a3 =

(
−1
1

)
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svodi se na pitanje da li sistem jednadžbi (5.5) ima rješenje. Zapǐsemo li
Gaussove eliminacije na matrici sistema (5.5) dobivamo(

3 1 −1 5
−1 0 1 0

)
7→
(
−1 0 1 0
3 1 −1 5

)
7→
(
−1 0 1 0
0 1 2 5

)
,

pri čemu treća matrica odgovara ekvivalentnom sistemu

− ξ1 + ξ3 = 0,

ξ2 + 2ξ3 = 5

koji ima beskonačno mnogo rješenja, a jedno je rješenje, na primjer, ξ3 = 2,
ξ2 = 1, ξ1 = 2. Znači da vektor b možemo zapisati kao linearnu kombinaciju
vektora a1, a2, a3 na beskonačno mnogo načina, a jedan je mogući način

b = 2a1 + a2 + 2a3.

5.12. Zadatak. Da li je vektor b linearna kombinacija vektora a1, a2 i
a3 za

b =


5
0
4
3

 , a1 =


3
−1
1
0

 , a2 =


1
0
0
1

 , a3 =


−1
1
1
1


i, ako jest, koliko različitih načina zapisa ima?

5.13. Zadatak. Nadite bar jednu netrivijalnu linearnu kombinaciju vek-
tora a1, a2, a3 i a4 koja je jednaka nuli, gdje je

a1 =

5
0
4

 , a2 =

 3
−1
1

 , a3 =

1
0
2

 , a4 =

−1
−1
1

 .

5.14. Svojstvo linearnosti lijeve strane sistema jednadžbi. Neka
je A = (a1, . . . , an) matrica tipa m× n. Tada za vektor x u Rn s koordina-
tama ξ1, . . . , ξn imamo linearnu kombinaciju

(5.6) Ax = ξ1a1 + · · ·+ ξnan

u vektorskom prostoru Rm. Za sve vektore x, y ∈ Rn i skalare λ ∈ R vrijedi

(5.7) Ax+Ay = A(x+ y), A(λx) = λ(Ax).

Dokaz. Za vektor y u Rn s koordinatama η1, . . . , ηn imamo linearnu
kombinaciju

Ay = η1a1 + · · ·+ ηnan ∈ Rm.
Koristeći svojstva zbrajanja u vektorskim prostorima Rn i Rm dobivamo

Ax+Ay = (ξ1a1 + · · ·+ ξnan) + (η1a1 + · · ·+ ηnan)

= (ξ1 + η1)a1 + · · ·+ (ξn + ηn)an = A(x+ y),

a na sličan način slijedi i

A(λx) = (λξ1)a1 + · · ·+ (λξn)an

= λ(ξ1a1 + · · ·+ ξnan) = λ(Ax).
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�

5.15. Primjedba. Možda na prvi pogled formula (5.7) djeluje jedno-
stavno i bezazleno, no ta je formula alfa i omega linearne algebre. Za poče-
tak, upravo zbog tog svojstva sisteme linearnih jednadžbi zovemo linearnim.

6. Linearna ljuska vektora u Rn

6.1. Linearna ljuska vektora u Rn. Za vektore14 v1, . . . , vk u Rn
možemo promatrati skup svih njihovih linearnih kombinacija

{λ1v1 + · · ·+ λkvk | λ1, . . . , λk ∈ Rn}.

Taj skup zovemo linearnom ljuskom vektora v1, . . . , vk i označavamo ga kao

〈v1, . . . , vk〉.

Za svaki i = 1 . . . , k imamo vi ∈ 〈v1, . . . , vk〉 jer je

vi = 0v1 + · · ·+ 1vi + · · ·+ 0vk.

6.2. Primjedba. Ako je v 6= 0 vektor u Rn, onda je linearna ljuska 〈v〉
pravac kroz ishodǐste, a ako vektori v1 6= 0 i v2 6= 0 nisu proporcionalni,
onda je linearna ljuska 〈v1, v2〉 ravnina kroz ishodǐste. Zato si geometrijski
linearne ljuske 〈v1, . . . , vk〉 vektora u Rn možemo zamǐsljati kao poopćenje
pravaca i ravnina u prostoru Rn.

S druge strane, linearnu ljusku vektora 〈a1, . . . , an〉 u Rm možemo shva-
titi algebarski kao skup svih desnih strana b sistema m× n jednadžbi

ξ1a1 + · · ·+ ξnan = b

koji imaju rješenje (ξ1, . . . , ξn) ∈ Rn.
Geometrijski i algebarski način razmǐsljanja se plodotvorno dopunjuju.

Tako je, na primjer, geometrjski jasno da elementarne transformacije

(a1, . . . , an) 7→ (a′1, . . . , a
′
n)

ne mijenjaju linearnu ljusku vektora, a onda kao algebarska posljedica slijedi
da gornji sistem ima rješenje ako i samo ako ima rješenje sistem

ξ′1a
′
1 + · · ·+ ξ′na

′
n = b

s novom matricom sistema (a′1, . . . , a
′
n) i istom desnom stranom b.

14Ponekad nam je zgodno misliti da se radi o skupu vektora {v1, . . . , vk}, a ponekad
je zgodnije misliti da se radi o nizu vektora (v1, . . . , vk).
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6.3. Linearna ljuska je potprostor u Rn. Neka su v1, . . . , vk vektori
u Rn. Ako je

a, b ∈ 〈v1, . . . , vk〉, µ ∈ R,

onda su i a+ b i µa opet linearne kombinacije iz 〈v1, . . . , vk〉, tj.

a+ b, µa ∈ 〈v1, . . . , vk〉.

Zbog tog svojstva za linearnu ljusku 〈v1, . . . , vk〉 kažemo da je zatvorena za
operacije zbrajanja i množenja skalarom i zovemo je potprostorom od Rn.
Takoder kažemo da vektori v1, . . . , vk razapinju potprostor 〈v1, . . . , vk〉.

Dokaz. Ako je

a = α1v1 + · · ·+ αkvk i b = β1v1 + · · ·+ βkvk,

onda zbog svojstava zbrajanja i množenja skalarom imamo

a+b = (α1v1+· · ·+αkvk)+(β1v1+· · ·+βkvk) = (α1+β1)v1+· · ·+(αk+βk)vk,

µa = µ(α1v1 + · · ·+ αkvk) = (µα1)v1 + · · ·+ (µαk)vk.

�

6.4. Primjer. Neka je zadan vektor e = (1, 0) u R2. Taj vektor raza-
pinje potprostor

〈e〉 = {λe | λ ∈ R} = {
(
λ
0

)
| λ ∈ R} ⊂ R2.

Geometrijski interpretirano to je x-os Kartezijevog sustava u euklidskoj rav-
nini. Ta os je očito zatvorena za zbrajanje vektora i množenje vektora
skalarom.

6.5. Primjer. Neka su zadani vektori e1, e2 u R3,

e1 =

1
0
0

 , e2 =

0
1
0

 .

Tada imamo potprostor u R2 razapet vektorima e1, e2,

〈e1, e2〉 = {λ1e1 + λ2e2 | λ1, λ2 ∈ R} = {
(
λ1
λ2
0

)
| λ1, λ2 ∈ R}.

Geometrijski interpretirano to je xy-ravnina Kartezijevog sustava u euklid-
skom prostoru. Ta ravnina je očito zatvorena za zbrajanje vektora po pravilu
paralelograma, a očito je zatvorena i za množenje vektora skalarom.
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6.6. Primjer: kanonska baza u R3. Neka su zadani vektori e1, e2, e3

u R3,

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

Tada se potprostor 〈e1, e2, e3〉 u R3 razapet vektorima e1, e2, e3 sastoji od
svih linearnih kombinacija

λ1e1 + λ2e2 + λ3e3 =

λ1

0
0

+

 0
λ2

0

+

 0
0
λ3

 =

λ1

λ2

λ3

 .

No to su svi vektori u R3! Vektore e1, e2, e3 zovemo kanonskom bazom od
R3, a geometrijski ih interpretirano kao jedinične vektore triju osi izabranog
Kartezijevog sustava u euklidskom prostoru.

6.7. Zadatak. Neka je v1 =

(
1
1

)
, v2 =

(
1
−1

)
. Interpretirajte R2 kao

ravninu i nacrtajte linearne ljuske 〈v1〉, 〈v2〉 i 〈v1, v2〉.

6.8. Jednakost linearni ljuski vektora u Rn. Neka su a1, . . . , ar i
b1, . . . , bs vektori u Rn. Prema točkama 6.1 i 6.3 je a1, . . . , ar ∈ 〈b1, . . . , bs〉
ako i samo ako je 〈a1, . . . , ar〉 ⊂ 〈b1, . . . , bs〉.

Znači da vrijedi jednakost linearnih ljuski 〈a1, . . . , ar〉 = 〈b1, . . . , bs〉 ako
i samo ako je

a1, . . . , ar ∈ 〈b1, . . . , bs〉 i b1, . . . , bs ∈ 〈a1, . . . , ar〉.

Primijetimo da se zadnji uvjet svodi na rješavanje r sistema jednadžbi tipa
n× s i s sistema jednadžbi tipa n× r.

6.9. Zadatak. Koristeći tvrdnju iz prethodne točke provjerite da li je
〈a1, a2〉 = 〈b1, b2〉 za vektore

a1 =

 1
−1
1

 , a2 =

2
1
1

 , b1 =

3
0
2

 , b2 =

1
2
0

 .

6.10. Lema. Za vektore v1, . . . , vm i p < m vrijedi

〈v1, . . . , vp 〉 ⊂ 〈v1, . . . , vm〉.

Naime, proširimo linearne kombinacije vektora v1, . . . , vp do linearnih kom-
binacija vektora v1, . . . , vm “dodavanjem nule”

λ1v1 + · · ·+ λpvp = λ1v1 + · · ·+ λpvp + 0vp+1 + · · ·+ 0vm.
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6.11. Lema. 〈v1, . . . , vm〉 = 〈v1, . . . , vm, vm+1〉 ako i samo ako je

vm+1 ∈ 〈v1, . . . , vm〉.

Naime, vm+1 = 0v1 + . . . 0vm + 1vm+1 ∈ 〈v1, . . . , vm, vm+1〉, pa jednakost
linearnih ljuski povlači vm+1 ∈ 〈v1, . . . , vm〉. Obratno, ako je vektor vm+1

u 〈v1, . . . , vm〉, odnosno vm+1 =
∑m

i=1 µivi, onda za linearne kombinacije
imamo

λ1v1 + · · ·+ λmvm + λm+1

(
m∑
i=1

µivi

)
= λ′1v1 + · · ·+ λ′mvm,

što povlači 〈v1, . . . , vm, vm+1〉 ⊂ 〈v1, . . . , vm〉. Jednakost linearnih ljuski sa-
da slijedi iz prethodne leme.

6.12. Primjer. Neka je zadan niz od tri vektora (e, e, e) u R2, e =
(1, 0). Budući da je µ1e+ µ2e+ µ3e = (µ1 + µ2 + µ3)e, to je linearna ljuska
〈e, e, e〉 tih vektora jednaka

〈e, e, e〉 = {λe | λ ∈ R} = {
(
λ
0

)
| λ ∈ R},

odnosno

〈e, e, e〉 = 〈e〉.

6.13. Pitanje. Neka je dan niz od četiri vektora (0, 0, 0, 0) u R3. Da li
je linearna ljuska tih vektora 〈0, 0, 0, 0〉 = {0} ⊂ R3 ? DA NE

6.14. Zadatak. Primjenom leme 6.11 i rješavanjem sistema jednadžbi
ξ1a1 + ξ2a2 + ξ3a3 = a4 utvrdite da li su jednake linearne ljuske 〈a1, a2, a3〉
i 〈a1, a2, a3, a4〉 za vektore

a1 =

5
0
4

 , a2 =

 3
−1
1

 , a3 =

1
0
2

 , a4 =

 6
−1
1

?

6.15. Linearna ljuska vektora i elementarne transformacije. Ne-
ka je niz vektora v′1, . . . , v

′
k dobiven elementarnim transformacijama iz niza

v1, . . . , vk. Tada je

〈v′1, . . . , v′k〉 = 〈v1, . . . , vk〉.

Dokaz. Pretpostavimo da smo proveli elementarnu transformaciju

v′1 = v1 + µv2, v
′
2 = v2, . . . , v

′
k = vk.

Neka je λ1v
′
1 + · · ·+ λkv

′
k u linearna kombinacija u 〈v′1, . . . , v′k〉. Tada je

λ1v
′
1 + · · ·+ λnv

′
n = λ1v1 + (λ1µ+ λ2)v2 + λ3v3 + · · ·+ λnvn ∈ 〈v1, . . . , vk〉.

Time smo dokazali 〈v′1, . . . , v′k〉 ⊂ 〈v1, . . . , vk〉. Budući da je inverzna elemen-
tarna transformacija istoga tipa, slijedi i 〈v1, . . . , vk〉 ⊂ 〈v′1, . . . , v′k〉. Tvrdnja
leme za ostale slučajeve elementarnih transformacija dokazuje se na sličan
način. �
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6.16. Pitanje egzistencije rješenja sistema jednadžbi. Na pitanje
ima li sistem jednadžbi

(6.1) ξ1a1 + · · ·+ ξnan = b

rješenje možemo odgovoriti rješavanjem sistema Gaussovom metodom eli-
minacija, dakle izvodenjem elementarnih transformacija na recima proširene
matrice sistema.

S druge strane, elementarnim transformacijama stupaca matricu sis-
tema (a1, . . . , an) možemo prevedesti u reduciranu donju stepenastu matricu
(a′1, . . . , a

′
n). Prema prethodnoj točki je linearna ljuska stupaca nove i stare

matrice ista, pa sistem (6.1) ima rješenje ako i samo ako sistem

(6.2) ξ′1a
′
1 + · · ·+ ξ′na

′
n = b

ima rješenje. Pretpostavimo da su u reduciranoj stepenastoj matrici ugaoni
element na mjestima (i1, 1), (i2, 2), . . . , (ir, r). Tada elementarnim transfor-
macijama na stupcima matrice

(a′1, a
′
2, . . . , a

′
s, b) 7→ . . . 7→ (a′1, a

′
2, . . . , a

′
s, b
′),

eliminiramo koordinate u b na mjestima i1, i2, . . . , ir i dobijemo

b′ = b− c = b− βi1a′1 − βi2a′2 − · · · − βira′r.

Ako je b′ = 0, onda je b = c linearna kombinacija vektora a′1, a
′
2, . . . , a

′
s i

sistem (6.2) ima rješenje. Ako je b′ = b − c 6= 0, onda b nije linearna kom-
binacija vektora a′1, a

′
2, . . . , a

′
s jer je c jedinstvena kombinacija tih vektora

koja na mjestima i1, i2, . . . , ir ima koordinate βi1 , βi2 , . . . , βir , a ipak nije b!

6.17. Primjer. Neka je

a1 =


1
1
2
1

 , a2 =


1
1
−1
−1

 , a3 =


2
2
1
2

 , b =


1
β
2
3

 .

Elementarnim transformacijama stupaca matricu (a1, a2, a3) možemo pre-
vesti u reducirani stepenasti oblik (a′1, a

′
2, a
′
3): Prvo je svodimo na stepenasti

oblik
1 1 2
1 1 2
2 −1 1
1 −1 2

 7→


1 0 2
1 0 2
2 −3 1
1 −2 2

 7→


1 0 0
1 0 0
2 −3 −3
1 −2 0

 7→


1 0 0
1 0 0
2 −3 0
1 −2 2

 ,

a onda i na reducirani stepenasti oblik
1 0 0
1 0 0
2 −3 0
1 −2 1

 7→


1 0 0
1 0 0
2 −3 0
1 0 1

 7→


1 0 0
1 0 0
2 −3 0
0 0 1

 7→


1 0 0
1 0 0
2 1 0
0 0 1

 7→


1 0 0
1 0 0
0 1 0
0 0 1

.
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Prema točki 6.15 su linearne ljuske od a1, a2, a3 i a′1, a
′
2, a
′
3 jednake, pa sistem

s matricom sistema

(a1, a2, a3, b) =


1 1 2 1
1 1 2 β
2 −1 1 2
1 −1 2 3


ima rješenje ako i samo ako sistem s matricom sistema

(a′1, a
′
2, a
′
3, b) =


1 0 0 1
1 0 0 β
0 1 0 2
0 0 1 3


ima rješenje. Jasno je da je drugi sistem lakše riješiti: jedina kombinacija
vektora a′1, a

′
2, a
′
3 za koju je prva koordinata 1, treća koordinata 2 i četvrta

koordinata 3 je

c = a′1 + 2a′2 + 3a′3 =


1
1
2
3

 ,

pa ako je β = 1 onda sistem ima rješenje, a ako je β 6= 1 onda sistem nema
rješenje. To smo mogli izračunati i eliminacijom koordinata u b na mjestima
ugaonih elemenata reducirane stepenaste matrice

(a′1, a
′
2, a
′
3, b) =


1 0 0 1
1 0 0 β
0 1 0 2
0 0 1 3

 7→


1 0 0 0
1 0 0 β − 1
0 1 0 2
0 0 1 3



7→


1 0 0 0
1 0 0 β − 1
0 1 0 0
0 0 1 3

 7→


1 0 0 0
1 0 0 β − 1
0 1 0 0
0 0 1 0

 = (a′1, a
′
2, a
′
3, b
′)

i zaključiti da sistem ima rješenje ako je b′ = 0 i nema rješenje ako je b′ 6= 0.

6.18. Zadatak. Elementarnim transformacijama na stupcima utvrdite
da li sistem jednadžbi s proširenom matricom sistema

1 1 −1 1
1 2 1 1
1 1 0 −1
2 −1 2 3


ima rješenje.
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6.19. Primjer. Neka su v1, v2, v3 vektori iz R3 kao u primjeru 4.12

v1 =

1
2
1

 , v2 =

 1
−1
−1

 , v3 =

2
1
2

 .

Budući da niz vektora (v1, v2, v3) elementarnim transformacijama možemo
prevesti u kanonsku bazu (e1, e2, e3), to je prema točki 6.15

〈v1, v2, v3〉 = 〈e1, e2, e3〉.

No linearna ljuska 〈e1, e2, e3〉 vektora kanonske baze je čitav prostor R3, pa
imamo

〈v1, v2, v3〉 = R3.

6.20. Zadatak. Pokažite da je linearna ljuska vektora

v1 =

1
1
0

 , v2 =

1
0
1

 i v3 =

0
1
1


čitav prostor R3.

7. Potprostori vektorskog prostora Rn

7.1. Definicija potprostora vektorskog prostora Rn. Neka je W
neprazan podskup od Rn. Kažemo da je W potprostor vektorskog prosto-
ra Rn ako je zatvoren za operacije zbrajanja vektora i množenje vektora
skalarom, tj. ako vrijedi:

(1) za sve a, b ∈W je a+ b ∈W ,
(2) za sve a ∈W i sve λ ∈ R je λa ∈W .

7.2. Nul-potprostor. Neka je W = {0}, tj. skup čiji je jedini element
nula u Rn. Budući da je 0 + 0 = 0 i λ0 = 0 za svaki λ ∈ R, to je W = {0}
potprostor vektorskog prostora Rn. Potprostor {0} zovemo nul-potprostorom
vektorskog prostora Rn i označavamo ga s 0.

7.3. Trivijalni potprostori. Očito je W = Rn potprostor od Rn. Pot-
prostore 0 i Rn zovemo trivijalnim potprostorima vektorskog prostora Rn.

7.4. Primjer. Skup W svih vektora u R3 oblikaξ1

ξ2

0


je potprostor. Interpretiramo li R3 geometrijski, onda je potprostor W ra-
vnina u prostoru koja sadrži prve dvije koordinatne osi.
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7.5. Primjer. Skup

W =

{(
ξ1

ξ2

)
∈ R2 | ξ1 > 0

}
nije potprostor u R2. Doduše, za a, b ∈W vrijedi a+ b ∈W , ali (−1)a nije
u W , pa općenito ni λa nije u W (nacrtajte sliku).

7.6. Pitanje. Da li je skup

W =

{(
ξ1

ξ2

)
∈ R2 | ξ1 ≥ 0, ξ2 ≥ 0

}
potprostor u R2 ? DA NE

7.7. Svojstva operacija zbrajanja i množenja skalarom eleme-
nata potprostora. Po definiciji potprostora W vektorskog prostora Rn,
na W imamo definirane operacija zbrajanja i množenja skalarom. Operacija
zbrajanja je asocijativna i komutativna. Ako je w vektor iz W , onda je po
pretpostavci 0 = 0 · w iz W , pa potprostor W ima i element 0 za operaciju
zbrajanja. Budući da je −w = (−1)·w, to zajedno s elementom w potprostor
W sadrži i suprotan element −w. Znači da operacija zbrajanja vektora iz
W ima sva algebarska svojstva zbrajanja vektora u Rn popisana u točki 2.3.
Očito je da i operacija množenja vektora iz W skalarom ima sva algebarska
svojstva popisana u točki 2.3.

7.8. Linearna kombinacija elemenata potprostora. Ako jeW pot-
prostor i a1, . . . , ak vektori u W , onda iz definicije neposredno slijedi da je i
svaka linearna kombinacija λ1a1 + · · ·+ λkak element potprostora W .

7.9. Linearna ljuska vektora je potprostor od Rn. Već smo vidjeli
da je linearna ljuska vektora v1, . . . , vk u Rn

〈v1, . . . , vk〉 = {λ1v1 + · · ·+ λkvk | λ1, . . . , λk ∈ R}

vektorski potprostor od Rn.

7.10. Svi netrivijalni potprostori od R3. Geometrijska nam intu-
icija kaže da su, osim skupa {0} i samog R3, pravci i ravnine kroz ishodǐste
jedini podskupovi od R3 zatvoreni za zbrajanje vektora po pravilu paralelo-
grama i množenje vektora skalarom. Da bismo to i dokazali pretpostavimo
da je W potprostor od R3 i da je W 6= 0. Tada postoji vektor v 6= 0
u W i, budući da je W zatvoren za množenje skalarom, W sadrži pravac
p = {λv | λ ∈ R}. Ako W nije taj pravac p, onda postoji w 6= 0 u W koji
nije proporcionalan v i, budući da je W zatvoren za zbrajanje i množenje
skalarom, W sadrži ravninu Π = {λv + µw | λ, µ ∈ R}. Ako W nije ni ta
ravnina Π, onda je W = R3. Naime, ako W nije Π, onda postoji vektor b u
W koji nije linearna kombinacija vektora v i w. To znači da sistem jednadžbi

ξ1v + ξ2w = b
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nema rješenja. No onda nema rješenja ni sistem

ξ′1v
′ + ξ′2w

′ = b

kojemu je matrica sistema reducirana stepenasta forma (v′, w′) matrice (v, w).
Budući da v 6= 0 i w 6= 0 nisu proporcionalni, reducirana stepenasta matrica
(v′, w′) je oblika 1 0

0 1
∗ ∗

 ili

1 0
∗ 0
0 1

 ili

0 0
1 0
0 1

 .

Ako na mjestima ugaonih elemenata u matrici (v′, w′, b) eliminiramo koor-
dinate od b, kao u točki 6.16, dobivamo1 0 0

0 1 0
∗ ∗ β

 ili

1 0 0
∗ 0 β
0 1 0

 ili

0 0 β
1 0 0
0 1 0

 .

Budući da b nije linearna kombinacija v′ i w′, to u svakom od tri slučaja
mora biti β 6= 0, i svaku od tih matrica možemo svesti na matricu (e1, e2, e3)
vektora kanonske baze u R3. Budući da za linearne ljuske imamo

〈v, w, b〉 = 〈v′, w′, b〉 = 〈v′, w′, b′〉 = 〈e1, e2, e3〉 = R3,

to W sadrži sve vektore iz R3, pa je W = R3.

7.11. Primjedba. Gornji dokaz je malo dug i nespretan, ali koristi
samo ono što smo dosada naučili. U idućem ćemo poglavlju naučiti pojmove
i rezultate iz kojih će puno lakše slijediti opis svih potprostora, ne samo u
R3, nego i općenito u Rn.

7.12. Zadatak. Pokažite da su svi netrivijalni potprostori u R2 pravci
kroz ishodǐste.

7.13. Zadatak. Pokažite da je skup svih rješenja x = (ξ1, ξ2) homogene
jednadžbe

ξ1 − 3ξ2 = 0

vektorski potprostor u R2. Interpretirajte taj skup geometrijski u euklidskoj
ravnini.

7.14. Zadatak. Pokažite da je skup svih rješenja x = (ξ1, ξ2, ξ3) ho-
mogenog sistema jednadžbi

ξ1 − ξ2 = 0, ξ2 − ξ3 = 0

pravac kroz ishodǐste u R3.
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7.15. Teorem. Skup svih rješenja homogenog sistema jednadžbi

α11ξ1 + · · ·+ α1nξn = 0 ,

α21ξ1 + · · ·+ α2nξn = 0 ,

. . .

αm1ξ1 + · · ·+ αmnξn = 0

je vektorski potprostor u Rn.

Dokaz. Označimo li s a1, . . . , an stupce matrice sistema A, onda ho-
mogeni sistem jednadžbi možemo zapisati kao

Ax = ξ1a1 + · · ·+ ξnan = 0.

Za dva rješenja x i y iz svojstva linearnosti (5.7) slijedi

A(x+ y) = Ax+Ay = 0 + 0 = 0 i A(λx) = λ(Ax) = λ0 = 0.

Znači da je skup svih rješenja zatvoren za zbrajanje i množenje skalarom. �

7.16. Dva važna pitanja o potprostorima u Rn. Iz svega što smo
u ovoj točki rekli nameću se dva pitanja:

(1) Da li je svaki potprostor u Rn linearna ljuska 〈v1, . . . , vk〉 za neke
vektore v1, . . . , vk ∈ Rn ?

(2) Da li je svaki potprostor u Rn skup svih rješenja homogenog sistema
jednadžbi ξ1a1 + · · ·+ ξnan = 0 za neke vektore a1, . . . , an ∈ Rm ?

Na prvo pitanje odgovorit ćemo u sljedećem poglavlju, a na drugo u
poglavlju o skalarnom produktu u Rn15.

15Na oba je pitanja odgovor potvrdan.





POGLAVLJE 3

Baza vektorskog prostora

U ovom poglavlju uvodimo pojam baze u Rn i pokazujemo da svaka baza
ima n elemenata, a da li su dani vektori baza provjeravamo korǐstenjem
elementarnih transformacija. Uvodimo pojam linearno nezavisnog skupa
vektora u Rn i dokazujemo da se svaki linearno nezavisni skup može nado-
puniti do baze. Zatim definiramo konačno dimenzionalne vektorske prostore
i pokazujemo da navedena svojstva baze vrijede i općenito. Posebno je
važna posljedica razmatranja općih vektorskih prostora da je svaki realni
n-dimenzionalni vektorski prostor izomorfan Rn.

1. Baze u Rn

1.1. Kanonska baza u Rn. Skup vektora u Rn oblika

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . en =


0
0
...
1


zovemo kanonskom bazom vektorskog prostora Rn. Primijetimo da vektor
kanonske baze ej ima j-tu koordinatu 1, a sve ostale 0. Na primjer, skup
vektora

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1


je kanonska baza vektorskog prostora R3.

Svaki vektor x u Rn možemo na jedinstveni način prikazati kao linearnu
kombinaciju vektora kanonske baze

x = ξ1e1 + ξ2e2 + · · ·+ ξnen.

Koeficijente ξ1, ξ2 . . . , ξn u toj linearnoj kombinaciji – zapravo koordinate od
x – zovemo još i koordinatama vektora x u kanonskoj bazi. Kraće kažemo
da smo vektor x prikazali ili zapisali u kanonskoj bazi, pri čemu je ξ1 prva
koordinata vektora x u kanonskoj bazi, ξ2 druga koordinata, itd. Na primjer,
vektor x u R3 možemo zapisati u kanonskoj bazi kao

x =

ξ1

ξ2

ξ3

 =

ξ1

0
0

+

 0
ξ2

0

+

 0
0
ξ3

 = ξ1

1
0
0

+ ξ2

0
1
0

+ ξ3

0
0
1


61
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1.2. Primjer.

a =


1
−2
0
2

 = 1


1
0
0
0

+ (−2)


0
1
0
0

+ 0


0
0
1
0

+ 2


0
0
0
1

 = e1− 2e2 + 0e3 + 2e4,

pa je u kanonskoj bazi e1, e2, e3, e4 od R4 prva koordinata vektora a jednaka
1, druga koordinata je −2, treća koordinata je 0 i četvrta koordinata je 2.

1.3. Zadatak. Prikažite vektor

a =


0
1
1
−1√

3


u kanonskoj bazi prostora R5.

1.4. Jedinična matrica. Kvadratnu n× n matricu

I = (e1, . . . , en)

čiji su stupci e1, . . . , en elementi kanonske baze prostora Rn zovemo je-
diničnom matricom i obično je označavamo s I. Na primjer,

1 = I,

(
1 0
0 1

)
= I,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I,

gdje je redom I jedinična matrica tipa 1× 1, tipa 2× 2 i tipa 4× 4.

1.5. Pitanje. Da li su1 1 1
1 1 1
1 1 1

 i

1 0 0 0
0 1 0 0
0 0 1 0


jedinične matrice? DA NE

1.6. Definicija baze u Rn. Kažemo da je skup vektora a1, a2, . . . , as
baza od Rn ili baza u Rn ako svaki vektor x u Rn možemo na jedinstveni
način prikazati kao linearnu kombinaciju

λ1a1 + λ2a2 + · · ·+ λsas, λ1, λ2, . . . , λs ∈ R.

Pokazat ćemo (teoremi 1.12 i 3.15) da svaka baza u Rn ima n elemenata, tj.
da mora biti s = n.

Očito kanonska baza e1, e2, . . . , en od Rn jest baza u Rn.
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1.7. Napomena. Možda nije na odmet posebno istaknuti da se u de-
finiciji baze zahtijevaju dva svojstva: 1) da za svaki vektor x u Rn postoji
prikaz u obliku linearne kombinacije od a1, . . . , as i 2) da je za svaki vektor
x takav prikaz jedinstven. Ako vrijedi prva tvrdnja, onda obično kažemo
da vektori a1, . . . , as razapinju Rn.

1.8. Primjer. Vektori

a1 =

(
1
1

)
i a2 =

(
1
−1

)
čine bazu u R2. Naime, za vektor x ∈ R2 uvjet x = λ1a1 + λ2a2 možemo
zapisati kao (

ξ1

ξ2

)
= λ1

(
1
1

)
+ λ2

(
1
−1

)
=

(
λ1 + λ2

λ1 − λ2

)
.

Kao što smo već u točki 2.5.9 primijetili, zapisano po koordinatama to je
sistem jednadžbi

λ1 + λ2 = ξ1, λ1 − λ2 = ξ2

s nepoznanicama λ1 i λ2 koji za svaki izbor koordinata ξ1 i ξ2 ima jedinstveno
rješenje

λ1 = (ξ1 + ξ2)/2, λ2 = (ξ1 − ξ2)/2.

Znači da svaki vektor x možemo na jedinstveni način prikazati kao line-
arnu kombinaciju vektora a1, a2. Tako, na primjer, imamo jedinstveni zapis
vektora

(
3
−2

)
= 1

2a1 + 5
2a2.

1.9. Baze u Rn i sistemi jednadžbi. Točka 2.5.9 i prethodni primjer
pokazuju da općenito možemo provjeriti da li je skup vektora a1, a2, . . . , as
baza u Rn provjeravajući da li sistem jednadžbi

λ1a1 + λ2a2 + · · ·+ λsas = x

sa zadanom matricom sistema A = (a1, a2, . . . , as) i desnom stranom x ima
jedinstveno rješenje (λ1, λ2, . . . , λs) za svaki vektor x ∈ Rn.

1.10. Zadatak. Pokažite da su vektori b1 = ( 1
0 ) i b2 = ( 1

1 ) baza u R2.

1.11. Primjer. Da bismo pokazali da vektori

a1 =

 1
1
−1

 , a2 =

−1
2
1

 , a3 =

 2
−1
1


čine bazu u R3 trebamo pokazati da za svaki vektor x iz R3 sistem jednadžbi

λ1a1 + λ2a2 + λ3a3 = x

s nepoznanicama λ1, λ2, λ3 i desnom stranom x ima jedinstveno rješenje.
Taj ćemo sistem rješavati Gaussovom metodom. Budući da nas ne zanima
što je rješenje (λ1, λ2, λ3), već samo tvrdnja da postoji jedinstveno rješenje



64 3. BAZA VEKTORSKOG PROSTORA

za svaku desnu stranu x, to nećemo računati desnu stranu sistema — pisat
ćemo samo zvjezdice: 1 −1 2 ∗

1 2 −1 ∗
−1 1 1 ∗

 7→
 1 −1 2 ∗

0 3 −3 ∗
−1 1 1 ∗

 7→
1 −1 2 ∗

0 3 −3 ∗
0 0 3 ∗

 .

Sada je jasno da primjenom obratnog hoda u Gaussovoj metodi dobivamo
jedinstveno rješenje (λ1, λ2, λ3) za svaku desnu stranu x.

Da smo u ovom primjeru nastavili postupak eliminacijom elemenata u
gornjem trokutu matrice sistema, kao rezultat bismo dobili1 0 0 ∗

0 1 0 ∗
0 0 1 ∗

 ,

odakle je sasvim očito da početni sistem jednadžbi ima jedinstveno rješenje.
Valja primijetiti da je bilo sasvim suvǐsno u Gaussovim eliminacijama

pisati zvjezdice umjesto desne strane x sistema — dovoljno je bilo vidjeti da
elementarnim transformacijama na jednadžbama matricu početnog sistema
možemo prevesti u matricu čiji su stupci elementi kanonske baze

(a1, a2, a3) 7→ . . . 7→ (e1, e2, e3).

1.12. Teorem o bazi u Rn i elementarnim transformacijama re-
daka matrice. Neka je n × p matrica (v′1, . . . , v

′
p) dobivena elementarnim

transformacijama redaka iz matrice (v1, . . . , vp). Tada su stupci matrice
(v′1, . . . , v

′
p) baza od Rn ako i samo ako su stupci matrice (v1, . . . , vp) baza od

Rn.
Štovǐse, ako su stupci v1, . . . , vp baza od Rn, onda je p = n i postoji

niz elementarnih transformacija redaka koji matricu (v1, . . . , vp) prevodi u
jediničnu matricu I = (e1, . . . , en).

Dokaz. Dokaz teorema je u suštini ponavljanje argumenata iz prethod-
nog primjera: Po definiciji 1.6 vektori v1, . . . , vp čine bazu od Rn ako za
svaki vektor x sistem jednadžbi

(1.1) λ1v1 + · · ·+ λpvp = x

s nepoznanicama λ1, . . . , λs i desnom stranom x ima jedinstveno rješenje.
Ako je

(v1, . . . , vp) 7→ (v′1, . . . , v
′
p)

elementarna transformacija redaka n×p matrice, onda za proširenu matricu
sistema (1.1) imamo pripadnu elementarnu transformaciju

(v1, . . . , vp, x) 7→ (v′1, . . . , v
′
p, x
′)

i novi sistem jednadžbi

(1.2) λ1v
′
1 + · · ·+ λpv

′
p = x′
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ima isti skup rješenja. Posebno, sistem (1.2) ima jedinstveni rješenje za svaki
x′. Budući da je elementarno preslikavanje1 x 7→ x′ bijekcija na Rn, to sistem
(1.2) ima jedinstveni rješenje za svaku desnu stranu i vektori (v′1, . . . , v

′
p) su

baza od Rn.
Ako su vektori v′1, . . . , v

′
p baza od Rn, onda je prema upravo dokazanoj

tvrdnji i v1, . . . , vp baza od Rn jer postoji inverzna elementarna transforma-
cija redaka koja matricu (v′1, . . . , v

′
p) prevodi u matricu (v1, . . . , vp).

Dokažimo2 da je p = n ako su vektori v1, . . . , vp baza od Rn. Naime,

0 = 0v1 + · · ·+ 0vp

i da je p > n imali bismo, prema teoremu 1.4.3, neko netrivijalno rješenje
(λ1, . . . , λp) sistema

0 = λ1v1 + · · ·+ λpvp ,

suprotno pretpostavci o jedinstvenosti zapisa svakog vektora u bazi v1, . . . , vp.
S druge strane, da je p < n, svodenjem sistema jednadžbi (1.1) Gaussovom
metodom na stepenastu formu, recimo

(1.3) λ1v
′
1 + · · ·+ λpv

′
p = x′,

dobili bismo u matrici sistema (1.3) zadnji redak jednak nuli jer ima vǐse
jednadžbi nego nepoznanica. No tada za x′ = en sistem (1.3) ne bi imao
rješenja, suprotno već dokazanoj tvrdnji da v′1, . . . , v

′
p mora biti baza od Rn.

Znači da je p = n.
Neka su vektori v1, . . . , vn baza od Rn. Svodenjem n × n sistema jed-

nadžbi (1.1) Gaussovom metodom na stepenastu formu, recimo (1.3), dobi-
vamo gornju trokutastu matricu sistema kojoj je svaki element na dijagonali
različit od nule. Naime, da je u postupku svodenja na stepenastu formu neki
od elemenata dijagonale bio nula, onda bi na kraju postupka imali zadnji
redak nula – što je nemoguće. No trokutasti sistem kojemu je svaki element
na dijagonali različit od nule obratnim hodom Gaussove metode možemo
svesti na sistem kojemu je matrica sistema jedinična matrica

I = (e1, . . . , en).

�

1.13. Pitanje. Može li R7 imati bazu od devet elemenata ili R9 bazu
od sedam elemenata? DA NE

1.14. Primjedba. Iz zadnjeg dijela dokaza vidimo da za vektore v1,
. . . , vn koji nisu baza svodenjem matrice na gornju stepenastu formu Ga-
ussovim eliminacijama dobivamo matricu (v′1, . . . , v

′
n) kojoj je barem zadnji

redak nula. Znači da elementarnim transformacijama na recima za pro-
izvoljnu n× n matricu možemo ustanoviti jesu li stupci matrice baza od Rn

1vidi točku 2.4.23 u prethodnom poglavlju
2Općenitiju tvrdnju teorema 3.15 dokazujemo na sličan način.
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ili ne. Na primjer, elementarnim transformacijama na recima dobivamo 1 2 1
−2 −1 1
−1 1 2

 7→
 1 2 1

0 3 3
−1 1 2

 7→
1 2 1

0 3 3
0 3 3

 7→
1 2 1

0 3 3
0 0 0

 ,

pa zaključujemo da stupci početne matrice nisu baza u R3.

1.15. Zadatak. Dokažite da vektori v1, v2, v3,

v1 =

1
2
1

 , v2 =

 1
−1
−1

 , v3 =

2
1
2


čine bazu vektorskog prostora R3.

1.16. Zadatak. Dokažite da vektori v1, v2, v3,

v1 =

1
2
1

 , v2 =

−2
−1
1

 , v3 =

−1
1
2


nisu baza vektorskog prostora R3.

1.17. Teorem o bazi u Rn i elementarnim transformacijama stu-
paca matrice. Neka je niz vektora v′1, . . . , v

′
n u Rn dobiven elementarnim

transformacijama iz niza v1, . . . , vn. Tada je v′1, . . . , v
′
n baza od Rn ako i

samo ako je v1, . . . , vn baza od Rn.
Štovǐse, ako je v1, . . . , vn baza od Rn, onda postoji niz elementarnih tran-

sformacija koji tu bazu prevodi u kanonsku bazu e1, . . . , en.

Dokaz. Pretpostavimo da su vektori v1, . . . , vn baza od Rn i da smo
proveli elementarnu transformaciju oblika

v′1 = v1 + µv2, v
′
2 = v2, . . . , v

′
n = vn .

Tada za proizvoljan vektor v iz Rn imamo jedinstveni zapis

v = λ1v1 + λ2v2 + · · ·+ λnvn

i vrijedi

(1.4)
v = λ′1v

′
1 + λ′2v

′
2 + · · ·+ λ′nv

′
n

= λ′1v1 + (λ′1µ+ λ′2)v2 + λ′3v3 + · · ·+ λ′nvn
za

(1.5) λ′1 = λ1, λ′1µ+ λ′2 = λ2, λ′n = λn .

Relacije (1.5) možemo shvatiti kao sistem jednadžbi s nepoznanicama λ′1,
λ′2, . . . , λ′n i zadanom desnom stranom λ1, λ2, . . . , λn. No taj sistem ima
jedinstveno rješenje

λ′1 = λ1, λ′2 = λ2 − λ1µ, λ′n = λn ,

pa zato i vektor v ima jedinstveni prikaz (1.4). Znači da je v′1, . . . , v
′
n baza

od Rn.



1. BAZE U Rn 67

Na sličan način dokazujemo i za druge elementarne transformacije da
je v′1, . . . , v

′
n baza ako je v1, . . . , vn baza. Budući da svaka elementarna

transformacija ima inverznu, to su vektori v1, . . . , vn dobiveni elementarnim
transformacijama iz niza v′1, . . . , v

′
n , pa je v1, . . . , vn baza ako je v′1, . . . , v

′
n

baza.
Neka je v1, . . . , vn baza od Rn. Primjenom niza elementarnih transfor-

macija na stupcima n× n matricu (v1, . . . , vn) možemo svesti na donju tro-
kutastu matricu (v′1, . . . , v

′
n) kojoj su svi dijagonalni elementi različiti od

nule. Naime, u suprotnom bi na kraju procesa stepenasta matrica imala
zadnji stupac nula, odnosno v′n = 0, pa bi za svaki λ 6= 0 imali

0 = 0v′1 + · · ·+ 0v′n−1 + λ0.

No to je u suprotnosti s već dokazanom tvrdnjom da je v′1, . . . , v
′
n baza i da,

shodno tome, svaki vektor u toj bazi ima jedinstveni zapis.
Iz donje trokutaste matrice (v′1, . . . , v

′
n) kojoj je svaki element na dija-

gonali različit od nule lako je dobiti jediničnu matricu

I = (e1, . . . , en)

primjenom elementarnih transformacija stupaca: prvo “eliminiramo” ele-
mente u zadnjem retku koristeći zadnji stupac, zatim elemente u predzad-
njem retku koristeći predzadnji stupac, itd. �

1.18. Primjer. Da vektori

v1 =

1
2
1

 , v2 =

 1
−1
−1

 , v3 =

2
1
2


čine bazu u R3 možemo utvrditi i korǐstenjem elementarnih transformacija
na stupcima matrice, pri čemu prvo dobijemo donju trokutastu matricu koja
na dijagonali ima elemente različite od nule:1 1 2

2 −1 1
1 −1 2

 7→
1 0 0

2 −3 −3
1 −2 0

 7→
1 0 0

2 −3 0
1 −2 2

 7→
1 0 0

2 −3 0
1 −2 1

 ,

a potom trokutastu matricu svedemo na jediničnu matricu:

7→

1 0 0
2 −3 0
0 0 1

 7→
1 0 0

2 1 0
0 0 1

 7→
1 0 0

0 1 0
0 0 1

 = I.

1.19. Primjedba. Iz zadnjeg dijela dokaza teorema 1.17 vidimo da
za vektore v1, . . . , vn koji nisu baza svodenjem matrice na gornju ste-
penastu formu elementarnim transformacijama stupaca dobivamo matricu
(v′1, . . . , v

′
n) kojoj je barem zadnji stupac nula. Znači da elementarnim tran-

sformacijama za proizvoljnu n×n matricu možemo ustanoviti jesu li stupci
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matrice baza od Rn ili ne. Na primjer, elementarnim transformacijama na
stupcima dobivamo 1 2 1

−2 −1 1
−1 1 2

 7→
 1 0 1
−2 3 1
−1 3 2

 7→
 1 0 0
−2 3 3
−1 3 3

 7→
 1 0 0
−2 3 0
−1 3 0

 ,

pa zaključujemo da stupci početne matrice nisu baza u R3.

1.20. Zadatak. Koristeći elementarne transformacije stupaca matrice
utvrdite jesu li v1, . . . , v4 baza u R4 za vektore

v1 =


1
2
1
1

 , v2 =


1
−1
−1
0

 , v3 =


2
1
2
−2

 , v4 =


2
−1
−1
2

 ?

2. Linearna nezavisnost vektora u Rn

2.1. Definicija linearne nezavisnosti vektora u Rn. Kažemo da su
vektori v1, . . . , vp u Rn linearno nezavisni ako je samo trivijalna kombinacija
tih vektora jednaka nuli, tj. ako

λ1v1 + · · ·+ λpvp = 0

povlači

λ1 = 0, . . . , λp = 0.

Kažemo da su vektori v1, . . . , vp u Rn linearno zavisni ako nisu linearno
nezavisni.

2.2. Linearna nezavisnost u Rn i homogeni sistemi jednadžbi.
Svojstvo linearne nezavisnosti vektora u Rn možemo izreći i u terminima
sistema jednadžbi: vektori v1, . . . , vp su linearno nezavisni ako i samo ako
homogeni n× p sistem jednadžbi

(2.1) ξ1v1 + · · ·+ ξpvp = 0

ima jedinstveno rješenja ξ1 = · · · = ξp = 0.

2.3. Primjer. Prema prethodnoj primjedbi pitanje da li su vektori

v1 =


1
2
1
1

 , v2 =


1
−1
−1
1

 , v3 =


2
1
2
−2


linearno nezavisni svodi se na pitanje da li homogeni sistem jednadžbi

λ1


1
2
1
1

+ λ2


1
−1
−1
1

+ λ3


2
1
2
−2

 =


0
0
0
0


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ima jedinstveno rješenje λ1 = λ2 = λ3 = 0? Sistem rješavamo Gaussovom
metodom

1 1 2 0
2 −1 1 0
1 −1 2 0
1 1 −2 0

 7→


1 1 2 0
0 −3 −3 0
0 −2 0 0
0 0 −4 0

 7→


1 1 2 0
0 −2 0 0
0 0 −4 0
0 −3 −3 0

 7→


1 1 2 0
0 1 0 0
0 0 1 0
0 −3 −3 0

 7→


1 1 2 0
0 1 0 0
0 0 1 0
0 0 0 0

 7→


1 0 2 0
0 1 0 0
0 0 1 0
0 0 0 0

 7→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,

pa na kraju zaključujemo da homogeni sistem zaista ima jedinstveno rješenje
λ1 = λ2 = λ3 = 0. Primijetimo da je u ovom postupku bilo suvǐsno pisati
desnu stranu homogenog sistema i da odgovor ovisi samo o matrici sistema
(v1, v2, v3) na kojoj smo izvodili elementarne transformacije po recima.

2.4. Zadatak. Koristeći elementarne transformacije redaka matrice
utvrdite jesu li vektori

v1 =


1
2
1
2

 , v2 =


1
−1
−1
−1

 , v3 =


2
1
2
1


linearno nezavisni?

2.5. Pitanje. Očito su stupci matrice1 1 2
0 −1 1
0 0 2


linearno nezavisni. Možemo li odavle zaključiti da su onda linearno nezavisni
i stupci matrice 

1 1 2
0 −1 1
0 0 2
α1 β1 γ1

α2 β2 γ2

α3 β3 γ3


za sve αi, βi, γi u R, i = 1, 2, 3?

2.6. Neposredne posljedice definicije linearne nezavisnosti. Ve-
zano uz definiciju primijetimo sljedeće:

1. Ako je v 6= 0, onda je v linearno nezavisan. Naime, λv = 0 za
netrivijalnu linearnu kombinaciju, tj. λ 6= 0, daje

v = 1 · v = ( 1
λλ)v = 1

λ(λv) = 1
λ0 = 0,

što je suprotno pretpostavci v 6= 0.
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2. Ako su vektori v1, . . . , vm linearno nezavisni, onda onda su i vektori
v1, . . . , vp linearno nezavisni za p < m. Treba samo provjeriti da

λ1v1 + · · ·+ λpvp = 0

povlači λ1 = 0, . . . , λp = 0. No iz gornje jednakosti “dodavanjem nule”
dobivamo

λ1v1 + · · ·+ λpvp + 0vp+1 + · · ·+ 0vm = 0,

pa sad iz pretpostavke da su vektori v1, . . . , vm linearno nezavisni slijedi da
su svi koeficijenti u kombinaciji nula, posebno λ1 = 0, . . . , λp = 0.

3. Vektori 0, v1, . . . , vm nisu linearno nezavisni. Naime, imamo netrivi-
jalnu kombinaciju

1 · 0 + 0v1 + · · ·+ 0vm = 0.

Posebno, ako su v1, . . . , vm linearno nezavisni, onda je vj 6= 0 za sve j =
1, . . . ,m.

2.7. Zadatak. Dokažite da su vektori v1 i v2 linearno nezavisni ako i
samo ako nisu proporcionalni.

2.8. Pitanje. Da li su vektori
(

1
−1

)
i
(

3
−3

)
linearno nezavisni? DA NE

2.9. Pitanje. Da li su vektori v1, v2, 0 linearno nezavisni ako su vektori
v1, v2 linearno nezavisni? DA NE

2.10. Pitanje. Da li su vektori v3, v4 linearno nezavisni ako su vektori
v1, v2, v3, v4 linearno nezavisni? DA NE

2.11. Pitanje. Da li su vektori v1, v2, v3, v4 linearno nezavisni ako su
vektori v3, v4 linearno nezavisni? DA NE

2.12. Lema o linearnoj nezavisnosti vektora i elementarnim
transformacijama. Neka je niz vektora v′1, . . . , v

′
p u Rn dobiven elemen-

tarnim transformacijama iz niza v1, . . . , vp. Tada je v′1, . . . , v
′
p linearno ne-

zavisan ako i samo ako je v1, . . . , vp linearno nezavisan.

Dokaz. Pretpostavimo da su vektori v1, . . . , vp linearno nezavisni i da
smo proveli elementarnu transformaciju oblika

v′1 = v1 + µv2, v
′
2 = v2, . . . , v

′
p = vp.

Neka je

λ1v
′
1 + λ2v

′
2 + · · ·+ λpv

′
p = 0,

odnosno

λ1v1 + (λ1µ+ λ2)v2 + λ3v3 + · · ·+ λpvp = 0.

Sada linearna nezavisnost v1, . . . , vp povlači

λ1 = λ1µ+ λ2 = λ3 = · · · = λp = 0.

No tada je λ1 = λ2 = · · · = λp = 0, što dokazuje linearnu nezavisnost
vektora v′1, . . . , v

′
p. Na sličan način i za druge elementarne transformacije
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dokazujemo da linearna nezavisnost vektora v1, . . . , vp povlači linearnu ne-
zavisnost vektora v′1, . . . , v

′
p. Budući da svaka elementarna transformacija

ima inverznu, to su vektori v1, . . . , vp dobiveni elementarnim transformaci-
jama iz niza v′1, . . . , v

′
p, pa linearna nezavisnost v′1, . . . , v

′
p povlači linearnu

nezavisnost v1, . . . , vp. �

2.13. Primjer. Napǐsimo vektore v1, v2, v3 iz primjera 2.3 kao stupce
u matrici i provedimo elementarne transformacije na stupcima

1 1 2
2 −1 1
1 −1 2
1 1 −2

 7→


1 0 2
2 −3 1
1 −2 2
1 0 −2

 7→


1 0 0
2 −3 −3
1 −2 0
1 0 −4

 7→


1 0 0
2 −3 0
1 −2 2
1 0 −4

 .

Za vektore stupce na desnoj strani lako je ustanoviti da, pri utvrdivanju
njihove linearne nezavisnosti, odgovarajući sistem jednadžbi

(2.2)

λ1 = 0,

2λ1 − 3λ2 = 0,

λ1 − 2λ2 + 2λ3 = 0

λ1 + 0λ2 − 4λ3 = 0,

ima jedinstveno trivijalno rješenje λ1 = 0, λ2 = 0, λ3 = 0. Znači da su
vektori stupci na desnoj strani linearno nezavisni. Iz leme 2.12 slijedi da su
vektori v1, v2, v3 u našem primjeru 2.3 linearno nezavisni.

Postupak nismo trebali prekinuti kod homogenog sistema jednadžbi (2.2),
već smo mogli nastavit s elementarnim transformacijama stupaca svodeći
matricu na reduciranu donju stepenastu formu

1 0 0
2 −3 0
1 −2 2
1 0 −4

 7→


1 0 0
2 −3 0
1 −2 1
1 0 −2

 7→


1 0 0
2 −3 0
0 0 1
3 −4 −2

 7→

7→


1 0 0
2 1 0
0 0 1
3 4/3 −2

 7→


1 0 0
0 1 0
0 0 1

1/3 4/3 −2


dobivši na kraju sistem

λ1 = 0, λ2 = 0, λ3 = 0, 1
3λ1 + 4

3λ2 − 2λ3 = 0.

2.14. Provjera nezavisnosti svodenjem na stepenastu matricu.
Gornji nam primjer pokazuje kako i općenito možemo provjeriti linearnu ne-
zavisnost vektora v1, . . . , vp u Rn: elementarnim transformacijama stupaca
n× p matricu (v1, . . . , vp) svedemo na donju stepenastu matricu

(c1, . . . , cp).

Ako matrica (c1, . . . , cp) ima nul-stupac, onda vektori nisu linearno neza-
visni, pa prema lemi 2.12 nisu nezavisni ni vektori v1, . . . , vp. Ako su pak
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svi vektori u donjoj stepenastoj matrici (c1, . . . , cp) različiti od nule, onda
imaju ugaone elemente u recima i1, . . . , ip. Tada u sistemu jednadžbi

(2.3) λ1c1 + · · ·+ λpcp = 0

prvo gledamo koordinatu na i1-tom mjestu. Tu vektor c1 ima ugaoni element
ci11 6= 0, a ostalim vektorima c2, . . . , cp je i1-ta koordinata nula. Znači da
imamo jednadžbu

λ1ci11 = 0

koja ima jedinstveno rješenje λ1 = 0. Tada sistem (2.3) postaje

λ2c2 + · · ·+ λpcp = 0.

U tom se sistemu ne javlja vektor c1, pa gledamo koordinatu na i2-tom
mjestu. Tu vektor c2 ima ugaoni element ci22 6= 0, a ostalim vektorima
c3, . . . , cp je i2-ta koordinata nula. Znači da imamo jednadžbu

λ2ci22 = 0

koja ima jedinstveno rješenje λ2 = 0. Nastavljajući postupak zaključujemo
da sistem (2.3) ima samo trivijalno rješenje. Znači da su vektori c1, . . . , cp
linearno nezavisni, a prema lemi 2.12 su onda nezavisni i vektori v1, . . . , vp.

2.15. Zadatak. Koristeći elementarne transformacije stupaca matrice
utvrdite jesu li vektori iz zadatka 2.4 linearno nezavisni?

2.16. Druga (ekvivalentna) definicija baze prostora Rn. Skup
vektora v1, . . . , vs je baza vektorskog prostora Rn ako i samo ako

(1) vektori v1, . . . , vs razapinju Rn i
(2) v1, . . . , vs je linearno nezavisan skup.

Dokaz. Ako vrijedi (1), onda svaki vektor v ∈ Rn možemo zapisati kao
neku linearnu kombinaciju

v = ξ1v1 + · · ·+ ξsvs,

a zbog pretpostavke (2) je taj prikaz jedinstven. Naime,

v = η1v1 + · · ·+ ηsvs = ξ1v1 + · · ·+ ξsvs

povlači

(η1 − ξ1)v1 + · · ·+ (ηs − ξs)vs = 0,

pa pretpostavka da su vektori linearno nezavisni daje η1 = ξ1, . . . , ηs = ξs.
Obrat. Po definiciji baza razapinje Rn. No baza je i linearno nezavisan

skup jer iz relacija

λ1v1 + · · ·+ λsvs = 0 i 0v1 + · · ·+ 0vs = 0

i jedinstvenosti zapisa vektora 0 u bazi slijedi λ1 = 0, . . . , λs = 0. �
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2.17. Nadopunjavanje nezavisnog skupa u Rn do baze. Ako je
v1, . . . , vk, k < n, linearno nezavisan skup vektora u Rn, onda postoji baza
oblika

v1, . . . , vk, vk+1, . . . , vn.

Obično kažemo da smo tu bazu vektorskog prostora Rn dobili nadopunjava-
njem linearno nezavisnog skupa v1, . . . , vk.

Zadani linearno nezavisan skup vektora v1, . . . , vk u Rn možemo nado-
puniti do baze tako da elementarnim transformacijama matricu (v1, . . . , vk)
prevedemo u donju stepenastu matricu (v′1, . . . , v

′
k) kojoj su ugaoni elementi

u recima j1, . . . , jk. Ako je

{j1, . . . , jk} ∪ {i1, . . . , in−k} = {1, . . . , n},

onda umetanjem n− k elementa kanonske kanonske baze ei1 , . . . , ein−k
u tu

matricu dobivamo donju trokutastu matricu kojoj su svi dijagonalni elementi
različiti od nule. Na primjer, ako je donja stepenasta matrica (v′1, . . . , v

′
k)

oblika

(v′1, v
′
2, v
′
3) =


1 0 0
2 0 0
2 1 0
2 3 1
2 3 4


s ugaonim elementima u recima 1, 3 i 4, onda dodavanjem vektora e2, e5 ∈ R5

dobivamo

(v′1, e2, v
′
2, v
′
3, e5) =


1 0 0 0 0
2 1 0 0 0
2 0 1 0 0
2 0 3 1 0
2 0 3 4 1

 .

Vektori dobivene donje trokutaste matrice

v′1, . . . , v
′
k, ei1 , . . . , ein−k

čine bazu od Rn. Budući da svaka elementarna transformacija ima inverz,
te vektore možemo prevesti u niz

(2.4) v1, . . . , vk, ei1 , . . . , ein−k

izvodeći elementarne transformacije samo na prvih k vektora. Prema lemi
2.12 vektori 2.4 čine bazu od Rn.

2.18. Primjer. Budući da za vektore v1, v2, v3 iz primjera 2.3 i 2.13
imamo 

1 1 2
2 −1 1
1 −1 2
1 1 −2

 ∼


1 0 0
2 −3 0
1 −2 2
1 0 −4


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i da dodavanjem vektora kanonske baze e4 dobivamo donju trokutastu ma-
tricu 

1 0 0 0
2 −3 0 0
1 −2 2 0
1 0 −4 1

 ,

to je v1, v2, v3, e4 baza od R4

2.19. Pitanje. Neka je v = (0, 0, 2, 2, 2) ∈ R5. Da li je e1, e2, v, e4, e5

baza u R5 ? DA NE

2.20. Zadatak. Nadopunite do baze od R3 linearno nezavisne vektore

a1 =

 1
1
−1

 , a2 =

−1
2
1

 .

3. Konačno dimenzionalni vektorski prostori

Osim baze vektorskog prostora Rn nama će biti važan i pojam baze
vektorskog potprostora prostora Rn. Budući da pojmovi i razmatranja koja
ćemo provoditi ne ovise o “prirodi” vektora, već samo o svojstvima operacija
zbrajanja i množenja skalarom3, to je korisno uvesti opći pojam vektorskog
prostora.

3.1. Definicija vektorskog prostora. Kažemo da je skup V vektorski
ili linearni prostor nad poljem realnih brojeva R ako na V imamo zadanu
binarnu operaciju zbrajanja

+: V × V → V, (f, g) 7→ f + g,

i operaciju množenja skalarom

· : R× V → V, (λ, f) 7→ λ · f,
za koje vrijede sljedeća svojstva za sve f, g, h ∈ V i λ, µ ∈ R:

(1) (f + g) + h = f + (g + h) (asocijativnost zbrajanja),
(2) postoji element 0 ∈ V takav da je

f + 0 = 0 + f = f (neutralni element za zbrajanje),
(3) za svaki f postoji element −f ∈ V takav da je

f + (−f) = (−f) + f = 0 (suprotni element za zbrajanje),
(4) f + g = g + f (komutativnost zbrajanja).
(5) 1 · f = f ,
(6) λ · (µ · f) = (λµ) · f (kvazi-asocijativnost),

3Kao primjer dokaza koji ovisi o “prirodi” vektora možemo uzeti dokaz o nadopunja-
vanju linearno nezavisnog skupa u Rn do baze u točki 2.17 gdje se bitno koristi činjenica
da su vektori v1, . . . , vk n-torke realnih brojeva. S druge strane u točki 4.6 dokazujemo
općenito da u svakom konačno dimenzionalnom vektorskom prostoru svaki linearno neza-
visan skup vektora možemo nadopuniti do baze.
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(7) λ · (f + g) = λ · f + λ · g, (λ+ µ) · f = λ · f + µ · f
(distributivnost množenja prema zbrajanju).

Elemente vektorskog prostora zovemo vektorima, a brojeve skalarima.
Kao i u slučaju n-torki brojeva, vektore ćemo označavati malim latinskim
slovima, a skalare malim grčkim slovima. U daljnjem (uglavnom) nećemo
pisati množenje vektora skalarom kao λ · f , već uobičajeno λf . Množenje
skalarom uvijek pǐsemo tako da je vektor na desnoj strani, pa 0v nedvosmi-
sleno znači da vektor v množimo skalarom 0, a λ0 znači da vektor 0 množimo
skalarom λ. Relacija 0v = 0 znači da vektor v pomnožen skalarom 0 daje
vektor 0.

3.2. Svojstva zbrajanja i množenja skalarom. U paragrafu 2.2
prethodnog poglavlja nabrojili smo niz svojstava operacija zbrajanja i mno-
ženja skalarom i primijetili da s vektorima računamo “kao s brojevima”. Sva
navedena svojstva vrijede i u slučaju općenitog vektorskog prostora, premda
ih nismo naveli u definiciji. Tako, na primjer, u vektorskom prostoru V vri-
jedi

0a = 0, (−1)a = −a i λ0 = 0

za svaki vektor a u V i svaki skalar λ u R. Da bismo, na primjer, dokazali
prvu tvrdnju 0a = 0 stavimo b = 0a. Zbog svojstva skalara 0 imamo 0+0 = 0
i, koristeći distributivnost (7), imamo 0a = (0 + 0)a = 0a+ 0a, tj. b = b+ b.
Dodamo li objema stranama vektor −b, koji prema (3) postoji, dobivamo
0 = b + (−b) = (b + b) + (−b) = b + (b + (−b)) = b + 0 = b (ovdje u prvoj
jednakosti koristimo svojstvo suprotnog vektora (3), u trećoj asocijativnost
zbrajanja (1), u četvrtoj ponovo (3) i u petoj jednakosti (2)). Dakle b = 0.

3.3. Zadatak. Dokažite da je u vektorskom prostoru neutralni element
za zbrajanje jedinstven4.

3.4. Skup izvodnica vektorskog prostora. Za skup vektora S ⊂ V
kažemo da razapinje vektorski prostor V , ili da je S skup izvodnica ili skup
generatora vektorskog prostora V , ako je svaki vektor v 6= 0 iz V linearna
kombinacija nekih vektora v1, . . . , vn iz skupa S. Još ćemo reći da skup
S razapinje vektorski prostor V , ili da je V linearna ljuska skupa S. Po
definiciji je prazan skup ∅ skup izvodnica nul-prostora5.

3.5. Definicija linearno nezavisnog skupa vektora. Neka je V vek-
torski prostor. Kažemo da je skup vektora S ⊂ V linearno nezavisan ako je
za proizvoljan konačan podskup vektora

{v1, . . . , vp} ⊂ S

4Uputa: da je 0′ neki drugi neutralni element, imali bismo 0′ = 0′ + 0 = 0.
5“Opravdanje” za takav dogovor je da prazan skup ∅ zadovoljava definiciju skupa

izvodnica za nul-prostor 0 jer u nul-prostoru nema vektora v 6= 0 kojeg bi trebali napisati
kao linearnu kombinaciju nekih vektora iz ∅.
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samo trivijalna kombinacija tih vektora jednaka nuli, tj. ako

λ1v1 + · · ·+ λpvp = 0

povlači

λ1 = 0, . . . , λp = 0.

Često kažemo da su vektori v1, . . . , vp linearno nezavisni ako je skup vektora
{v1, . . . , vp} linearno nezavisan.

3.6. Primijetimo da je svaki podskup linearno nezavisnog skupa linearno
nezavisan skup.

3.7. Definicija baze vektorskog prostora. Za skup vektora S ⊂ V
kažemo da je baza vektorskog prostora V ako

(1) skup S razapinje V i ako je
(2) S linearno nezavisan skup.

Prazan skup ∅ je baza nul-prostora 0 = {0}.

3.8. Definicija konačno dimenzionalanog vektorskog prostora.
Kažemo da je vektorski prostor V konačno dimenzionalan ako ima neku
konačnu bazu6 S = {v1, . . . , vn}. Ako V nije konačno dimenzionalan, onda
kažemo da je beskonačno dimenzionalan vektorski prostor.

3.9. Teorem. Neka je vektorski prostor V razapet vektorima b1, . . . , bm
i neka su a1, . . . , ap linearno nezavisni vektori u V . Tada je

m ≥ p.

Dokaz. Ako je V razapet vektorima b1, . . . , bm, onda su svi vektori
njihove linearne kombinacije, pa posebno i vektori a1, . . . , ap. Neka su to
linearne kombinacije

a1 = α11b1 + · · ·+ αm1bm =
m∑
i=1

αi1bi,

a2 = α12b1 + · · ·+ αm2bm =
m∑
i=1

αi2bi,

...

ap = α1pb1 + · · ·+ αmpbm =
m∑
i=1

αipbi

6Prazan skup ∅ je konačan skup s nula elemenata pa je nul-prostor 0 konačno dimen-
zionalan vektorski prostor.
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za neke koeficijente αij . Pretpostavimo da je m < p. Tada prema te-
oremu 1.4.3 imamo neko netrivijalno rješenje (λ1, . . . , λp) homogenog sis-
tema od m jednadžbi

p∑
j=1

λjαij = 0, i = 1, . . . ,m,

a onda i netrivijalnu linearnu kombinaciju

λ1a1 + λ2a2 + · · ·+ λpap =

p∑
j=1

λj

m∑
i=1

αijbi =

m∑
i=1

 p∑
j=1

λjαij

 bi = 0,

suprotno pretpostavci da su vektori a1, . . . , ap linearno nezavisni. Znači da
pretpostavka m < p vodi do kontradikcije i da mora biti m ≥ p. �

3.10. Teorem.

(1) Ako vektori b1, . . . , bm razapinju Rn, onda je m ≥ n.
(2) Ako su a1, . . . , ap linearno nezavisni vektori u Rn, onda je p ≤ n.

Dokaz. Obje su tvrdnje posljedica teorema 3.10 i činjenice da kanonska
baza u Rn ima n elemenata. Naime, u prvom slučaju usporedujemo m s bro-
jem n nezavisnih vektora kanonske baze, a u drugom slučaju usporedujemo
p s brojem n vektora kanonske baze koji razapinju Rn. �

3.11. Pitanje. Može li biti 7 linearno nezavisnih vektora u R5? DA NE

3.12. Pitanje. Može li biti 7 izvodnica u R5? DA NE

3.13. Pitanje. Može li biti 5 izvodnica u R7? DA NE

3.14. Pitanje. Može li biti 5 linearno nezavisnih vektora u R7? DA NE

3.15. Teorem. Svake dvije baze u konačno dimenzionalnom vektor-
skom prostoru imaju jednak broj elemenata.

Dokaz. Neka su a1, . . . , ap i b1, . . . , bm dvije baze vektorskog prostora
V . Budući da je V razapet vektorima b1, . . . , bm i da su a1, . . . , ap linearno
nezavisni vektori u V , to je prema teoremu 3.10 m ≥ p. No budući da je V
razapet vektorima a1, . . . , ap i da su b1, . . . , bm linearno nezavisni vektori u
V , to je prema teoremu 3.10 p ≥ m. Znači da je p = m. �

3.16. Definicija dimenzije vektorskog prostora. Broj elemenata
baze konačno dimenzionalnog prostora V zovemo dimenzijom prostora i
označavamo s dimV . Ako je dimV = n, onda još kažemo da je V n-
dimenzionalni vektorski prostor. Nul-prostor 0 je 0-dimenzionalan vektorski
prostor.

3.17. Dimenzija vektorskog prostora Rn. Iz teorema 3.15 i činjenice
da kanonska baza od Rn ima n elemenata slijedi da je dimenzija vektorskog
prostora Rn jednaka n, tj.

dimRn = n.
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3.18. Teorem. Neka je V n-dimenzionalni vektorski prostor i neka su
v1, . . . , vn vektori u V . Tada je ekvivalentno:

(1) v1, . . . , vn razapinju V i
(2) v1, . . . , vn su linearno nezavisan vektori.

Dokaz. (1) povlači (2): Neka su vektori v1, . . . , vn izvodnice od V . Tada
pretpostavka da ti vektori nisu linearno nezavisni vodi do kontradikcije: ako
postoji netrivijalna linearna kombinacija

λ1v1 + λ2v2 + · · ·+ λnvn = 0,

recimo da je λ1 6= 0, onda je

v1 =
1

λ1
(−λ2v2 − · · · − λnvn).

Izrazimo li proizvoljan vektor x kao linearnu kombinaciju izvodnica
v1, v2, . . . , vn dobivamo

x = ξ1v1 + ξ2v2 + · · ·+ ξnvn = ξ1
1

λ1
(−λ2v2− · · ·−λnvn) + ξ2v2 + · · ·+ ξnvn.

Iz tog izraza vidimo da se vektor x može izraziti kao linearna kombinacija
vektora v2, . . . , vn, pa slijedi da n− 1 vektora razapinje V , suprotno tvrdnji
teorema 3.10 da je broj izvodnica uvijek veći ili jednak broju n linearno
nezavisnih vektora neke baze od V .

(2) povlači (1): Neka su vektori v1, . . . , vn linearno nezavisni. Tada
pretpostavka da ti vektori nisu izvodnice od V vodi do kontradikcije: ako
postoji vektor v u V koji nije linearna kombinacija vektora v1, . . . , vn, onda
su vektori

v, v1, . . . , vn

linearno nezavisni. Naime, ako je

λv + λ1v1 + · · ·+ λnvn = 0,

onda mora biti λ = 0, jer bi u suprotnom imali da je v linearna kombinacija

v = −λ1

λ
v1 − · · · −

λn
λ
vn.

No λ = 0 daje

λ1v1 + · · ·+ λnvn = 0,

pa zbog linearne nezavisnosti vektora v1, . . . , vn slijedi λ1 = · · · = λn = 0.
Znači da imamo n + 1 linearno nezavisnih vektora v, v1, . . . , vn, suprotno
tvrdnji teorema 3.10 da je broj linearno nezavisnih vektora uvijek manji ili
jednak broju n vektora neke baze koji su onda i izvodnice od V . �

4. Nadopunjavanje nezavisnog skupa do baze

Argumente iz dokaza prethodnog teorema 3.18 često koristimo u line-
arnoj algebri na razne načine. Tako malom izmjenom dokaza tvrdnje (1)
povlači (2) dobivamo:
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4.1. Redukcija skupa izvodnica do baze. Neka je S = {v1, . . . , vn}
skup izvodnice od V . Tada postoji podskup od S koji je baza od V .

Dokaz. Ako je skup izvodnica S linearno nezavisan, onda je S baza od
V i naša tvrdnja vrijedi. Ako skup S nije linearno nezavisan, onda postoji
netrivijalna linearna kombinacija

λ1v1 + λ2v2 + · · ·+ λnvn = 0.

Ako je, recimo, λ1 6= 0, onda vektor v1 možemo izraziti kao linearnu kombi-
naciju preostalih vektora v2, . . . , vn:

v1 =
1

λ1
(−λ2v2 − · · · − λnvn).

Izrazimo li proizvoljan vektor x kao linearnu kombinaciju izvodnica v1, . . . , vn
i u tu kombinaciju uvrstimo dobiveni izraz za v1, onda za x imamo

x = ξ1v1 + ξ2v2 + · · ·+ ξnvn = ξ1
1

λ1
(−λ2v2− · · ·−λnvn) + ξ2v2 + · · ·+ ξnvn.

Iz tog izraza vidimo da se vektor x može izraziti kao linearna kombina-
cija preostalih vektora v2, . . . , vn. Znači da podskup S\{v1} = {v2, . . . , vn}
skupa S razapinje V . Ako je S\{v1} linearno nezavisan skup, onda je to baza
od V i naša tvrdnja vrijedi, a ako nije, onda nastavljamo opisani postupak
i u konačno koraka dolazimo do baze koja je podskup od S. �

4.2. Zadatak. Dokažite da vektori

a1 =

 1
1
−1

 , a2 =

−1
2
1

 , a3 =

 2
−1
1

 , a4 =

1
1
1


razapinju R3 i reducirajte taj skup do baze od R3.

4.3. Konačno generirani vektorski prostori. Ako vektorski pros-
tor V ima konačan skup izvodnica, onda kažemo da je V konačno generirani
vektorski prostor. Iz prethodne točke 4.1 slijedi da je svaki konačno generi-
rani vektorski prostor konačno dimenzionalan.

4.4. Primjedbe. Slijedimo li postupak opisan u točki 4.1, za zadani
skup izvodnica {v1, . . . , vn} vektorskog prostora V možemo u konačno koraka
naći podskup koji je baza od V — često kažemo da skup izvodnica v1, . . . , vn
reduciramo do baze izbacivanjem linearno zavisnih elemenata vj . Pritom u
svakom koraku trebamo utvrditi da li je dobiveni skup linearno nezavisan i,
ako nije, trebamo naći vektor koji je linearna kombinacija preostalih vektora.
U slučaju V = Rn to možemo utvrditi koristeći elementarne transformacije
niza vektora.

Koristeći tvrdnju 4.1 na drugi način možemo dokazati da (1) povlači (2)
u teoremu 3.18. Naime, da izvodnice v1, . . . , vn n-dimenzionalnog prostora
V nisu linearno nezavisne, njihovom redukcijom dobili bismo bazu koja ima
manje od n elemenata, suprotno tvrdnji teorema 3.15 da svaka baza u V
ima n elemenata.
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Malom izmjenom dokaza tvrdnje (2) povlači (1) teorema 3.18 dobivamo:

4.5. Lema. Neka je S linearno nezavisan skup u vektorskom prostoru
V . Ako S ne razapinje V , onda postoji vektor v u V takav da je

S ∪ {v}

linearno nezavisan skup.

Dokaz. Budući da S ne razapinje V , to postoji vektor v koji nije line-
arna kombinacija elemenata iz S. Tvrdimo da je za svaki izbor v1, . . . , vn iz
S skup

{v, v1, . . . , vn}
linearno nezavisan. Naime, ako je

λv + λ1v1 + · · ·+ λnvn = 0,

onda mora biti λ = 0, jer bi u suprotnom imali da je v linearna kombinacija

v = −λ1

λ
v1 − · · · −

λn
λ
vn

vektora v1, . . . , vn iz S. No λ = 0 daje

λ1v1 + · · ·+ λnvn = 0,

pa zbog linearne nezavisnosti vektora v1, . . . , vn slijedi λ1 = · · · = λn = 0.
Znači da je skup

{v1, . . . , vn, v}
linearno nezavisan. Time smo pokazali da je svaki konačan podskup od
S ∪ {v} linearno nezavisan, pa je onda po definiciji i skup

S ∪ {v}

linearno nezavisan. �

4.6. Nadopunjavanje linearno nezavisnog skupa do baze. Neka
je S = {v1, . . . , vn} linearno nezavisan skup u konačno dimenzionalnom
vektorskom prostoru V . Tada postoji nadskup od S koji je baza od V .

Dokaz. Ako skup S = {v1, . . . , vn} razapinje V , onda je S baza od V
i naša tvrdnja vrijedi. Ako pak S ne razapinje V , onda prema prethodnoj
lemi 4.5 postoji vektor v u V takav da je skup

S ∪ {v} = {v1, . . . , vn, v}

linearno nezavisan skup. Ako S ∪ {v} razapinje V , onda je to baza od V i
naša tvrdnja vrijedi, a ako nije, onda nastavljamo opisani postupak. Budući
da je po teoremu 3.10 u konačno dimenzionalnom vektorskom prostoru V
broj linearno nezavisnih vektora uvijek manji ili jednak dimenziji od V , to
u konačno koraka dolazimo do baze koja je naddskup od S. �
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4.7. Teorem. Ako je V potprostor konačno dimenzionalnog vektorskog
prostora W , onda je V konačno dimenzionalni vektorski prostor i

dimV ≤ dimW.

Štovǐse, dimV = dimW ako i samo ako je V = W .

Dokaz. Ako je V 6= 0 potprostor konačno dimenzionalnog vektorskog
prostora W , onda postoji vektor v1 6= 0 u V i S = {v1} je linearno nezavisan
skup u V . Budući da su linearno nezavisni vektori u V ujedno i linearno
nezavisni vektori u W , to je njihov broj uvijek manji ili jednak dimW = m.
Eventualnim dopunjavanjem linearno nezavisnog skupa S, kao u dokazu
prethodnog teorema, dobivamo bazu od V .

Ako u V imamo bazu v1, . . . , vm od m = dimW elemenata, onda je to
i linearno nezavisan skup u W , pa je prema teoremu 3.18 to ujedno i baza
od W . No ako V i W imaju istu bazu, onda je to jedan te isti prostor
V = W . �

4.8. Odgovor na prvo važno pitanje o potprostorima u Rn. U
točki 2.7.16 prethodnog poglavlje postavili smo dva pitanja o obliku pot-
prostora od Rn. Teorem 4.7 daje potvrdan odgovor na prvo pitanje: Svaki
potprostor u Rn je k-dimenzionalan za neki 0 ≤ k ≤ n i može se napisati
kao linearna ljuska neke svoje baze 〈v1, . . . , vk〉.

4.9. k-dimenzionalne ravnine u Rn. Iz definicije pravaca i ravnina u
Rn je očito da su pravci kroz ishodǐste 1-dimenzionalni potprostori, a ravnine
kroz ishodǐste 2-dimenzionalni potprostori od Rn. Zato k-dimenzionalne
potprostore u Rn zovemo i k-dimenzionalnim ravninama kroz ishodǐste. Op-
ćenito za dani vektor b i k-dimenzionalni potprostor V u Rn skup oblika

Σ = b+ V = {b+ v | v ∈ V }

zovemo k-dimenzionalnom ravninom ili kraće k-ravninom kroz točku b. Za
dvije različite k-ravnine oblika

b+ V = {b+ v | v ∈ V } i c+ V = {c+ v | v ∈ V }

kažemo da su paralelne7. Ako je v1, . . . , vk baza potprostora V , onda imamo
parametarski prikaz k-ravnine Σ kroz točku b paralelne ravnini V ,

Σ = b+ 〈v1, . . . , vk〉 = {b+ λ1v1 + · · ·+ λkvk | λ1, . . . , λk ∈ R}.

7Općenitije, neka je Z ⊂ V k′-dimenzionalni potprostor od V . Ako je c+Z ⊂ b+ V ,
onda kažemo da k′-ravnina c+ Z leži u k-ravnini b+ V . Ako c+ Z ne leži u b+ V , onda
kažemo da je k′-ravnina c+ Z paralelna k-ravnini b+ V . Dokažite da paralelene ravnine
nemaju zajedničkih točaka!
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5. Koordinatizacija

5.1. Izomorfizam vektorskih prostora. Neka su V i W dva vektor-
ska prostora. Ako je preslikavanje

f : V →W

bijekcija, onda možemo identificirati elemente skupova V i W , na primjer

x←→ f(x) i y ←→ f(y).

Kažemo da je bijekcija f izomorfizmam vektorskih prostora ako zajedno s
identifikacijom elemenata možemo identificirati i operacije na tim skupo-
vima, tj. ako je8

(5.1) x+ y ←→ f(x) + f(y), αx←→ αf(x)

za sve vektore x, y ∈ V i sve skalare α ∈ R.

5.2. Izomorfni vektorski prostori. Kažemo da su dva vektorska pros-
tora V i W izomorfna ako postoji neki izomorfizam vektorskih prostora
f : V →W . Tada pǐsemo

V ∼= W.

5.3. Baza i uredena baza. Neka je V realan n-dimenzionalni vektor-
ski prostor. Reći ćemo da je niz vektora (v1, . . . , vn) uredena baza od V ako
je skup vektora {v1, . . . , vn} baza od V . Tako od kanonske baze {e1, e2}
u R2 možemo dobiti dvije uredene baze koje zapisujemo kao dvije različite
matrice

I = (e1, e2) =

(
1 0
0 1

)
, H = (e2, e1) =

(
0 1
1 0

)
.

5.4. Baza i koordinatizacija n-dimenzionalnog prostora. Neka
je u n-dimenzionalnom vektorskom prostoru V dana uredena baza B =
(v1, . . . , vn). Tada za svaki vektor x imamo jedinstveni prikaz

x = ξ1v1 + · · ·+ ξnvn.

Koeficijente ξ1, . . . , ξn u prikazu vektora x zovemo koordinatama vektora x
u uredenoj bazi v1, . . . , vn i kažemo da je koeficijent ξ1 uz prvi vektor baze
prva koordinata, koeficijent ξ2 uz drugi vektor baze druga koordinata, itd.
Koordinate vektora x obično zapisujemo kao vektor-stupac xB u Rn,

xB =

ξ1
...
ξn

 .

8Budući da je x + y ←→ f(x + y), αx ←→ f(αx), to formula (5.1) u stvari znači
tako zvano svojstvo linearnosti preslikavanja f(x+ y) = f(x) + f(y), f(αx) = αf(x).
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Preslikavanje f : V → Rn koje svakom vektoru x ∈ V pridruži njegove koor-
dinate xB u bazi B je očito bijekcija pa možemo identificirati elemente u V
i Rn ,

x←→ f(x) = xB =

ξ1
...
ξn

 .

Štovǐse, za y = η1v1 + · · ·+ ηnvn i α ∈ R imamo

x+ y = (ξ1 + η1)v1 + · · ·+ (ξn + ηn)vn, αx = (αξ1)v1 + · · ·+ (αξn)vn,

pa je zbog jedinstvenosti zapisa vektora u bazi i-ta koordinata od x+y suma
i-tih koordinata od x i od y, a i-ta koordinata od αx je umnožak broja α i
i-te koordinata od x. Budući da su operacije zbrajanja i množenja skalarom
na Rn definirane po koordinatama, to je

(x+ y)B = xB + yB i (αx)B = αxB,

odnosno
f(x+ y) = f(x) + f(y) i f(αx) = αf(x).

Znači da je f : x 7→ xB izomorfizam vektorskih prostora i

V ∼= Rn.
Preslikavanje f zovemo koordinatizacijom od V u uredenoj bazi v1, . . . , vn,
ili samo koordinatizacijom od V . Grubo govoreći, pomoću koordinatizacije
svaki realni n-dimenzionalni vektorski prostor nad poljem realnih brojeva
“izgleda isto” kao Rn!

5.5. Primjer. Za dvije uredene baze I = (e1, e2) i H = (e2, e1) u R2

imamo dvije različite koordinatizacije. U bazi I = (e1, e2) imamo

x =

(
ξ1

ξ2

)
= ξ1e1 + ξ2e2 7→ xI =

(
ξ1

ξ2

)
jer je u uredenoj bazi I prva koordinata od x jednaka ξ1, a druga ξ2. S druge
strane, u bazi H = (e2, e1) imamo

x =

(
ξ1

ξ2

)
= ξ2e2 + ξ1e1 7→ xH =

(
ξ2

ξ1

)
jer je u uredenoj bazi H prva koordinata od x jednaka ξ2, a druga ξ1.

5.6. Zadatak. Napǐsi koordinatizaciju za bazu B = ( 1 1
0 1 ) u R2.

5.7. Koordinate vektora u novoj bazi od Rn. Neka je dana uredena
baza B = (v1, . . . , vn) od Rn. Tada su koordinate xB = (ξ1, . . . , ξn) vektora
x u bazi B koeficijenti u jedinstvenom prikazu

(5.2) x = ξ1v1 + · · ·+ ξnvn,

ili, drugim riječima, koordinate xB = (ξ1, . . . , ξn) vektora x u bazi B su
jedinstveno rješenje n×n sistema jednadžbi s desnom stranom x i matricom
sistema B.



84 3. BAZA VEKTORSKOG PROSTORA

5.8. Primjer. Koordinate od x =

3
3
3

 u uredenoj baziB =

1 1 2
2 −1 1
1 −1 2


u R3 iz primjera 1.18 dobivamo rješavajući sistem jednadžbi s proširenom
matricom 1 1 2 3

2 −1 1 3
1 −1 2 3

 7→ . . . 7→

1 1 2 3
0 −3 −3 −3
0 −2 0 0

 .

Znači da je ξ2 = 0, ξ3 = 1, ξ1 = 1, odnosno xB = (1, 0, 1).

5.9. Zadatak. Nadite koordinate od x =

2
1
1

 u bazi B =

1 2 1
1 −1 −1
2 1 2

.

5.10. Primjer. Vektori v1 = (1, 1, 2) i v2 = (2,−1,−1) u R3 čine bazu
2-dimenzionalnog potprostora

Σ = {λ1v1 + λ2v2 | λ1, λ2 ∈ R},
pa je preslikavanje

f : Σ→ R2, f(λ1v1 + λ2v2) = (λ1, λ2)

koordinatizacija. Tako, na primjer, f pridružje vektoru (3, 0, 1) ∈ Σ njegove
koordinate (1, 1) ∈ R2.

5.11. Zadatak. Pokažite da je vektor x = (−1, 2, 3) u ravnini Σ iz
prethodnog primjera i nadite njegove koordinate f(x).

5.12. Zadatak. Dokažite da su vektori w1 = v1+v2 i w2 = v1−v2 druga
baza potprostora Σ iz prethodnog primjera. Nadite vezu izmedu koordinata
vektora x ∈ Σ u bazi (v1, v2) i bazi (w1, w2).



POGLAVLJE 4

Egzistencija rješenja sistema jednadžbi

U ovoj se poglavlju vraćamo općim pitanjima vezanim za sisteme jed-
nadžbi, posebno pitanjima egzistencije i jedinstvenosti rješenja. Odgovori
na ta pitanja dani su u terminima ranga i defekta matrice sistema.

1. Rang matrice

1.1. Rang matrice. Neka je je A = (a1, . . . , an) matrica tipa m × n.
Tada je prema točki 2.6.3 linearna ljuska stupaca matrice A

〈a1, . . . , an〉 = {ξ1a1 + · · ·+ ξnan | (ξ1, . . . , ξn) ∈ Rn}

vektorski potprostor od Rm. Prema teoremu 3.4.7 je taj potprostor konačno
dimenzionalan. Dimenziju linearne ljuske 〈a1, . . . , an〉 zovemo rangom ma-
trice (a1, . . . , an) i pǐsemo

rangA = rang (a1, . . . , an) = dim〈a1, . . . , an〉.

Ponekad se linearna ljuska stupaca matrice zove područjem vrijednosti od A
i označava s

R(A) = 〈a1, . . . , an〉.

1.2. Primjer. Za jediničnu n× n matricu I imamo

rang I = rang (e1, . . . , en) = dim〈e1, . . . , en〉 = dimRn = n.

S druge strane je dimenzija nul-potprostora od Rm jednaka nuli, pa za m×n
nul-matricu 0 imamo

rang 0 = rang (0, . . . , 0) = dim〈0, . . . , 0〉 = dim 0 = 0.

1.3. Primjedba. Prema teoremu 3.4.7 dimenzija svakog potprostora u
Rm manja je ili jednaka m = dimRm, pa za m× n matricu A imamo

rangA ≤ m.

Prema teoremu 3.3.10 broj generatora veći je ili jednak dimenziji prostora,
pa za linearnu ljusku 〈a1, . . . , an〉 imamo

rangA ≤ n.

85
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1.4. Rang i elementarne transformacije. Prema točki 2.6.15 ele-
mentarne transformacije ne mijenjaju linearnu ljusku, pa to svojstvo kori-
stimo za računaje ranga: elementarnim transformacijama svedemo vektore
A = (a1, . . . , an) na oblik

(c1, . . . , cr, 0, . . . , 0)

gdje su c1, . . . , cr linearno nezavisni vektori, obično u trokutastoj ili ste-
penastoj formi1. Tada su ti vektori baza potprostora 〈a1, . . . , an〉, pa je
rangA = r. Na primjer, svodenjem matrice na donje stepenasti oblik dobi-
vamo

A =


1 −1 0 2
1 2 3 −1
2 −1 1 3
−1 0 −1 −1

 7→


1 0 0 2
1 3 3 −1
2 1 1 3
−1 −1 −1 −1

 7→


1 0 0 0
1 3 3 −3
2 1 1 −1
−1 −1 −1 1



7→


1 0 0 0
1 3 0 −3
2 1 0 −1
−1 −1 0 1

 7→


1 0 0 0
1 3 0 0
2 1 0 0
−1 −1 0 0

 = (c1, c2, 0, 0),

pa zaključujemo da je rangA = 2.

1.5. Zadatak. Nadite rang matrice

1 −1 0 2
2 −1 1 3
1 2 3 −1

.

1.6. Pitanje. Da li je rang (1,−1, 0, 2) = 3 ? DA NE

1.7. Kronecker-Capellijev teorem. Neka je zadana m × n matrica
(a1, . . . , an) i vektor b u Rm. Tada sistem jednadžbi

ξ1a1 + · · ·+ ξnan = b

ima rješenje ako i samo ako je rang matrice sistema jednak rangu proširene
matrice sistema, tj. rang (a1, . . . , an) = rang (a1, . . . , an, b).

Dokaz. Sistem jednadžbi ima rješenje ako i samo ako je b linearna kom-
binacija vektora a1, . . . , an s nekim koeficijentima ξ1, . . . , ξn, tj. ako i samo
ako je

(1.1) b ∈ 〈a1, . . . , an〉.
To je, prema lemi 2.6.11, ekvivalentno

(1.2) 〈a1, . . . , an〉 = 〈a1, . . . , an, b〉.
No budući da je 〈a1, . . . , an〉 ⊂ 〈a1, . . . , an, b〉, prema teoremu 2.4.7 jednakost
(1.2) ekvivalentna je jednakosti

dim〈a1, . . . , an〉 = dim〈a1, . . . , an, b〉.

1Vidi točku 3.2.14.
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1.8. Primjedba. U točki 3.6.16 pitanje egzistencije rješenja sistema
jednadžbi sveli smo na pitanje da li je 〈a1, . . . , an〉 = 〈a1, . . . , an, b〉 i kako
to možemo provjeriti koristeći elementarne transformacije. U Kronecker-
Capellijevom teorem idemo korak dalje i pitanje svodimo na provjeru jed-
nakosti dimenzija tih prostora.

1.9. Primjer. Sistem jednadžbi

(1.3)

ξ1 − ξ2 + 2ξ3 = −1,

ξ1 + 2ξ2 − ξ3 = 2,

−ξ1 + ξ2 + ξ3 = 0,

−ξ1 + ξ2 + 2ξ3 = 2

iz primjera 1.3.7 nema rješenja. To smo u točki 1.3.9 vidjeli Gaussovom me-
todom izvodenjem elementarnih transformacija na recima proširene matrice
sistema:

(A, b) =


1 −1 2 −1
1 2 −1 2
−1 1 1 0
−1 1 2 2

 7→ . . . 7→


1 −1 2 −1
0 3 −3 3
0 0 3 −1
0 0 0 7

3

 ,

pa sistem (1.3) nema rješenja jer jednadžba

0ξ1 + 0ξ2 + 0ξ3 = 7
3

nema rješenja. S druge strane, elementarnim transformacijama na stupcima
proširene matrice sistema dobivamo

(A, b) =


1 −1 2 −1
1 2 −1 2
−1 1 1 0
−1 1 2 2

 7→ . . . 7→


1 0 0 0
1 3 −3 3
−1 0 3 −1
−1 0 4 1

 7→ . . .

7→


1 0 0 0
1 3 0 0
−1 0 3 −1
−1 0 4 1

 7→


1 0 0 0
1 3 0 0
−1 0 1 −1
−1 0 4

3 1

 7→


1 0 0 0
1 3 0 0
−1 0 1 0
−1 0 4

3
7
3


i zaključujemo da je rangA = 3 i rang (A, b) = 4, pa iz Kronecker-Capellijevog
teorema slijedi da sistem (1.3) nema rješenja.

1.10. Zadatak. Primjenom Kronecker-Capellijevog teorema utvrdite
ima li sistem jednadžbi

ξ1 + 2ξ2 − ξ3 = 2,

−ξ1 + ξ2 + ξ3 = 0,

−ξ1 + ξ2 + 2ξ3 = 2

rješenje?
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2. Defekt matrice

2.1. Defekt matrice. Neka je je A = (a1, . . . , an) matrica tipa m×n.
Prema teoremu 2.7.15 skup svih rješenja homogenog sistema jednadžbi

N(A) = {(ξ1, . . . , ξn) ∈ Rn | ξ1a1 + · · ·+ anξn = 0}

je potprostor vektorskog prostora Rn — zovemo ga nul-potprostorom ma-
trice A. Prema teoremu 3.4.7 potprostor N(A) je konačno dimenzionalan,
a njegovu dimenziju zovemo defektom matrice A i pǐsemo

defektA = dimN(A) = dim{(ξ1, . . . , ξn) ∈ Rn | ξ1a1 + · · ·+ anξn = 0}.

2.2. Primjer. Za jediničnu n × n matricu I homogeni sistem ima je-
dinstveno rješenje 0 ∈ Rn pa imamo

defekt I = dim 0 = 0.

S druge strane za m × n nul-matricu 0 je svaka n-torka brojeva rješenje
homogenog sistema pa imamo

defekt 0 = dimRn = n.

Na primjer,

defekt

(
0 0 0 0
0 0 0 0

)
= 4

2.3. Pitanje. Mora li za m× n matricu A biti m ≥ defektA ? DA NE

2.4. Primjedba. Prema teoremu 3.4.7 dimenzija svakog potprostora u
Rn manja je ili jednaka n = dimRn, pa za m× n matricu A imamo

defektA ≤ n.

2.5. Reducirana gornja stepenasta forma matrice. U točki 1.3.10
smo vidjeli kako elementarnim transformacijama redaka matricu možemo
svesti na gornju stepenastu formu po recima. Taj postupak možemo na-
staviti tako da svaki ugaoni element bude 1 i da onda s tom jedinicom
eliminiramo sve ostale ne-nul elemente u tom stupcu. Za dobivenu matricu
kažemo da je u reduciranom gornjem stepenastom obliku.

U slučaju 5× 7 gornje stepenaste matrice (u kojoj umjesto ∗ može biti
bilo koji broj) elementarnim transformacijama redaka dobivamo reduciranu
gornju stepenastu matricu

1 ∗ ∗ ∗ ∗ ∗ ∗
0 2 ∗ ∗ ∗ ∗ ∗
0 0 3 ∗ ∗ ∗ ∗
0 0 0 0 5 ∗ ∗
0 0 0 0 0 0 0

 ∼r


1 0 0 ∗ 0 ∗ ∗
0 1 0 ∗ 0 ∗ ∗
0 0 1 ∗ 0 ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 0


kod koje su svi ugaoni elementi jednaki jedan i oni su jedini elementi različiti
od nule u svojim stupcima (prvom, drugom, trećem i petom).
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2.6. Defekt i elementarne transformacije redaka. Budući da je
defekt matrice po definiciji dimenzija prostora rješenja pripadne homogene
jednadžbe, to defekt m× n matrice A odredujemo rješavanjem homogenog
sistema Ax = 0 Gaussovim eliminacijama. Možda je najjednostavniji način
da elementarnim transformacijama redaka matricu sistema svedemo na re-
duciranu gornju stepenastu matricu

(2.1)


0 . . . 1 α1j1+1 . . . 0 α1j2+1 . . . 0 α1j3+1 . . .
0 . . . 0 0 . . . 1 α2j2+1 . . . 0 α2j3+1 . . .
0 . . . 0 0 . . . 0 0 . . . 1 α3j3+1 . . .

...
...

...

 ,

pri čemu su indeksi 1 ≤ j1 < j2 < j3 < · · · < jr ≤ n indeksi stupaca u
kojima se nalazi r ugaonih elementa. Zadnji redak matrice koji nije nula je
r-ti redak oblika

(0, . . . , 0, 1, αrjr+1, . . . , αrn)

(ako je jr < n) i homogeni sistem Ax = 0 počinjemo rješavati s pripadnom
r-tom jednadžbom

ξjr + ξjr+1αrjr+1 + · · ·+ ξnαrn = 0.

Tu jednadžbu možemo riješiti po nepoznanici ξjr

ξjr = −(ξjr+1αrjr+1 + · · ·+ ξnαrn)

tako da vrijednosti nepoznanica ξjr+1, . . . , ξn biramo po volji. U narednom
koraku rješavamo (r − 1)-tu jednadžbu po nepoznanici ξjr−1

ξjr−1 =− (ξjr−1+1αr−1,jr−1+1 + · · ·+ ξjr−1αr−1,jr−1)

− (ξjr+1αr−1,jr+1 + · · ·+ ξnαr−1,n)

tako da vrijednosti nepoznanica ξjr−1+1, . . . , ξjr−1 biramo po volji. Na taj
način u r koraka odredimo vrijednosti nepoznanica

ξj1 , ξj2 , . . . , ξjr

(koje ponekad zovemo vezanim nepoznanicama) ovisno o izboru vrijednosti
preostalih nepoznanica

ξj , j 6∈ {j1, j2, . . . , jr}
(koje ponekad zovemo slobodnim nepoznanicama). Opće rješenje homogenog
sistema možemo zapisati kao vektor

(2.2) v = (ξ1, . . . , ξj1−1, ξj1 , ξj1+1, . . . , ξjr−1, ξjr , ξjr+1, . . . , ξn)

koji ovisi o n − r parametara (tj. slobodnih nepoznanica), a zaokružene
vrijednosti su funkcije tih parametara (tj. vezane nepoznanice). Bazu nul-
potprostora matrice A možemo dobiti tako da biramo za jednu slobodnu
varijablu vrijednost 1 i sve ostale slobodne varijable vrijednost 0:

vn = (0, . . . , 0, ξj1 , 0, . . . , 0, ξjr , 0, . . . , 1) za ξn = 1, ostali ξj = 0,
. . .
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vjr+1 = (0, . . . , 0, ξj1 , 0, . . . , 0, ξjr , 1, . . . , 0) za ξjr+1 = 1, ostali ξj = 0,

vjr−1 = (0, . . . , 0, ξj1 , 0, . . . , 1, ξjr , 0, . . . , 0) za ξjr−1 = 1, ostali ξj = 0,
. . .

Očito su dobiveni vektori linearno nezavisni, a lako je vidjeti i da je vektor
v dan formulom (2.2) oblika

v = ξ1v1+· · ·+ξj1−1vj1−1+ξj1+1vj1+1+· · ·+ξjr−1vjr−1+ξjr+1vjr+1+· · ·+ξnvn.

Znači da smo dobili bazu od N(A) od n− r vektora, pa je

rangA = n− r.

Valja primijetiti da smo na isti način mogli zaključivati i da stepenasta
matrica nije bila reducirana.

2.7. Primjer. Za homogeni sistem jednadžbi stepenastog oblika

ξ1 + 2ξ2 − ξ3 + 2ξ4 + 2ξ5 − 4ξ6 = 0,

ξ3 + 2ξ4 + 2ξ5 − 4ξ6 = 0,

ξ5 − 4ξ6 = 0

odmah vidimo da matrica sistema ima 3 ugaona elementa, pa je defekt ma-
trice sistema jednak 6 − 3 = 3. Bazu prostora rješenja dobivamo birajući
vrijednosti slobodnih nepoznanica na gore opisani način i odredujući odgo-
varajuće vrijednosti vezanih nepoznanica:

1) ξ6 = 1, ξ4 = 0, ξ2 = 0 daje ξ5 = 4, ξ3 = −4, ξ1 = −8,
2) ξ6 = 0, ξ4 = 1, ξ2 = 0 daje ξ5 = 0, ξ3 = −2, ξ1 = −4,
3) ξ6 = 0, ξ4 = 0, ξ2 = 1 daje ξ5 = 0, ξ3 = 0, ξ1 = −2.

Time smo dobili bazu nul-potprostora matrice sistema

v6 = ( −8 , 0, −4 , 0, 4 , 1),

v4 = ( −4 , 0, −2 , 1, 0 , 0),

v2 = ( −2 , 1, 0 , 0, 0 , 0),

pri čemu smo vezane varijable zaokružili kao u prethodnoj točki. Isti rezultat
dobijamo ako napǐsemo rješenje sistema pomoću tri parametra ξ6, ξ4 i ξ2,

ξ1 = −2ξ2 − 4ξ4 − 8ξ6

ξ2 = ξ2

ξ3 = −2ξ4 − 4ξ6

ξ4 = ξ4

ξ5 = 4ξ6

ξ6 = ξ6
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i onda te parametre “izlučimo” iz vektora općeg rješenja v koji o tim para-
metrima ovisi

v =


ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

 =


−2ξ2 − 4ξ4 − 8ξ6

ξ2

−2ξ4 − 4ξ6

ξ4

4ξ6

ξ6

 = ξ2


−2
1
0
0
0
0

+ ξ4


−4
0
−2
1
0
0

+ ξ6


−8
0
−4
0
4
1

 .

2.8. Zadatak. Svedite matricu sistema iz gornjeg primjera na reduci-
ranu gornju stepenastu matricu i nadite na opisani način bazu potprostora
rješenja homogenog sistema. U čemu je razlika?

2.9. Zadatak. Odredite defekt matrice A i bazu od N(A) za

A =


1 −1 0 2
1 2 3 −1
2 −1 1 3
−1 0 −1 −1

 .

2.10. Pitanje. Da li je defekt (1,−1, 0, 2) = 3 ? DA NE

3. Teorem o rangu i defektu

3.1. Svojstvo linearnosti lijeve strane sistema jednadžbi. Neka
je A = (a1, . . . , an) matrica tipa m× n. Tada za vektor x u Rn s koordina-
tama ξ1, . . . , ξn imamo linearnu kombinaciju

(3.1) Ax = ξ1a1 + · · ·+ ξnan ∈ R(A) = 〈a1, . . . , an〉
U točke 2.5.14 dokazali smo svojstvo linearnosti

(3.2) Ax+Ay = A(x+ y) i A(λx) = λ(Ax)

za sve vektore x, y ∈ Rn i skalare λ ∈ R

3.2. Teorem o rangu i defektu. Neka je A = (a1, . . . , an) matrica
tipa m× n. Tada je

rangA+ defektA = n.

Dokaz. Za n vektora v1, . . . , vn u Rn po formuli (3.2) imamo n vektora
Av1, . . . , Avn u Rm, pa možemo gledati (m+ n)× n matrice

(3.3)

(
Av1 Av2 . . . Avn
v1 v2 . . . vn

)
.

Na takvim ćemo matricama provoditi elementarne transformacije i, zbog
svojstva linearnosti, dobit ćemo matrice istog oblika. Naime, zbog jednakosti
λAv1 = A(λv1) množenjem prvog stupca matrice (3.3) dobivamo matricu(

A(λv1) Av2 . . . Avn
λv1 v2 . . . vn

)
.
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Isto tako zbog jednakosti Av2 +Av1 = A(v2 + v1) dodavanjem prvog stupca
matrice (3.3) drugom stupcu dobivamo matricu(

Av1 A(v2 + v1) . . . Avn
v1 v2 + v1 . . . vn

)
.

Takoder primijetimo da je j-ta koordinata vektora kanonske baze ej jednaka
1, a sve ostale su nula, pa formula (3.2) daje

Aej = aj .

Znači da je (
Ae1 Ae2 . . . Aen
e1 e2 . . . en

)
=

(
a1 a2 . . . an
e1 e2 . . . en

)
.

Elementarnim transformacijama stupaca

(a1, . . . , an) 7→ . . . 7→ (a′1, . . . , a
′
r, 0, . . . , 0)

možemo matricu A = (a1, . . . , an) prevesti u donju stepenastu matricu čiji su
linearno nezavisni stupci a′1, . . . , a

′
r baza linearne ljuske R(A) = 〈a1, . . . , an〉.

Paralelnim izvodenjem istog niza elementarnih transformacija na matricama
oblika (3.3) dobivamo(

Ae1 Ae2 . . . Aen
e1 e2 . . . en

)
7→ . . . 7→

(
Af1 . . . Afr 0 . . . 0
f1 . . . fr fr+1 . . . fn

)
,

pri čemu su, zbog teorema 3.1.17, vektori f1, . . . , fn baza u Rn. Po kons-
trukciji su fr+1, . . . , fn linearno nezavisni vektori u N(A). Zbog linearne
nezavisnosti vektora a′1 = Af1, . . . , a

′
r = Afr slijedi da su vektori

fr+1, . . . , fn

baza od N(A). Naime, za vektor x zapisan u bazi

x = λ1f1 + · · ·+ λrfr + λr+1fr+1 + · · ·+ λnfn

relacija Ax = 0 i svojstvo linearnosti povlači

λ1Af1 + · · ·+ λrAfr = 0,

a onda zbog linearne nezavisnosti Af1, . . . , Afr slijedi λ1 = · · · = λr = 0.
Znači da je

rangA+ defektA = r + (n− r) = n.

�

Opisanim postupkom možemo za danu matricu A istovremeno tražiti
baze od R(A) i N(A). Tako, na primjer, elementarnim transformacijama
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dobivamo

1 −1 0 2
1 2 3 −1
2 −1 1 3
−1 0 −1 −1
− − − −
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


7→



1 0 0 0
1 3 3 −3
2 1 1 −1
−1 −1 −1 −1
− − − −
1 1 0 −2
0 1 0 0
0 0 1 0
0 0 0 1


7→



1 0 0 0
1 3 0 0
2 1 0 0
−1 −1 0 0
− − − −
1 1 −1 −2
0 1 −1 0
0 0 1 1
0 0 0 1


.

Odavle vidimo ne samo bazu

(1, 1, 2,−1), (0, 3, 1,−1)

od R(A), nego i bazu

(−1,−1, 1, 0), (−2, 0, 1, 1)

od N(A)

3.3. Zadatak. Nadite baze od N(A) i R(A) za matricu

A =

2 2 −4
2 3 −5
4 5 −9

 .

3.4. Zadatak. Nadite opisanim načinom bazu prostora rješenja homo-
genog sistema jednadžbi

ξ1 + 2ξ2 − ξ3 + 2ξ4 + 2ξ5 − 4ξ6 = 0,

ξ3 + 2ξ4 + 2ξ5 − 4ξ6 = 0,

ξ5 − 4ξ6 = 0.

3.5. Pitanje. Da li je defekt 2× 4 matrice barem 2 ? DA NE

3.6. Pitanje. Da li je rang 4× 2 matrice barem 2 ? DA NE

3.7. Pitanje. Da li je defekt 4× 2 matrice barem 2 ? DA NE

3.8. Rang i elementarne transformacije redaka. Ako smo m× n
matricu B dobili iz A uzastopnim elementarnim transformacijama redaka,
pǐsemo

B ∼
r
A,

onda su homogeni sistemi jednadžbi Ax = 0 i Bx = 0 ekvivalentni, tj.

N(B) = N(A).

No onda zbog teorema o rangu i defektu imamo jednakost rangova

rangB = n− dimN(B) = n− dimN(A) = rangA.

Znači da elementarne transformacije redaka ne mijenjaju rang.
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3.9. Rang matrice “po recima i stupcima”. Iz gornjeg razmatra-
nja slijedi da pri računanja ranga matrice možemo “istovremeno” koristiti
elementarne transformacije i na stupcima i na recima matrice. Na primjer,
postupak na primjeru iz točke 1.4 mogli smo nastaviti izvodenjem elemen-
tarnih transformacija na recima

A ∼


1 0 0 0
1 3 0 0
2 1 0 0
−1 −1 0 0

 ∼r


1 0 0 0
0 3 0 0
2 1 0 0
−1 −1 0 0

 ∼r


1 0 0 0
0 3 0 0
0 1 0 0
−1 −1 0 0



∼
r


1 0 0 0
0 3 0 0
0 1 0 0
0 −1 0 0

 ∼r


1 0 0 0
0 1 0 0
0 1 0 0
0 −1 0 0

 ∼r


1 0 0 0
0 1 0 0
0 0 0 0
0 −1 0 0



∼
r


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 = (e1, e2, 0, 0),

pri čemu je rang zadnje matrice očito 2.
Općenito m×n matricu A možemo elementarnim transformacijama na

stupcima i recima svesti na oblik

(3.4) (e1, . . . , er, 0, . . . , 0)

iz kojeg očitavamo rangA = r.
Naime, ako matrica A tipa m×n nije nula, onda eventualnom zamjenom

stupaca i/ili redaka problem svedemo na slučaj α11 6= 0. Sada podijelimo
prvi stupac s α11 i “eliminiramo” sve preostale elemente u prvom retku, a
potom i u prvom stupcu. Znači da smo dobili matricu

1 0 . . . 0
0 α′22 . . . α′2n
...

...
...

0 α′m2 . . . α′mn


i problem sveli na matricu tipa (m− 1)× (n− 1).

3.10. Transponirana matrica. Za matricu A tipa m×n matrica tipa
n×m kojoj su stupci jednaki recima matrice A zovemo transponiranm ma-
tricom od A i označavamo je s At. Na primjer1 2 3 4

1 2 3 4
1 2 3 4

t

=


1 1 0
2 2 2
3 3 3
4 4 4

 ,


1 1 1
2 2 2
3 3 3
4 4 4


t

=

1 2 3 4
1 2 3 4
1 2 3 4

 .
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3.11. Osnovni teorem o rangu matrica. rangAt = rangA.

Dokaz. Primijetimo da je prvih r stupaca e1, . . . , er u matrici (3.4) u
stvari prvih r elemenata kanonske baze u Rm. Transponirana matrica ima
“isti oblik”

(3.5) (e1, . . . , er, 0, . . . , 0)t = (e1, . . . , er, 0, . . . , 0),

“jedino” što je tipa n×m i e1, . . . , er na desnoj strani je prvih r elemenata
kanonske baze u Rn. Na primjer1 0 0 0

0 1 0 0
0 0 0 0

t

=


1 0 0
0 1 0
0 0 0
0 0 0

 .

Budući da su stupci transponirane matrice At reci matrice A, a reci od At

stupci od A, to elementarnim transformacijama možemo “paralelno” svesti
A na oblik (3.4), a At na oblik (3.5), te zaključiti da je u oba slučaja rang
matrice jednak r. �

4. Jedinstvenost rješenja sistema jednadžbi

4.1. Pitanje jedinstvenosti rješenja sistema jednadžbi. Pretpo-
stavimo da sistem jednadžbi

Ax = b

ima rješenje, označimo ga s xpart i zovimo ga partikularnim rješenjem siste-
ma. Sistem

Ax = 0

zovemo pripadnim homogenim sistemom. Po definiciji je nul-potprostor
N(A) skup svih rješenja pripadnog homogenog sistema.

Teorem. Skup svih rješenja sistema Ax = b je

xpart +N(A) = {xpart + y | Ay = 0}.
Posebno, xpart je jedinstveno rješenje sistema Ax = b ako i samo ako je
N(A) = 0.

Dokaz. Po pretpostavci je Axpart = b. Ako je Ax = b za neki x, onda
zbog svojstva linearnosti (3.2) za y = x− xpart imamo

Ay = A(x− xpart) = Ax−Axpart = b− b = 0.

To znači da je svako rješenje sistema Ax = b oblika

x = xpart + y, Ay = 0.

Obratno, zbog svojstva linearnosti za vektor x tog oblika imamo

Ax = A(xpart + y) = Axpart +Ay = b+ 0 = b,

tj. x je rješenje sistema. �
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4.2. Primjedba. Primijetimo da “odstupanje od jedinstvenosti rješe-
nja” sistema Ax = b “mjeri” defekt matrice A: ako je defektA = d i
v1, . . . , vd baza u N(A), onda opće rješenje sistema ovisi o d proizvoljnih
parametara:

x = xpart + λ1v1 + · · ·+ λdvd, λ1, . . . , λd ∈ R.

Grubo rečeno, što je veći defekt matrice sistema, to je vǐse rješenja sistema.
No s druge strane, po teoremu o rangu i defektu, veći defekt od A znači
manji rang od A, a to po Kronecker-Capellijevom teoremu znači da rješenje
xpart sistema Ax = b postoji za “manje desnih strana b” !

4.3. Primjer. Očito sistem jednadžbi

(4.1)

2ξ1 + 2ξ2 − 4ξ3 = 4,

2ξ1 + 3ξ2 − 5ξ3 = 4,

4ξ1 + 5ξ2 − 9ξ3 = 8

ima jedno rješenje

xpart =

2
0
0

 .

Rješavanjem pripadnog homogenog sistema jednadžbi

(4.2)

2ξ1 + 2ξ2 − 4ξ3 = 0,

2ξ1 + 3ξ2 − 5ξ3 = 0,

4ξ1 + 5ξ2 − 9ξ3 = 0

dobivamo2 2 −4 0
2 3 −5 0
4 5 −9 0

 7→ . . . 7→

1 1 −2 0
0 1 −1 0
0 1 −1 0

 7→ . . . 7→

1 0 −1 0
0 1 −1 0
0 0 0 0

 ,

pa su sva rješenja pripadnog homogenog sistema

ξ3 = λ ∈ R, ξ2 = ξ3 = λ, ξ1 = ξ3 = λ.

Znači da su sva rješenja x sistema jednadžbi (4.1) oblika

x =

2
0
0

+ λ

1
1
1

 =

2 + λ
λ
λ

 , λ ∈ R.

4.4. Zadatak. Nadite sva rješenja sistema jednadžbi

ξ1 + 2ξ2 − ξ3 + 2ξ4 + 2ξ5 − 4ξ6 = 2,

ξ3 + 2ξ4 + 2ξ5 − 4ξ6 = 1,

ξ5 − 4ξ6 = −3.
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4.5. Primjedba. Ako je defekt m× n matrice A jednak d, onda je za
c ∈ Rn skup rješenja sistema

(4.3) Ax = Ac

d-ravnina Σ u Rn kroz točku c oblika

Σ = c+N(A).

Znači da je d-ravnina Σ zadana sistemom (4.3) od m jednažbi. Prirodno
se nameće pitanje da li je svaka k-ravnina u Rn zadana nekim sistemom
jednadžbi? Naravno, to je u stvari drugo pitanje iz točke 2.7.16, a na koje
ćemo odgovoriti potvrdno u sljedećem poglavlju.





POGLAVLJE 5

Skalarni produkt

U ovom poglavlju uvodimo pojmove skalarnog produkta, norme i orto-
normirane baze. Kao posljedicu Gram-Schmidtovog postupka ortogonaliza-
cije linearno nezavisnog skupa vektora dobivamo egzistenciju ortonormiranih
baza potprostora konačno dimenzionalnih unitarnih prostora. Dokazujemo
teorem o ortogonalnoj projekciji vektora na dani potprostor i teorem o naj-
boljoj aproksimaciji vektora elementima danog potprostora, a kao posljedicu
dobivamo metodu najmanjih kvadrata za približno rješavanje sistema jed-
nadžbi koji koji nemaju točnog rješenja. Iz teorema o projekciji slijedi da se
svaki potprostor od Rn može zadati kao skup rješenja homogenog sistema
jednadžbi.

1. Norma i skalarni produkt vektora u Rn

1.1. Duljina vektora u R2. Zamislimo si elemente x = (ξ1, ξ2) iz R2

kao koordinate točaka euklidske ravnine u zadanom Kartezijevom sustavu, a
elemente kanonske baze e1, e2 kao jedinične vektore na koordinatnim osima.
Prema Pitagorinom poučku za pravokutni trokut s vrhovima

A = (0, 0), B = (ξ1, 0), C = (ξ1, ξ2)

kvadrat duljine hipotenuze AC jednak je sumi kvadrata duljina kateta

ξ2
1 + ξ2

2 .

Ako usmjerenu dužinu
−→
AC poistovjetimo s točkom x = (ξ1, ξ2), onda je

intuitivno opravdano kad kažemo da je

||x|| =
√
ξ2

1 + ξ2
2

duljina (ili norma) vektora x u R2. Primijetimo da za svaki vektor x imamo
ξ2

1 + ξ2
2 ≥ 0 i da u definiciji mislimo na nenegativan drugi korijen√

ξ2
1 + ξ2

2 ≥ 0.

Ako su x = (ξ1, ξ2) i y = (η1, η2) koordinate dviju točaka euklidske rav-
nine u zadanom Kartezijevom sustavu, onda je prema Pitagorinom poučku
udaljenost d(x, y) izmedu tih točaka jednaka

d(x, y) = ||x− y|| =
√

(ξ1 − η1)2 + (ξ2 − η2)2.

99
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1.2. Primjer. Duljina vektora x = (1, 2) je

||x|| =
√

12 + 22 =
√

5.

Za dvije točke x = (1, 2) i y = (2, 1) je njihova udaljenost jednaka

d(x, y) = ||x− y|| =
√

(1− 2)2 + (2− 1)2 =
√

2.

1.3. Duljina vektora u R3. Zamislimo si elemente x = (ξ1, ξ2, ξ3)
iz R3 kao koordinate točaka euklidskog prostora u zadanom Kartezijevom
sustavu, a elemente kanonske baze e1, e2, e3 kao jedinične vektore na koordi-
natnim osima. Prema Pitagorinom poučku za pravokutni trokut s vrhovima

A = (0, 0, 0), B = (ξ1, 0, 0), C = (ξ1, ξ2, 0),

kvadrat duljine hipotenuze AC jednak je sumi kvadrata duljina kateta

ξ2
1 + ξ2

2 .

Sada, primjenom Pitagorinog poučka na pravokutni trokut s vrhovima

A = (0, 0, 0), C = (ξ1, ξ2, 0), D = (ξ1, ξ2, ξ3),

dobijamo da je kvadrat duljine hipotenuze AD jednak sumi kvadrata duljina
kateta

(ξ2
1 + ξ2

2) + ξ2
3 .

Ako usmjerenu dužinu
−−→
AD poistovjetimo s točkom x = (ξ1, ξ2, ξ3), onda je

intuitivno opravdano kad kažemo da je

||x|| =
√
ξ2

1 + ξ2
2 + ξ2

3

duljina (ili norma) vektora x u R3.
Ako su x = (ξ1, ξ2, ξ3) i y = (η1, η2, η3) koordinate dviju točaka euklid-

skog prostora u zadanom Kartezijevom sustavu, onda je prema Pitagorinom
poučku udaljenost d(x, y) izmedu tih točaka jednaka

d(x, y) = ||x− y|| =
√

(ξ1 − η1)2 + (ξ2 − η2)2 + (ξ3 − η3)2.

1.4. Primjer. Duljina vektora x = (1, 2,−2) u R3 je

||x|| =
√

12 + 22 + (−2)2 = 3.

Za dvije točke x = (1, 2,−2) i y = (2, 1, 1) je njihova udaljenost jednaka

d(x, y) = ||x− y|| =
√

(1− 2)2 + (2− 1)2 + (−2− 1)2 =
√

11.

1.5. Norma vektora u Rn. Za vektor x = (ξ1, . . . , ξn) u Rn definiramo
normu (ili duljinu) vektora x kao

||x|| =
√
ξ2

1 + · · ·+ ξ2
n.

1.6. Udaljenost točaka u Rn. Za dvije točke x = (ξ1, . . . , ξn) i y =
(η1, . . . , ηn) u Rn definiramo njihovu medusobnu udaljenost d(x, y) kao

d(x, y) = ||x− y|| =
√

(ξ1 − η1)2 + · · ·+ (ξn − ηn)2.
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1.7. Pitagorin poučak i okomitost vektora u R2. Zamislimo si ele-
mente x = (ξ1, ξ2) iz R2 kao koordinate točaka euklidske ravnine u zadanom
Kartezijevom sustavu. Po Pitagorinom poučku su vektori x = (ξ1, ξ2) i
y = (η1, η2) okomiti ako i samo ako je

(1.1) ||x+ y||2 = ||x||2 + ||y||2.
Budući da je

||x+ y||2 = (ξ1 + η1)2 + (ξ2 + η2)2 = ξ2
1 + ξ2

2 + 2(ξ1η1 + ξ2η2) + η2
1 + η2

2,

||x||2 + ||y||2 = ξ2
1 + ξ2

2 + η2
1 + η2

2,

to je uvjet okomitosti (1.1) vektora x i y ekvivalentan

(1.2) ξ1η1 + ξ2η2 = 0.

Općenito za dva vektora x, y ∈ R2 skalar (broj)

(x | y) = ξ1η1 + ξ2η2

zovemo skalarnim produktom vektora x i y.

1.8. Pitagorin poučak i okomitost vektora u R3. Zamislimo si R3

kao koordinate točaka euklidskog prostora u zadanom Kartezijevom sustavu.
Po Pitagorinom poučku su vektori x = (ξ1, ξ2, ξ3) i y = (η1, η2, η3) okomiti
ako i samo ako je

(1.3) ||x+ y||2 = ||x||2 + ||y||2.
Kratkim računom kao u prethodnoj točki vidimo da je to ekvivalentno

(1.4) (x | y) = ξ1η1 + ξ2η2 + ξ3η3 = 0.

1.9. Kanonski skalarni produkt na Rn. Za vektore x = (ξ1, . . . , ξn)
i y = (η1, . . . , ηn) u Rn stavimo

(x | y) = ξ1η1 + ξ2η2 + · · ·+ ξnηn.

Funkciju
( | ) : Rn × Rn → R, (x, y) 7→ (x | y)

zovemo kanonskim skalarnim produktom na Rn. Kanonski skalarni produkt
na Rn ima sljedeća svojstva:

(1) skalarni produkt je bilinearan, tj. za sve vektore x, x′, x′′, y ∈ Rn i
skalare λ ∈ R vrijedi linearnost u prvom argumentu

(x′ + x′′ | y) = (x′ | y) + (x′ | y), (λx | y) = λ(x | y)

i linearnost u drugom argumentu

(y | x′ + x′′) = (y | x′) + (y | x′), (y | λx) = λ(x | y),

(2) simetričan, tj. za sve x i y vrijedi

(x | y) = (y | x),

(3) i strogo pozitivan, tj. za svaki vektor x vrijedi

(x | x) ≥ 0 i (x | x) = 0 ako i samo ako je x = 0.
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Dokaz. Bilinearnost i simetričnost skalarnog produkta vrijedi zbog al-
gebarskih svojstava realnih brojeva:

(λx | y) =
n∑
i=1

(λξi)ηi = λ
n∑
i=1

ξiηi = λ(x | y),

(x′ + x′′ | y) =
n∑
i=1

(ξ′i + ξ′′i )ηi =
n∑
i=1

ξ′iηi +
n∑
i=1

ξ′′i ηi = (x′ | y) + (x′′ | y),

(x | y) =
n∑
i=1

ξiηi =
n∑
i=1

ηiξi = (y | x).

Očito je (x | x) = ξ2
1 + ξ2

2 + · · · + ξ2
n ≥ 0 i jednakost vrijedi ako i samo ako

je ξ1 = ξ2 = · · · = ξn = 0. �

1.10. Primjer. Skalarni produkt vektora x = (1, 0, 1) i y = (1, 2,−1)
u R3 je (x | y) = 1 · 1 + 0 · 2 + 1 · (−1) = 0.

1.11. Napomena. Ponekad skalarni produkt (x | y) vektora iz R3 za-
pisujemo kao “množenje” x · y, a svojstva linearnosti u prvom i drugom ar-
gumentu zovemo svojstvima distributivnosti skalarnog množenja u odnosu
na zbrajanje

(x′ + x′′) · y = x′ · y + x′′ · y, y · (x′ + x′′) = y · x′ + y · x′′

i homogenosti skalarnog množenja u odnosu na množenje vektora skalarom

(λx) · y = λ(x · y) = x · (λy).

Zbog tih svojstava u slučaju skalarnog množenja linearnih kombinacija pri-
mjenjujemo, kao i za brojeve, pravilo množenja “svakog sa svakim”:

(λ1a1 + · · ·+ λnan | µ1b1 + · · ·+ µmbm) =
n∑
i=1

m∑
j=1

λiµj(ai | bj).

1.12. Kanonski skalarni produkt i norma vektora u Rn. Očito je

||x|| =
√

(x | x).

1.13. Okomiti vektori u Rn i Pitagorin poučak. Kažemo da su
vektora x i y u Rn okomiti ili ortogonalni ako je

(x | y) = ξ1η1 + ξ2η2 + · · ·+ ξnηn = 0,

često pǐsemo x ⊥ y. Primijetimo da je tada i (y | x) = (x | y) = 0, tj. y ⊥ x.
Ako je x ⊥ y, onda zbog bilinearnosti i simetričnosti skalarnog produkta

vrijedi Pitagorin poučak

||x+ y||2 = ||x||2 + ||y||2.
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1.14. Kanonski skalarni produkt na R. U slučaju R = R1 skalarni
produkt vektora (brojeva) ξ i η u R je

(ξ | η) = ξη,

a norma ||ξ|| je apsulutna vrijednost |ξ| broja ξ:

|ξ| = ||ξ|| =
√
ξ · ξ.

Primijetimo da u polju R relacija (ξ | η) = ξη = 0 povlači da je bar jedan
od brojeva ξ i η jednak nula.

2. Skalarni produkt vektora u Cn

2.1. Kanonski skalarni produkt na C. Polje kompleksnih brojeva
C je skup R2 čije elemente z = (x, y) obično zapisujemo kao z = x + iy.

Apsolutna vrijednost |z| =
√
x2 + y2 je u stvari norma ||z|| elementa z ∈ R2.

Koristimo li konjugiranje i množenje u polju C, imamo formulu

|z| = ||z|| =
√
z · z̄.

Za kompleksne brojeve z i w kažemo da je

(z | w) = z · w

skalarni produkt vektora (brojeva) z i w u C, a apsolutnu vrijednost kom-
pleksnog broja

|z| = ||z|| =
√

(z | z)
zovemo i normom vektora z u kompleksnom vektorskom prostoru C.

Primijetimo da u polju C relacija (z | w) = z · w = 0 povlači da je bar
jedan od brojeva z i w jednak nula. Za razliku od realnih brojeva, skalarni
produkt na C ima svojstvo hermitske simetrije

(z | w) = z · w = w · z = w · z = w · z = (w | z).

2.2. Kanonski skalarni produkti na C i na R2. Primijetimo da je
za kompleksne brojeve z = x+ iy i w = u+ iv

(z | w) = z · w = xu+ yv + i(−xv + yu)

pa je skalarni produkt xu + yv vektora (x, y) i (u, v) u 2-dimenzionalnom
realnom vektorskom prostoru R2 jednak realnom dijelu skalarnog produkta
(z | w) vektora z = x + iy i w = u + iv u 1-dimenzionalnom kompleksnom
vektorskom prostoru C.

2.3. Kanonski skalarni produkt na Cn. Funkciju

( | ) : Cn × Cn → C, (x, y) 7→ (x | y) = ξ1η1 + ξ2η2 + · · ·+ ξnηn,

gdje je x = (ξ1, . . . , ξn) i y = (η1, . . . , ηn), zovemo kanonskim skalarnim
produktom na Cn. Kanonski skalarni produkt na Cn ima sljedeća svojstva:
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(1) skalarni produkt je linearna funkcija u prvom argumentu, tj.

(x′ + x′′ | y) = (x′ | y) + (x′′ | y), (λx | y) = λ(x | y)

i antilinearna funkcija u drugom argumentu, tj.

(x | y′ + y′′) = (x | y′) + (x | y′′), (x | λy) = λ(x | y),

(2) hermitski simetričan, tj. za sve x i y vrijedi

(x | y) = (y | x),

(3) i strogo pozitivan, tj. za svaki vektor x vrijedi

(x | x) ≥ 0 i (x | x) = 0 ako i samo ako je x = 0.

Dokaz. Linearnost i hermitska simetrija skalarnog produkta vrijede
zbog algebarskih svojstava kompleksnih brojeva:

(λx | y) =

n∑
i=1

(λξi)ηi = λ

n∑
i=1

ξiηi = λ(x | y),

(x′ + x′′ | y) =
n∑
i=1

(ξ′i + ξ′′i )ηi =
n∑
i=1

ξ′iηi +
n∑
i=1

ξ′′i ηi = (x′ | y) + (x′′ | y),

(x | y) =

n∑
i=1

ξiηi =

n∑
i=1

ξiηi =

n∑
i=1

ηiξi = (y | x).

Antilinearnost u drugom argumentu slijedi iz linearnosti u prvom argumentu
i hermitske simetrije:

(x | y + λv) = (y + λv | x) = (y | x) + λ(v | x)

= (y | x) + λ · (v | x) = (x | y) + λ(x | v).

Očito je (x | x) = |ξ1|2 + |ξ2|2 + · · ·+ |ξn|2 ≥ 0 i jednakost vrijedi ako i samo
ako je ξ1 = ξ2 = · · · = ξn = 0. �

2.4. Primjer. Za vektore

x = (2,−i) i y = (i, 1 + i)

u C2 kanonski skalarni produkt je

(x | y) = 2 · ī+ (−i) · 1 + i = 2 · (−i) + (−i) · (1− i) = −2i− i− 1 = −1− 3i.

2.5. Norma vektora u Cn. Norma vektora x = (ζ1, . . . , ζn) je po
definiciji

||x|| =
√

(x | x) =
√
|ζ1|2 + |ζ2|2 + · · ·+ |ζn|2.

2.6. Primjer. Norma vektora x = (2,−i) u C2 je ||x|| =
√
|2|2 + | − i|2

=
√

4 + 1 =
√

5.
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2.7. Norme vektora u Cn i R2n. Napǐsemo li koordinate ζk = αk+iβk
vektora

x = (ζ1, . . . , ζn)

kao parove (αk, βk) realnih brojeva, onda vektor x možemo shvatiti kao
element

x = (α1, β1, . . . , αn, βn)

iz R2n, a norma je u oba slučaja ista:

||x|| =
√

(x | x) =
√
|ζ1|2 + · · ·+ |ζn|2 =

√
|α1|2 + |β1|2 + · · ·+ |αn|2 + |βn|2.

3. Unitarni prostori

3.1. Skalarni produkt na vektorskom prostoru. Neka je K polje
realnih brojeva R ili polje kompleksnih brojeva C. Neka je V vektorski
prostor nad poljem K. Funkciju

( | ) : V × V → K, (x, y) 7→ (x | y)

zovemo skalarnim produktom na vektorskom prostoru V ako vrijede sljedeća
svojstva:

(1) funkcija je linearna u prvom argumentu, tj.

(x′ + x′′ | y) = (x′ | y) + (x′′ | y), (λx | y) = λ(x | y),

i funkcija je antilinearna u drugom argumentu, tj.

(x | y′ + y′′) = (x | y′) + (x | y′′), (x | λy) = λ(x | y),

(2) funkcija je hermitski simetrična, tj. za sve x i y vrijedi

(x | y) = (y | x),

(3) i strogo pozitivna, tj. za svaki vektor x vrijedi

(x | x) ≥ 0 i (x | x) = 0 ako i samo ako je x = 0.

Vektorski prostor sa zadanim skalarnim produktom zovemo unitarnim pro-
storom. U ovom paragrafu pretpostavljamo da je V unitaran.

3.2. Napomena. Zbog linearnosti skalarnog produkta u prvom argu-
mentu za svaki vektor x imamo (0 | x) = (0 + 0 | x) = (0 | x) + (0 | x),
odnosno

(3.1) (0 | x) = 0.

Isto tako je (x | 0) = (0 | x) = 0.
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3.3. Napomena. Za nas su najvažniji primjeri unitarnih prostora vek-
torski prostori Rn i Cn s kanonskim skalarnim produktima. U matematičkoj
analizi su važni primjeri unitarnih prostora vektorski prostori funkcija, kao
što je, na primjer, realni vektorski prostor neprekidnih funkcija

f : [−1, 1]→ R

sa skalarnim produktom

(f | g) =

∫ 1

−1
f(x)g(x)dx.

3.4. Potprostor unitarnog prostora je unitaran. Neka je V uni-
taran prostor sa skalarnim produktom ( | ) i W vektorski potprostor od V .
Tada je W unitaran prostor s naslijedenim skalarnim produktom

( | ) : W ×W → K, (x, y) 7→ (x | y),

jer su za vektore iz W očito zadovoljena sva svojstva (1) – (3) u definiciji
skalarnog produkta. Posebno je svaki potprostor od Rn ili Cn unitaran
prostor. Na primjer, ako jeW = 〈a1, a2〉 potprostor od R3 razapet vektorima

a1 = (1, 1, 1) i a2 = (1, 1, 2),

onda kanonski skalarni produkt na R3 daje skalarni produkt na potprostoru
W , u bazi (a1, a2) zadan formulom

(3.2) (ξ1a1 + ξ2a2 | η1a1 + η2a2) = 3ξ1η1 + 4ξ1η2 + 4ξ2η1 + 6ξ2η2.

3.5. Zadatak. Dokažite da je za sve (ξ1, ξ2) ∈ R2

3 ξ2
1 + 8 ξ1ξ2 + 6 ξ2

2 ≥ 0

ne koristeći činjenicu da je formulom (3.2) zadan skalarni produkt.

3.6. Napomena. Ako je V kompleksan vektorski prostor, onda je ska-
larni produkt vektora (x | y) kompleksan broj. No zbog hermitske simetrije

je (x | x) = (x | x), pa je za svaki vektor x u V skalarni produkt (x | x)
realan broj. Budući da u definiciji skalarnog produkta za taj realni broj
zahtijevamo (x | x) ≥ 0, to postoji drugi korijen

√
(x | x) ≥ 0.

3.7. Norma vektora. Norma vektora x u unitarnom prostoru V je po
definiciji

||x|| =
√

(x | x) ≥ 0.

Zbog svojstva (3) skalarnog produkta imamo i da je

(3.3) ||x|| = 0 ako i samo ako je x = 0.

Zbog linearnosti skalarnog produkta u prvom argumentu i antilinearnosti u
drugom, za svaki vektor x u V i svaki skalar λ ∈ K vrijedi

(3.4) ||λx|| =
√

(λx | λx) =
√
λλ̄(x | x) =

√
|λ|2(x | x) = |λ| · ||x||.
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3.8. Normirani vektori. Kažemo da je vektor x u unitarnom prostoru
V normirani ili jedinični1 vektor ako je

||x|| = 1.

Za svaki vektor x 6= 0 “dijeljenjem” s normom ||x|| 6= 0 dobijamo normirani
vektor

|| 1
||x||x|| =

1
||x|| ||x|| = 1.

Kažemo da smo normirani vektor 1
||x||x dobili normiranjem vektora x 6= 0.

Često pǐsemo
1
||x||x = x

||x|| = x/||x||.

3.9. Okomiti vektori. Kažemo da su vektora x i y u unitarnom pro-
storu V okomiti ili ortogonalni ako je

(x | y) = 0,

često pǐsemo x ⊥ y. Primijetimo da je tada i (y | x) = (x | y) = 0, tj. y ⊥ x.

3.10. Okomiti skupovi. Kažemo da je vektor x okomit na skup vek-
tora A, pǐsemo x ⊥ A, ako je x ⊥ a za svaki vektor a iz skupa A. Kažemo
da je skup vektora B okomit na skup vektora A ako je svaki vektor b iz B
okomit na svaki vektor a iz A, pǐsemo B ⊥ A. Primijetimo da je tada i
A ⊥ B.

3.11. Teorem. Ako je x ⊥ x, onda je x = 0. Posebno, ako je x ⊥ V ,
onda je x = 0.

Dokaz. Po definiciji skalarnog produkta (x | x) = 0 povlači x = 0.
Posebno, ako je x okomit na sve vektore iz V , onda je okomit i na sebe, pa
mora biti nula. �

3.12. Pitagorin poučak. Ako je x ⊥ y, onda je

||x+ y||2 = ||x||2 + ||y||2.

Dokaz. Zbog bilinearnosti skalarnog produkta imamo

(x+ y | x+ y) = (x | x) + (x | y) + (y | x) + (y | y),

pa zbog pretpostavke (x | y) = (y | x) = 0 slijedi tvrdnja teorema. �

1U engleskom se za jedinični vektor kaže unit vector, odakle i dolazi naziv “unitarni
prostor”.
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3.13. Teorem o projekciji vektora na pravac. Neka su x i e vektori
u unitarnom prostoru, ||e|| = 1. Tada je

(1) x− (x | e)e ⊥ e,
(2) x = (x | e)e+ (x− (x | e)e),
(3) ||x||2 = |(x | e)|2 + ||x− (x | e)e||2.

Vektor (x | e)e zovemo ortogonalnom projekcijom vektora x na pravac 〈e〉.

Dokaz. Tvrdnja (1) slijedi iz linearnosti skalarnog produkta u prvom
argumentu i pretpostavke da je e jedinični vektor:

(x− (x | e)e | e) = (x | e)− (x | e)(e | e) = 0.

Tvrdnja (2) je očita, a tvrdnja (3) slijedi iz Pitagorinog teorema. �

3.14. Kosinus kuta izmedu dva vektora. Neka je e jedinični vektor.
Prema tvrdnji (2) prethodnog teorema vektor x 6= 0 možemo rastaviti na
sumu dva vektora, pri čemu je prvi vektor

a = (x | e)e

proporcionalan jediničnom vektoru e duljine ||a|| = |(x | e)|, a drugi je
vektor

b = x− (x | e)e
okomit na vektor e. Da su vektori x i e u prostoru R2 ili R3, onda bi rastav
vektora

x = a+ b

geometrijski mogli shvatiti kao rastav vektora na dvije komponente, pri čemu
je komponenta a na pravcu 〈e〉 = Re, a komponenta b okomita na pravac
Re. Štovǐse, vektor x je u tom slučaju hipotenuza pravokutnog trokuta sa
katetama a i b, a kosinus kuta ϕ izmedu vektora x i e je

(3.5) cosϕ = (x | e)/||x||

(nacrtajte sliku za slučajeve (x | e) ≥ 0 i (x | e) < 0). U slučaju unitar-
nog prostora nad poljem R relacijom (3.5) definiramo kosinus kuta izmedu
vektora e i x, ili općenitije, kosinus kuta izmedu vektora y 6= 0 i x je

(3.6) cosϕ =
(x | y)

||x|| ||y||
.

3.15. Primjer. Kosinus kuta izmedu vektora (1, 0) i (1, 1) je 1/
√

2.

3.16. Primjer. Kosinus kuta izmedu vektora (0, 0, 1, 0, 0) i (1, 1, 1, 1, 3)
u R5 je 1/

√
13.

3.17. Zadatak. Nadite kosinus kuta izmedu vektora a) (1, 0) i (1, 0),
b) (1, 0) i (1/2,

√
3/2), c) (1, 0) i (−1/2,

√
3/2), d) (1, 0) i (−1/2,−

√
3/2) i

e) (1, 0) i (−1/2,
√

3/2). Nacrtajte sliku.
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3.18. Cauchy-Bunjakovskij-Schwarzova nejednakost. Za vektore
x i y vrijedi nejednakost

(3.7) |(x | y)| ≤ ||x|| ||y||,

pri čemu jednakost vrijedi ako i samo ako su vektori x i y linearno zavisni.

Dokaz. Ako je desna strana ||x|| ||y|| = 0, onda je jedan od vektora nula.
Tada je zbog (3.1) i lijeva strana jednaka nuli i u (3.7) vrijedi jednakost, a
vektori x i y su linearno zavisni.

Ako je desna strana ||x|| ||y|| 6= 0, onda su oba vektora različita od nule.
Stavimo li e = y/||y||, onda nejednakost (3.7) glasi

|(x | e)| = |(x | y/||y||)| = |(x | y)|/||y|| ≤ ||x||

i slijedi iz tvrdnje (3) teorema 3.13:

|(x | e)|2 ≤ |(x | e)|2 + ||x− (x | e)e||2 = ||x||2.

Štovǐse, ako u (3.7) vrijedi jednakost, onda zbog stroge pozitivnosti skalar-
nog produkta ||x− (x | e)e|| = 0 povlači x− (x | e)e = 0, tj. x = (x | e)e =
(x | y)y/||y||2. Na kraju, ako je x = λy za neki skalar λ, onda su obje strane
(3.7) jednake |λ| ||y||2. �

3.19. Nejednakost trokuta. Za proizvoljne vektore x i y vrijedi tzv.
nejednakost trokuta

(3.8) ||x+ y|| ≤ ||x||+ ||y||.

Dokaz. Zbog svojstava skalarnog produkta imamo

||x+ y||2 = (x+ y | x+ y)

= (x | x) + (x | y) + (y | x) + (y | y)

= ||x||2 + (x | y) + (y | x) + ||y||2

= ||x||2 + (x | y) + (x | y) + ||y||2

= ||x||2 + 2 Re (x | y) + ||y||2

≤ ||x||2 + 2 |(x | y)|+ ||y||2

≤ ||x||2 + 2 ||x|| ||y||+ ||y||2

= (||x||+ ||y||)2 ,

pri čemu prva nejednakost vrijedi jer je realni dio kompleksnog broja manji
ili jednak apsolutnoj vrijednosti, a druga nejednakost vrijedi zbog Cauchy-
Bunjakovskij-Schwarzove nejednakosti. Sada nejednakost trokuta slijedi
vadenjem drugog korijena. �
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3.20. Udaljenost točaka u unitarnom prostoru. Za dvije točke x i
y u unitarnom prostoru V definiramo njihovu medusobnu udaljenost d(x, y)
kao

d(x, y) = ||x− y||.
Iz dokazanih svojstava norme (3.3), (3.4) i (3.8) za sve x, y, z ∈ V slijedi

(1) pozitivnost d(x, y) ≥ 0 i d(x, y) = 0 ako i samo ako je x = y,
(2) simetričnost d(x, y) = d(y, x) i
(3) relacija trokuta d(x, y) ≤ d(x, z) + d(z, y).

4. Ortonormirani skupovi vektora

4.1. Teorem. Skup vektora v1, . . . , vk je okomit na skup A ako i samo
ako je 〈v1, . . . , vk〉 ⊥ A.

Dokaz. Budući da je v1, . . . , vk ∈ 〈v1, . . . , vk〉, to 〈v1, . . . , vk〉 ⊥ A
povlači v1, . . . , vk ⊥ A. Obratno, ako je v1, . . . , vk ⊥ A i a ∈ A, onda
linearnost skalarnog produkta u prvom argumentu za linearnu kombinaciju
daje

(λ1v1 + · · ·+λkvk | a) = λ1(v1 | a) + · · ·+λk(vk | a) = λ1 ·0 + · · ·+λk ·0 = 0

Znači da je linearna kombinacija λ1v1 + · · ·+ λkvk okomita na a za svaki a
iz A. �

4.2. Ortonormirani skupovi i ortonormirane baze. Kažemo da
je skup vektora v1, . . . , vk ortonormirani skup ako su vektori medusobno
okomiti i ako je svaki od njih normiran. To možemo zapisati formulom

(vi | vj) = δij za sve i, j = 1, . . . , k.

Ortonormirani skup vektora v1, . . . , vn koji razapinje prostor zovemo ortonor-
miranom bazom prostora.

4.3. Teorem. Neka je v1, . . . , vk ortonormirani skup. Ako je

x =
k∑
i=1

ξivi,

onda je ξi = (x | vi) za sve i = 1, . . . , n, odnosno

(4.1) x =

k∑
i=1

(x | vi)vi.

Posebno, ortonormirani skup je linearno nezavisan.

Dokaz. Skalarnim množenjem

x =
k∑
i=1

ξivi
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s vj i korǐstenjem linearnosti skalarnog produkta u prvom argumenti dobi-
vamo

(x | vj) = (

k∑
i=1

ξivi | vj) =

k∑
i=1

ξi(vi | vj) =

k∑
i=1

ξiδij = ξj .

Posebno za x = 0 slijedi ξ1 = · · · = ξk = 0, pa je skup vektora v1, . . . , vk
linearno nezavisan. �

4.4. Fourierovi koeficijenti. Ako je v1, . . . , vn ortonormirana baza
prostora, onda koordinate

ξi = (x | vi)
vektora x zovemo Fourierovim koeficijentima od x.

4.5. Primjer. Vektori v1 = (1/
√

2, 1/
√

2) i v2 = (1/
√

2,−1/
√

2) su
ortonormirana baza u R2. Koordinate vektora x = (2, 1) u toj bazi su

ξ1 = (x | v1) = 2 · 1√
2

+ 1 · 1√
2

= 3/
√

2,

ξ2 = (x | v2) = 2 · 1√
2

+ 1 · (− 1√
2
) = 1/

√
2.

4.6. Zadatak. Izračunajte koordinate vektora x = (2, 1) u ortonormi-
ranoj bazi v1 = (1/2,

√
3/2) i v2 = (−

√
3/2, 1/2) od R2.

4.7. Pitanje. Da li su Fourierovi koeficijenti vektora x ∈ Cn u orto-
normiranoj bazi v1, . . . , vn dani formulom

ξi = (vi | x) ? DA NE

4.8. Ortonormirane baze u R2. Ortonormirane baze u R2 lako je
konstruirati. Za svaki vektor f 6= 0 je

|| 1
||f ||f || =

1
||f || ||f || = 1,

pa je vektor f1 = 1
||f ||f norme 1. Ako je f1 = (α, β), onda je vektor f2 =

(−β, α) takoder norme 1 i vrijedi

(f1 | f2) = −αβ + βα = 0.

Očito je i vektor −f2 norme 1 i okomit na f1, pa imamo dvije ortonormirane
baze

(f1, f2), (f1,−f2),

ili zapisano po stupcima kao matrice(
α −β
β α

)
,

(
α β
β −α

)
.

4.9. Zadatak. Pokažite geometrijski i algebarski da su(
cosϕ − sinϕ
sinϕ cosϕ

)
,

(
cosϕ sinϕ
sinϕ − cosϕ

)
, ϕ ∈ R,

sve ortonormirane baze u R2.
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4.10. Zadatak. Pokažite da su stupci kompleksnih matrica2(
α −β̄
β ᾱ

)
, |α|2 + |β|2 = 1

ortonormirane baze u C2. Pokažite da su(
α −λβ̄
β λᾱ

)
, |α|2 + |β|2 = 1, |λ| = 1, α, β, λ ∈ C

sve ortonormirane baze u C2.

5. Gram-Schmidtov postupak ortogonalizacije

5.1. Teorem. Ako je v1, . . . , vk ortonormirani skup u V i x ∈ V , onda
je

Q(x) = x−
k∑
i=1

(x | vi)vi ⊥ 〈v1, . . . , vk〉.

Štovǐse, Q(x) 6= 0 ako i samo ako x 6∈ 〈v1, . . . , vk〉.

Dokaz. Skalarnim množenjem vektorom vj dobivamo

(Q(x) | vj) = (x−
k∑
i=1

(x | vi)vi | vj) = (x | vj)−
k∑
i=1

(x | vi)(vi | vj)

= (x | vj)−
k∑
i=1

(x | vi)δij = (x | vj)− (x | vj) = 0.

Znači da jeQ(x) ⊥ v1, . . . , vk, a to je prema teoremu 4.1 ekvivalentnoQ(x) ⊥
〈v1, . . . , vk〉. Ako je x ∈ 〈v1, . . . , vk〉, onda zbog (4.1) imamo Q(x) = 0.
Obratno, ako je Q(x) = 0, onda je očito x ∈ 〈v1, . . . , vk〉. �

5.2. Gram-Schmidtov postupak ortogonalizacije. Ako je a1, . . . , an
linearno nezavisan skup vektora u unitarnom prostoru V , onda postoji orto-
normirani skup vektora v1, . . . , vn takav da je

〈v1, . . . , vn〉 = 〈a1, . . . , an〉.
Nadalje, ako je V konačno dimenzionalan unitaran prostor, onda se svaki
ortonormirani skup može dopuniti do ortonormirane baze od V .

Dokaz. Konstruktivni dokaz provodimo u koracima koje zovemo Gram-
Scmidtov postupak ortogonalizacije:

Za n = 1 stavimo v1 = 1
||a1||a1. Očito je v1 normiran i 〈v1〉 = 〈a1〉.

Pretpostavimo sada da već imamo ortonormirani skup v1, . . . , vk za k <
n takav da je

(5.1) 〈v1, . . . , vk〉 = 〈a1, . . . , ak〉.

2Kompleksne matrice tog oblika zovemo kvaternionima norme jedan.
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Budući da je po pretpostavci a1, . . . , ak, ak+1 linearno nezavisan skup vek-
tora, to ak+1 nije u linearnoj ljusci 〈v1, . . . , vk〉 = 〈a1, . . . , ak〉, pa iz te-
orema 5.1 slijedi da je

bk+1 = ak+1 −
k∑
i=1

(ak+1 | vi)vi 6= 0.

Tada imamo normirani vektor

vk+1 = 1
||bk+1||bk+1 ⊥ v1, . . . , vk,

pa je v1, . . . , vk, vk+1 ortonormirani skup vektora. Iz relacije

||bk+1|| vk+1 − ak+1 = bk+1 − ak+1 ∈ 〈v1, . . . , vk〉

i pretpostavke indukcije (5.1) slijedi

〈v1, . . . , vk, vk+1〉 = 〈a1, . . . , ak, vk+1〉 = 〈a1, . . . , ak, ak+1〉.

�

5.3. Primjer. Neka je c = (1, 0) i d = (1, 1). Primijenimo li Gram-
Schmidtov postupak ortogonalizacije na vektore c, d, dobivamo ortonormi-
ranu bazu v1, v2 ∈ R2

v1 = 1
||c||c = (1, 0),

b2 = d− (d | v1)v1 = d− v1 = (1, 1)− (1, 0) = (0, 1),

v2 = 1
||b2||b2 = (0, 1).

Primijenimo li pak Gram-Schmidtov postupak ortogonalizacije na vektore
d, c, dobivamo ortonormiranu bazu u1, u2

u1 = 1
||d||d = 1√

2
(1, 1),

b2 = c− (c | u1)u1 = c− 1√
2
u1 = (1, 0)− 1√

2
· 1√

2
(1, 1) = (1

2 ,−
1
2),

u2 = 1
||b2||b2 = 1√

2
(1,−1).

5.4. Zadatak. Gram-Schmidtov postupkom ortogonalizacije ortonor-
mirajte baze u R3:

(1) a1 = (1, 0, 0), a2 = (1, 1, 0), a3 = (1, 1, 1) i
(2) a1 = (1, 1, 1), a2 = (1, 1, 0), a3 = (1, 0, 0).
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5.5. Koordinatizacija n-dimenzionalnog unitaranog prostora.
Neka je V n-dimenzionalni unitarni prostor nad poljem K = R ili C. Prema
teoremu 5.2 postoji uredena ortonormirana baza B = (v1, . . . , vn) prostora
V . Ako je e1, . . . , en kanonska baza u Kn, onda je koordinatizacija

KB : V → Kn, KB : x =

n∑
i=1

ξivi 7→ xB =

n∑
i=1

ξiei

izomorfizam vektorskih prostora V i Kn. Štovǐse, za

x =

n∑
i=1

ξivi i y =

n∑
i=1

ηivi,

imamo

(x | y) = (

k∑
i=1

ξivi |
n∑
j=1

ηjvj) =

n∑
i=1

n∑
j=1

ξiηj(vi | vj) =
n∑
i=1

n∑
j=1

ξiηjδij =
n∑
i=1

ξiηi .

Znači da koordinatizacija KB čuva skalarni produkt u smislu

(x | y) = (KBx | KBy) = (xB | yB),

gdje je (x | y) skalarni produkt vektora u V , a (xB | yB) je kanonski skalarni
produkt vektora u Kn.

Znači da svaki n-dimenzionalni unitarni prostor nad poljem R izgleda
isto kao Rn s kanonskim skalarnim produktom, a svaki n-dimenzionalni uni-
tarni prostor nad poljem C izgleda isto kao Cn s kanonskim skalarnim pro-
duktom.

5.6. Parsevalova jednakost. Budući da su koordinate vektora u or-
tonormiranoj bazi Fourierovi koeficijenti dani formulom (4.1), formulu za
skalarni produkt (x | y) iz prethodnog dokaza možemo zapisati kao tzv.
Parsevalovu jednakost

(5.2) (x | y) =

n∑
i=1

(x | vi)(y | vi),

a za normu vrijedi

(5.3) ||x||2 =
n∑
i=1

|(x | vi)|2.

5.7. Besselova nejednakost. Ako je v1, . . . , vk ortonormirani skup u
V , vektor x u V i Q(x) kao u teoremu 5.1, onda je

(5.4) ||x||2 = ||Q(x)||2 +
k∑
i=1

|(x | vi)|2.
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Posebno, vrijedi Besselova nejednakost

(5.5)

k∑
i=1

|(x | vi)|2 ≤ ||x||2,

a jednakost vrijedi ako i samo ako je x ∈ 〈v1, . . . , vk〉.

Dokaz. Stavimo

P (x) = x−Q(x) =
k∑
i=1

(x | vi)vi.

Tada je po definiciji i teoremu 5.1

x = P (x) +Q(x), P (x) ⊥ Q(x),

pa je po Pitagorinom poučku

(5.6) ||x||2 = ||P (x)||2 + ||Q(x)||2.

Budući da je v1, . . . , vk ortonormirana baza od 〈v1, . . . , vk〉, to prema (5.3)
za P (x) ∈ 〈v1, . . . , vk〉 imamo

||P (x)||2 =
k∑
i=1

|(x | vi)|2,

pa jednakost (5.4) slijedi iz (5.6).
Ako u (5.5) vrijedi jednakost, onda iz (5.4) slijedi ||Q(x)|| = 0. No onda

je Q(x) = 0 i x = P (x) ∈ 〈v1, . . . , vk〉. Obratno, ako je x ∈ 〈v1, . . . , vk〉, onda
prema (4.1) imamo x = P (x), pa zbog (5.3) imamo jednakost u (5.5). �

5.8. Potpunost ortonormiranog skupa. Neka je v1, . . . , vn ortonor-
mirani skup vektora u unitarnom prostoru V . Tada je ekvivalentno:

(1) v1, . . . , vn je ortonormirana baza od V .
(2) Za sve x u V je

x =

n∑
i=1

(x | vi)vi.

(3) Za sve x u V vrijedi Besselova jednakost

||x||2 =

n∑
i=1

|(x | vi)|2.

(4) Za sve x i y u V vrijedi Parsevalova jednakost

(x | y) =
n∑
i=1

(x | vi)(y | vi).

Ortonormirani skup v1, . . . , vn za koji vrijedi jedno od ova četiri svojstva
zovemo potpunim ortonormiranim skupom.
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Dokaz. (1) povlači (4) jer vrijedi (5.2). (4) povlači (3) zbog definicije
norme. (3) povlači (2) zbog teorema 5.7 i (4.1). (2) povlači (1) jer po
pretpostavci v1, . . . , vn razapinje prostor, a ortonormirani skup jest linearno
nezavisan. �

6. Metoda najmanjih kvadrata

6.1. Teorem o projekciji. Neka je V unitaran prostor i neka je Y
konačno dimenzionalni potprostor. Tada za vektor x u V postoje jedinstveni
vektori P (x) u Y i Q(x) ⊥ Y takvi da je

x = P (x) +Q(x).

Dokaz. Po pretpostavci je Y konačno dimenzionalni potprostor, pa pre-
ma teoremu 5.2 postoji ortonormirana baza v1, . . . , vk od Y . Stavimo

P (x) =
k∑
i=1

(x | vi)vi, Q(x) = x− P (x).

Tada je x = P (x)+Q(x) traženi rastav jer je prema teoremu 5.1 Q(x) ⊥ Y .
Dokažimo jedinstvenost. Ako je x = P (x) +Q(x) = y+ u za neki y ∈ Y

i u ⊥ Y , onda je P (x)− y = u−Q(y) i vrijedi

P (x)− y ∈ Y i u−Q(x) ⊥ Y.
Odavle slijedi

u−Q(x) ⊥ u−Q(x),

što povlači u − Q(x) = 0, odnosno u = Q(x). No onda mora biti i y =
P (x). �

6.2. Teorem o najboljoj aproksimaciji. Neka je V unitaran prostor
i neka je Y konačno dimenzionalni potprostor. Tada za vektor x u V postoji
jedinstveni vektor P (x) u Y takav da je

||x− P (x)|| ≤ ||x− y|| za svaki y ∈ Y,
a jednakost vrijedi ako i samo ako je y = P (x).

Kažemo da je od svih vektora iz potprostora Y vektor P (x) najbolja
aproksimacija od x.

Dokaz. Po pretpostavci je Y konačno dimenzionalni potprostor, pa pre-
ma teoremu 5.2 postoji ortonormirana baza v1, . . . , vk od Y . Stavimo

P (x) =

k∑
i=1

(x | vi)vi, Q(x) = x− P (x).

Tada je po teoremu 5.1

Q(x) ⊥ P (x)− y ∈ Y,
pa je po Pitagorinom poučku

||x−y||2 = ||x−P (x)+P (x)−y||2 = ||x−P (x)||2+||P (x)−y||2 ≥ ||x−P (x)||2,
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a jednakost vrijedi ako i samo ako je ||P (x)−y|| = 0, odnosno P (x)−y = 0.
Budući da je ||x − P (x)|| < ||x − y|| za y 6= P (x), vektor P (x) ∈ Y mora
biti jedinstven. Stoga P (x) ne ovisi o izboru ortonormirane baze v1, . . . , vk
u Y . �

6.3. Primjer. Vektori

v1 = 1√
2
(1,−1, 0), v2 = 1√

3
(1, 1, 1)

čine ortonormirani skup u R3 i razapinju 2-dimenzionalni potprostor Y =
〈v1, v2〉. Za vektor

b = (−1,−2, 1)

je točka

P (b) = (b | v1)v1 + (b | v2)v2 = 1
2(1,−1, 0)− 2

3(1, 1, 1) = (−1
6 ,−

7
6 ,−

2
3)

najbolja aproksimacija od b točkama iz ravnine Y jer je za sve y iz Y

5√
6

= ||(−1,−2, 1)− (−1
6 ,−

7
6 ,−

2
3)|| ≤ ||(−1,−2, 1)− y||.

Vektor Q(b) = b − P (b) = (−1,−2, 1) − (−1
6 ,−

7
6 ,−

2
3) interpretiramo kao

vektor-okomicu na ravninu Y sa hvatǐstem u točki ravnine P (b) i završetkom
u točki b = Q(b) + P (b), a duljinu 5√

6
= ||Q(b)|| tog vektora interpretiramo

kao udaljenost točke b od ravnine Y .

6.4. Zadatak. Nadite udaljenost točke b od ravnine 〈v1, v2〉, gdje je

v1 = (1, 1, 1)/
√

3, v2 = (1, 1,−2)/
√

6, b = (1, 0, 1).

6.5. Metoda najmanjih kvadrata. Neka su dani vektori a1, . . . , an
u Rm i vektor b koji nije u linearnoj ljusci Y = 〈a1, . . . , an〉. Tada sistem od
m jednadžbi s n nepoznanica

Ax− b = a1ξ1 + · · ·+ anξn − b = 0

nema rješenja, a najbolje što možemo tražiti su takvi x = (ξ1, . . . , ξn) ∈ Rn
za koje je

||a1ξ1 + · · ·+ anξn − b||2 =

m∑
i=1

|αi1ξ1 + · · ·+ αinξn − βi|2

najmanje moguće. Ponekad taj problem zapisujemo kao

||a1ξ1 + · · ·+ anξn − b||2 −→ min .

Prema teoremu o najboljoj aproksimaciji rješenje tog problema su oni x ∈
Rn za koje je

(6.1) Ax = P (b),

gdje je P (b) najbolja aproksimacija od b vektorima iz Y . Budući da je
P (b) ∈ Y = 〈a1, . . . , an〉, sistem (6.1) uvijek ima rješenje x. Rješavanje
sistema (6.1) zovemo metodom najmanjih kvadrata.
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6.6. Sistem jednadžbi za metodu najmanjih kvadrata. Neka V
unitaran prostor, b vektor u V i Y = 〈a1, . . . , an〉 potprostor u V razapet
vektorima a1, . . . , an. Prema teoremu 6.1 postoji jedinstveni

P (b) = ξ1a1 + · · ·+ ξnan ∈ Y
takav da je

b− P (b) ⊥ Y.
To je, prema teoremu 4.1, ekvivalentno

(ξ1a1 + · · ·+ ξnan − b | ai) = 0 za sve i = 1, . . . , n,

ili, zapisano kao sistem jednadžbi,

(a1 | a1)ξ1 + (a2 | a1)ξ2 + · · ·+ (an | a1)ξn = (b | a1),

(a1 | a2)ξ1 + (a2 | a2)ξ2 + · · ·+ (an | a2)ξn = (b | a2),(6.2)

...

(a1 | an)ξ1 + (a2 | an)ξ2 + · · ·+ (an | an)ξn = (b | an).

Znači da koeficijente ξ1, . . . , ξn za najbolju aproksimaciju ξ1a1 + · · ·+ξnan =
P (b) možemo tražiti rješavanjem sistema jednadžbi (6.2).

6.7. Primjer. Vratimo se primjeru 6.3: zadan je ortonormirani skup

v1 = 1√
2
(1,−1, 0), v2 = 1√

3
(1, 1, 1)

u R3 i vektor

b = (−1,−2, 1),

a traži se najbolja aproksimacija od b u 2-dimenzionalnom potprostoru Y =
〈v1, v2〉. Da bismo učinili primjer zanimljivijim, stavimo

a1 =
√

2v1 +
√

3v2 = (2, 0, 1),

a2 =
√

3v2 = (1, 1, 1),

a3 =
√

2v1 −
√

3v2 = (0,−2,−1),

pa još uvijek imamo isti Y = 〈v1, v2〉 = 〈a1, a2, a3〉. Sada tražimo

P (b) = ξ1a1 + ξ2a2 + ξ3a3

rješavanjem sistema jednadžbi (6.2):

5ξ1 + 3ξ2 − ξ3 = −1,

3ξ1 + 3ξ2 − 3ξ3 = −2,

− ξ1 − 3ξ2 + 5ξ3 = 3.

Rješavanjem ovog sistema Gaussovom metodom eliminacija vidimo da sis-
tem nema jedinstveno rješenje. Lako se provjeri da je x = (3

6 ,−
7
6 , 0) jedno

rješenje, pa je

P (b) = 3
6a1 − 7

6a2 = 3
6(2, 0, 1)− 7

6(1, 1, 1) = (−1
6 ,−

7
6 ,−

4
6).
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6.8. Zadatak. Nadite udaljenost točke b od ravnine 〈a1, a2〉, gdje je

a1 = (1, 1, 1), a2 = (2, 2,−1), b = (1, 0, 1).

6.9. Primjer. Zamislimo si da eksperimentalno mjerimo veličine x i y
koje su vezane “zakonom”

y = Ax+B,

a na nama je odrediti koeficijente A i B. Recimo da smo za (x, y) redom
dobili (1, 2), (2, 3) i (3, 5). Tada sistem

A+B = 2,

2A+B = 3,

3A+B = 5,

nema rješenja i najbolje što možemo je da nepoznanice A i B odredimo
metodom najmanjih kvadrata. Sistem prvo zapǐsemo kao Aa1 + Ba2 = b,
tj.

A(1, 2, 3) +B(1, 1, 1) = (2, 3, 5) ili A

1
2
3

+B

1
1
1

 =

2
3
5

 .

a odgovarajući sistem (6.2) kao

(a1 | a1)A+ (a2 | a1)B = (b | a1),

(a1 | a2)A+ (a2 | a2)B = (b | a2).

To je u našem primjeru sistem

14A+ 6B = 23,

6A+ 3B = 10,

a rješenje tog sistema je A = 3
2 , B = 1

3 . Znači da je za taj izbor A i B suma
kvadrata

|A+B − 2|2 + |2A+B − 3|2 + |3A+B − 5|2

najmanja moguća. Nacrtajte pravac y = 3
2 x+ 1

3 i točke (1, 2), (2, 3) i (3, 5)
“dobivene mjerenjem”.

6.10. Zadatak. Metodom najmanjih kvadrata odredite koeficijente A
i B u “zakonu”

y = Ax+B,

gdje smo “mjerenjem” za (x, y) redom dobili (3, 7), (4, 10), (5, 11) i (6, 12).
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7. Teorem o projekciji

7.1. Ortogonalni komplement potprostora. Neka je V unitaran
prostor i Y potprostor od V . Tada je zbog linearnosti skalarnog produkta
u prvom argumentu

Y ⊥ = {x ∈ V | (x | y) = 0 za sve y ∈ Y }

potprostor od Y . Potprostor Y ⊥ zovemo ga ortogonalnim komplementom
od Y .

7.2. Suma potprostora. Neka su W i U potprostori od V . Skup svih
vektora

W + U = {w + u | w ∈W,u ∈ U}

zovemo sumom potprostora. Suma potprostora W + U je vektorski prostor.

Dokaz. Za vektore w,w′, w′′ ∈W i u, u′, u′′ ∈ U i skalar λ imamo

(w′+u′)+(w′′+u′′) = (w′+w′′)+(u′+u′′), λ(w+u) = λw+λu ∈W +U.

�

7.3. Ortogonalna suma potprostora. Neka su W i U potprostori od
V . Ako je W ⊥ U , onda W + U zovemo ortogonalnom sumom potprostora
i pǐsemo

W ⊕ U.

U tom slučaju imamo jedinstveni prikaz svakog elementa x ∈ W ⊕ U kao
sumu

x = w + u, w ∈W, u ∈ U.

Dokaz. Ako je w + u = w′ + u′ za neke w′ ∈W i u′ ∈ U , onda je

w − w′ = u′ − u

element iz W i U , pa okomitost W ⊥ U povlači

||w − w′||2 = (w − w′ | w − w′) = (w − w′ | u′ − u) = 0.

No tada zbog svojstva norme (3.3) mora biti w−w′ = 0, što povlači w′ = w,
a onda i u′ = u. �

Uz uvedenu terminologiju teorem 6.1 možemo iskazati na sljedeći način

7.4. Teorem o projekciji. Neka je V unitaran prostor i neka je Y
konačno dimenzionalni potprostor. Tada je

V = Y ⊕ Y ⊥.
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7.5. Teorem. Neka je V unitaran konačno dimenzionalni prostor i
neka je Y potprostor. Tada je

dimY + dim(Y ⊥) = dimV i (Y ⊥)⊥ = Y.

Dokaz. �

Neka je v1, . . . , vk ortonormirana baza u Y i u1, . . . , ur ortonormirana
baza u Y ⊥. Tada je v1, . . . , vk, u1, . . . , ur ortonormirani skup u V . Budući
da je po teoremu o projekciji svaki vektor x iz V suma vektora iz Y i Y ⊥,
to je x linearna kombinacija vektora v1, . . . , vk i vektora u1, . . . , ur. No to
onda znači da je skup

v1, . . . , vk, u1, . . . , ur
ortonormirana baza od V , pa je k + r = dimV . Nadalje, vektor

x =
k∑
i=1

(x | vi)vi +
r∑
j=1

(x | uj)uj

je okomit na Y ⊥ = 〈u1, . . . , ur〉 ako i samo ako su mu Fourierovi koeficijenti
(x | u1) = · · · = (x | ur) = 0, odnosno ako i samo ako je x ∈ 〈v1, . . . , vk〉 = Y .
Znači da je (Y ⊥)⊥ = Y .

7.6. Primjedba. Iz gornjeg teorema slijedi da se svaki potprostor W ⊂
Rn može napisati kao skup rješenja nekog homogenog sistema jednadžbi.
Naime,

W = (W⊥)⊥,

pa ako ortonormiranu bazu e1, . . . , ek od W nadopunimo do ortonormirane
baze e1, . . . , ek, ek+1, . . . , en od Rn, onda je

W = {x ∈ Rn | (x | ek+1) = · · · = (x | en) = 0}.

7.7. Zadatak. Napǐsite potprostor W = 〈a1, a2〉 kao skup rješenja ne-
kog homogenog sistema jednadžbi, pri čemu je

a1 = (1, 1, 0, 1), a2 = (0, 1, 1, 0).
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Površina, volumen i determinante

U ovom poglavlju proučavamo osnovna svojstva determinanti kvadrat-
nih matrica. Nakon induktivne definicije dokazujemo da je determinanta
multilinearna alternirajuća funkcija stupaca matrice i da je svaka multiline-
arna alternirajuća funkcija stupaca matrice proporcionalna determinanti. Iz
tog svojstva determinante slijedi Cramerovo pravilo o rješavanju kvadratnih
sistema jednadžbi, kao i računajne determinate pomoću elementarnih tran-
sformacija. Sva su razmatranja provedena za slučaj realnih brojeva, no osim
geometrijskih argumenata u prva dva paragrafa i geometrijske interpretacije
determinante kao volumena, sve ostale tvrdnje i dokazi vrijede jednako i za
kompleksne brojeve. Na kraju poglavlja pomoću determinante na 3× 3 ma-
tricama definiramo vektorski produkt u R3 i dokazujemo njegova osnovna
svojstva.

1. Površina paralelograma

1.1. Površina pravokutnika. Zamislimo si R2 kao euklidsku ravninu,
a kanonsku bazu e1, e2 kao jedinične vektore u Kartezijevom sustavu. Tada
je jedinični kvadrat (s vrhovima (0, 0), (1, 0), (0, 1), (1, 1)) skup svih vektora

{x ∈ R2 | x = λ1e1 + λ2e2, 0 ≤ λ1, λ2 ≤ 1},

a površina P (e1, e2) tog jediničnog kvadrata je 1. Slično, pravokutnik s
vrhovima (0, 0), (α, 0), (0, β)), (α, β) je skup svih vektora

(1.1) {x ∈ R2 | x = λ1αe1 + λ2βe2, 0 ≤ λ1, λ2 ≤ 1},

a površina tog pravokutnika

(1.2) P (αe1, βe2) = αβ

(baza α puta visina β). Ovdje pretpostavljamo α, β > 0. Za površinu
pravokutnika očito vrijede formule:

P (α1e1 + α2e1, βe2) = P (α1e1, βe2) + P (α2e1, βe2),(1.3)

P (µαe1, βe2) = µP (αe1, βe2),

P (αe1, β1e2 + β2e2) = P (αe1, β1e2) + P (αe1, β2e2),

P (αe1, µβe2) = µP (αe1, βe2).

123
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To su, za α1, α2, β1, β2, µ > 0, samo komplicirano zapisane formule

(α1 + α2)β = α1β + α2β,(1.4)

(µα)β = µ(αβ),

α(β1 + β2) = αβ1 + αβ2,

α(µβ) = µ(αβ).

Ako formulom (1.2) definiramo površinu pravokutnika za proizvoljne α, β ∈
R, onda još uvijek vrijedi (1.3) jer vrijedi (1.4) za sve α1, α2, β1, β2, µ ∈
R. Naravno, u tom slučaju dozvoljavamo i negativne površine, na primjer,
P (−e1, e2) = −1.

Primijetimo da sama definicija (1.1) pravokutnika ne igra nikakvu ulogu
u ovom razmatranju, bitna je samo definicija površine pravokutnika (1.2) !

1.2. Površina paralelograma. Ako su a, b ∈ R2, onda definiramo
paralelogram razapet vektorima a i b kao skup svih vektora

(1.5) {x ∈ R2 | x = λ1a+ λ2b, 0 ≤ λ1, λ2 ≤ 1}.

Naravno, dozvoljavamo i slučaj a = b kada je “paralelogram” razapet vek-
torima a i a zapravo dužina

(1.6) {x ∈ R2 | x = λa, 0 ≤ λ ≤ 2}.

Iz euklidske geometrije znamo računati površinu paralelograma: to je baza
puta visina. Zato je razumno pretpostaviti da svakom paru vektora (a, b) ∈
R2 × R2 možemo pridružiti površinu P (a, b) ∈ R tako da vrijedi

P (a1 + a2, b) = P (a1, b) + P (a2, b), P (µa, b) = µP (a, b),(1.7)

P (a, b1 + b2) = P (a, b1) + P (a, b2), P (a, µb) = µP (a, b).

Naime, jasno je da µ puta duže stranica daje µ puta veću površinu, a geome-
trijski možemo interpretirati i jednakost P (a1 + a2, b) = P (a1, b) + P (a2, b)
(nacrtajte sliku!).

Te su formule u potpunosti u skladu s formulama za površinu pravokut-
nika (1.3). Medutim, površine dužine (1.6) u euklidskoj ravnini mora biti
nula, tj.

P (a, a) = 0,

što ne slijedi iz svojstava (1.7).

1.3. Definicija. Kažemo da je funkcija

P : R2 × R2 → R, (a, b) 7→ P (a, b),
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površina paralelograma ako za sve a, a1, a2, b, b1, b2 ∈ R2 i µ ∈ R vrijedi

P (a1 + a2, b) = P (a1, b) + P (a2, b), P (µa, b) = µP (a, b),(1)

P (a, b1 + b2) = P (a, b1) + P (a, b2), P (a, µb) = µP (a, b),(2)

P (a, a) = 0,(3)

P (e1, e2) = 1.(4)

U ovoj definiciji relacije (1) zovemo linearnost od P u prvom argumentu,
a relacije (2) zovemo linearnost od P u drugom argumentu. Budući da je P
linearno u oba argumenta, kažemo da je P bilinearno.

1.4. Linearnost u prvom argumentu funkcije P povlači (dokažite
indukcijom!)

P

(
n∑
i=1

λiai, b

)
=

n∑
i=1

λiP (ai, b),

pa imamo formulu koja sliči distributivnosti množenja s desna (ele-
mentom b) u odnosu na zbrajanje (elemenata λiai). Naime, ako pǐsemo
a • b = P (a, b), onda imamo:(

n∑
i=1

λiai

)
• b =

n∑
i=1

λi(ai • b).

1.5. Linearnost u drugom argumentu funkcije P povlači

P

a, m∑
j=1

µjbj

 =

m∑
j=1

µjP (a, bj)

pa imamo formulu koja sliči distributivnosti množenja s lijeva (ele-
mentom a) u odnosu na zbrajanje (elemenata µjbj). Naime, ako pǐsemo
a • b = P (a, b), onda imamo:

a •

 m∑
j=1

µjbj

 =

m∑
j=1

µj(a • bj).

1.6. Bilinearnost funkcije P povlači

P

 n∑
i=1

λiai,

m∑
j=1

µjbj

 =

n∑
i=1

λiP

ai, m∑
j=1

µjbj


=

n∑
i=1

λi

m∑
j=1

µjP (ai, bj) =
m∑
j=1

n∑
i=1

λiµjP (ai, bj) ,

pa imamo formulu koja sliči pravilu množenja “svaki sa svakim” ele-
menta λiai s elementima µjbj . Naime, ako pǐsemo a • b = P (a, b), onda



126 6. POVRŠINA, VOLUMEN I DETERMINANTE

imamo: (
n∑
i=1

λiai

)
•

 m∑
j=1

µjbj

 =

m∑
j=1

n∑
i=1

λiµj(ai • bj).

1.7. Lema. Za bilinearno preslikavanje P je ekvivalentno1

(1) P (a, a) = 0 za svaki a ∈ R2,
(2) P (a, b) = −P (b, a) za sve a, b ∈ R2.

Dokaz. (1) ⇒ (2). Zaista, zbog (1) i bilinearnosti imamo

0 = P (a+ b, a+ b) = P (a, a) + P (b, a) + P (a, b) + P (b, b) = P (b, a) + P (a, b).

(2) ⇒ (1). Zaista, za a = b relacija P (a, b) +P (b, a) = 0 povlači 2P (a, a) =
0, pa imamo P (a, a) = 0. �

Zbog svojstva P (a, b) = −P (b, a) bilinearnu funkciju P zovemo alterni-
rajućom ili antisimetričnom.

1.8. Teorem. Površina paralelograma P : R2×R2 → R postoji i jedins-
tvena je.

Dokaz. Pretpostavimo da površina paralelograma postoji. Tada za

a = α1e1 + α2e2 i b = β1e1 + β2e2

imamo

P (a, b) = P (α1e1 + α2e2, β1e1 + β2e2)

= α1β1P (e1, e1) + α1β2P (e1, e2) + α2β1P (e2, e1) + α2β2P (e2, e2)

= α1β2P (e1, e2) + α2β1P (e2, e1)

= α1β2P (e1, e2)− α2β1P (e1, e2)

= α1β2 − α2β1.

Ovdje druga jednakost slijedi množenjem svakog sa svakim, treća jednakost
vrijedi zbog P (e1, e1) = P (e2, e2) = 0, četvrta zbog P (e2, e1) = −P (e1, e2),
peta zbog P (e1, e2) = 1. Budući da je prikaz vektora a i b u kanonskoj bazi
jedinstven, to imamo jednu jedinu mogućnost za površinu P :

(1.8) P (a, b) = α1β2 − α2β1.

Da bismo dokazali egzistenciju površine, jednostavno je definiramo for-
mulom (1.8) i provjerimo da tako definirana funkcija ima tražena svojstva.
Na primjer,

1Naše polje je R. Tvrdnja leme vrijedi i za polje K = C i bilinearnu funkciju P : C2×
C2 → C, ali ne i za polje K = Z/2Z i bilinearnu funkciju P : K2 ×K2 → K! Zašto?
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P (a+ a′, b) = (α1 + α′1)β2 − (α2 + α′2)β1 = P (a, b) + P (a′, b),

P (λa, b) = (λα1)β2 − (λα2)β1 = λP (a, b),

P (a, b) = α1β2 − α2β1 = −(β1α2 − β2α1) = −P (b, a),

P (e1, e2) = 1 · 1− 0 · 0 = 0.

�

1.9. Determinanta 2 × 2 matrice. Jedinstvenu površinu paralelo-
grama zovemo determinantom 2× 2 matrice i pǐsemo

det (a, b) = α1β2 − α2β1

ili

det

(
α1 β1

α2 β2

)
= det

((
α1

α2

)
,

(
β1

β2

))
= α1β2 − α2β1.

1.10. Primjer paralelograma iste površine. Nacrtajte u ravnini,
za razne λ ∈ R, paralelograme s vrhovima (0, 0), (2, 0), (λ, 1), (2 + λ, 1). Ti
paralelogrami imaju iste baze duljine 2 i iste visine 1, pa i iste površine 2 ·1.
Funkcija det “računa”

det

(
2 0
0 1

)
= det

(
2 λ
0 1

)
= 2.

Interpretirajte geometrijski formule2

det

(
2 0
0 1

)
= det

(
2 0
µ 1

)
= 2, det

(
cosϕ − sinϕ
sinϕ cosϕ

)
= 1.

1.11. Slučaj nul-stupca. Geometrijski je jasno da je det(a, 0) =
det(0, b) = 0. Prva formula slijedi algebarski iz linearnosti funkcije det u
drugom argumentu. Naime,

det(a, 0) = det(a, 0 + 0) = det(a, 0) + det(a, 0),

a to povlači det(a, 0) = 0. Formula det(0, b) = 0 vrijedi zbog linearnosti
funkcije det u prvom argumentu.

2. Volumen paralelepipeda

2.1. Volumen kvadra i paralelepipeda. Zamislimo si R3 kao euk-
lidski trodimenzionalni prostor, a kanonsku bazu e1, e2, e3 kao jedinične vek-
tore u Kartezijevom sustavu. Tada je volumen V (e1, e2, e3) te jedinične
kocke jednak 1. Slično, kvadar sa stranicama αe1, βe2, γe3 ima volumen

(2.1) V (αe1, βe2, γe3) = αβγ.

2Za funkcije sin i cos vrijedi cos2 ϕ+ sin2 ϕ = 1.
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Geometrijski je jasno značenje formula:

(α1 + α2)βγ = α1βγ + α2βγ, (µα)βγ = µ(αβγ),(2.2)

α(β1 + β2)γ = αβ1γ + αβ2γ, α(µβ)γ = µ(αβγ),

αβ(γ1 + γ2) = αβγ1 + αβγ2, αβ(λγ) = λ(αβγ).

Paralelepiped razapet vektorima a, b, c ∈ R3 definiramo kao skup oblika

(2.3) {x ∈ R3 | x = λ1a+ λ2b+ λ3c, 0 ≤ λ1, λ2, λ3 ≤ 1}.
Naravno, dozvoljavamo i slučaj b = a kada je “paralelepiped” razapet vek-
torima a, a i c zapravo paralelogram

(2.4) {x ∈ R2 | x = λa+ µc, 0 ≤ λ ≤ 2, 0 ≤ µ ≤ 1}.
Iz euklidske geometrije znamo računati volumen paralelepipeda: to je povr-
šina baze puta visina. Zato je razumno pretpostaviti da svakoj trojki vektora
(a, b, c) ∈ R3 × R3 × R3 možemo pridružiti volumen V (a, b, c) ∈ R tako da
vrijedi

V (a1 + a2, b, c) = V (a1, b, c) + V (a2, b, c), V (µa, b, c) = µV (a, b, c),(2.5)

V (a, b1 + b2, c) = V (a, b1, c) + V (a, b2, c), V (a, µb, c) = µV (a, b, c),

V (a, b, c1 + c2) = V (a, b, c1) + V (a, b, c2), V (a, b, µc) = µV (a, b, c).

Naime, jasno je da µ puta duža stranica daje µ puta veći volumen, a ge-
ometrijski možemo interpretirati i jednakost V (a1 + a2, b, c) = V (a1, b, c) +
V (a2, b, c) (nacrtajte sliku).

Te su formule u potpunosti u skladu s formulama za volumen kvadra
(2.2). Medutim, volumen paralelograma (2.4) u ravnini trodimenzionalnog
prostora mora biti nula, tj.

V (a, a, c) = 0,

što ne slijedi iz svojstava (2.5).

2.2. Definicija. Kažemo da je funkcija

V : R3 × R3 × R3 → R, (a, b, c) 7→ V (a, b, c),

volumen paralelepipeda ako za sve a, a1, a2, b, b1, b2, c, c1, c2 ∈ R3 i µ ∈ R
vrijedi

V (a1 + a2, b, c) = V (a1, b, c) + V (a2, b, c), V (µa, b, c) = µV (a, b, c),(1)

V (a, b1 + b2, c) = V (a, b1, c) + V (a, b2, c), V (a, µb, c) = µV (a, b, c),(2)

V (a, b, c1 + c2) = V (a, b, c1) + V (a, b, c2), V (a, b, µc) = µV (a, b, c),(3)

V (a, a, c) = 0, V (a, b, a) = 0, V (a, b, b) = 0,(4)

V (e1, e2, e3) = 1.(5)

U ovoj definiciji relacije (1) zovemo linearnost od V u prvom argumentu,
relacije (2) zovemo linearnost od V u drugom argumentu, a relacije (3) zo-
vemo linearnost od V u trećem argumentu. Budući da je V linearno u sva tri
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argumenta, kažemo da je V trilinearno. Svojstvo trilinearnosti treba shvatiti
kao poopćenje svojstva množenja brojeva (2.2).

2.3. Trilinearnost za vǐsestruke sume. Trilinearnost povlači

V

 n∑
i=1

λiai,

m∑
j=1

µjbj ,

p∑
k=1

νkck

 =

n∑
i=1

λiV

ai, m∑
j=1

µjbj ,

p∑
k=1

νkck


=

n∑
i=1

λi

m∑
j=1

µjV

(
ai, bj ,

p∑
k=1

νkck

)
=

n∑
i=1

λi

m∑
j=1

µj

p∑
k=1

νkV (ai, bj , ck)

=

p∑
k=1

m∑
j=1

n∑
i=1

λiµjνkV (ai, bj , ck) ,

pa imamo formulu koja sliči pravilu množenja “svaki sa svakim” ele-
menata λiai, elemenata µjbj i elemenata νkck. Naime, ako pǐsemo a• b• c =
V (a, b, c), onda imamo(

n∑
i=1

λiai

)
•

 m∑
j=1

µjbj

 •( p∑
k=1

νkck

)
=

p∑
k=1

m∑
j=1

n∑
i=1

λiµjνk(ai • bj • ck).

Tu formulu trebamo shvatiti kao poopćenje pravila množenja “svaki sa sva-
kim” za produkte vǐsestrukih suma brojeva(

n∑
i=1

λi

) m∑
j=1

µj

( p∑
k=1

νk

)
=

p∑
k=1

m∑
j=1

n∑
i=1

λiµjνk.

2.4. Lema. Za trilinearno preslikavanje V je ekvivalentno:

(1) V (a, a, c) = 0 za svaki a ∈ R2,
(2) V (a, b, c) = −V (b, a, c) za sve a, b ∈ R2.

Dokaz. (1) ⇒ (2). Zaista, zbog (1) i trilinearnosti imamo

0 = V (a+ b, a+ b, c) = V (a, a, c) + V (b, a, c) + V (a, b, c) + V (b, b, c)

= V (b, a, c) + V (a, b, c).

(2) ⇒ (1). Zaista, za a = b relacija V (a, b, c) + V (b, a, c) = 0 povlači
2V (a, a, c) = 0, pa imamo V (a, a, c) = 0. �

Primijetimo da je ovaj dokaz u suštini prepisani dokaz leme 1.7. Narav-
no, na isti način vidimo da je V (a, b, a) = 0 za sve a ekvivalentno V (a, b, c) =
−V (c, b, a) za sve a i c. Zbog svojstva

V (a, b, c) = −V (b, a, c), V (a, b, c) = −V (c, b, a), V (a, b, c) = −V (a, c, b),

trilinearnu funkciju V zovemo alternirajućom.



130 6. POVRŠINA, VOLUMEN I DETERMINANTE

2.5. Teorem. Volumen paralelepipeda V : R3 × R3 × R3 → R postoji i
jedinstven je.

Dokaz. Pretpostavimo da volumen paralelepipeda postoji. Tada za

a =
3∑
i=1

αiei, b =
3∑
j=1

βjej , c =
3∑

k=1

γkek,

imamo

V (a, b, c) = V

 3∑
i=1

αiei,
3∑
j=1

βjej ,
3∑

k=1

γkek


=

3∑
i,j,k=1

αiβjγkV (ei, ej , ek)

=
∑

{i,j,k}={1,2,3}

αiβjγkV (ei, ej , ek)

=
∑
σ

ασ(1)βσ(2)γσ(3)V (eσ(1), eσ(2), eσ(3))

=
∑
σ

ασ(1)βσ(2)γσ(3)(−1)σV (e1, e2, e3)

=
∑
σ

(−1)σασ(1)βσ(2)γσ(3)

= α1β2γ3 − α1β3γ2 − α2β1γ3

+ α2β3γ1 + α3β1γ2 − α3β2γ1.

Ovdje druga jednakost slijedi množenjem svakog sa svakim, primijetimo
da se u sumi javljaju i članovi poput α1β1γ3V (e1, e1, e3), a koji je nula
zbog V (e1, e1, e3) = 0. Suma

∑
{i,j,k}={1,2,3} označava da uzimamo samo

indekse i, j, k koji su medosobno različiti. Budući da za indekse i, j, k koji
nisu medosobno različiti V (ei, ej , ek) = 0, treća jednakost vrijedi. Suma

∑
σ

označava sumu po svim permutacijama skupa {1, 2, 3}. Budući da su za
permutaciju σ indeksi i = σ(1), j = σ(2) i k = σ(3) medosobno različiti,
to četvrta jednakost vrijedi jer smo samo malo drugačije zapisali sumu po
medusobno različitim indeksima i, j, k. Oznaka (−1)σ = ±1 je definirana
relacijom

(−1)σV (e1, e2, e3) = V (eσ(1), eσ(2), eσ(3)).

Na primjer, V (e1, e3, e2) = −V (e1, e2, e3), pa je (−1)σ = −1 za permutaciju
σ(1) = 1, σ(2) = 3, σ(3) = 2. Zato po definiciji vrijedi peta jednakost. Šesta
jednakost vrijedi zbog V (e1, e3, e2) = 1, a sedma jednakost daje formulu za
(−1)σασ(1)βσ(2)γσ(3) za sve permutacije σ.

Budući da je prikaz vektora a, b i c u kanonskoj bazi jedinstven, to
imamo jednu jedinu mogućnost za volumen V :

(2.6) V (a, b, c) = α1β2γ3 − α1β3γ2 − α2β1γ3 + α2β3γ1 + α3β1γ2 − α3β2γ1.
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Da bismo dokazali egzistenciju volumena V , jednostavno ga definiramo for-
mulom (2.6) i provjerimo da tako definirana funkcija ima sva tražena svoj-
stva. �

2.6. Determinanta 3 × 3 matrice. Jedinstveni volumen paralelepi-
peda zovemo determinantom 3× 3 matrice i pǐsemo

det (a, b, c) = α1β2γ3 − α1β3γ2 − α2β1γ3 + α2β3γ1 + α3β1γ2 − α3β2γ1,

ili

det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 = det

α1

α2

α3

 ,

β1

β2

β3

 ,

γ1

γ2

γ3

 = det (a, b, c).

Formulu za determinantu 3 × 3 matrice možemo zapamtiti po Sarrusovom
pravilu: napǐsemo matricu

α1 β1 γ1 α1 β1

α2 β2 γ2 α2 β2

α3 β3 γ3 α3 β3

i zbrajamo produkte po “glavnim dijagonalama” i oduzimamo produkte po
“sporednim dijagonalama”:

α1β2γ3 + β1γ2α3 + γ1α2β3 − α3β2γ1 − β3γ2α1 − γ3α2β1.

2.7. Zadatak. Dokažite da je determinata transponirane 3×3 matrice
At jednaka determinanti početne matrice A, tj.

det

α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

 = det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 .

2.8. Laplaceov razvoj 3×3 determinante. Sarrusovo pravilo vrijedi
samo za determinante matrica tipa 3×3. Pravilo koje vrijedi općenito je tzv.
Laplaceov razvoj determinante. Na primjer, Laplaceov razvoj determinante
matrice tipa 3× 3 po trećem stupcu je

det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 = γ1 det

(
α2 β2

α3 β3

)
−γ2 det

(
α1 β1

α3 β3

)
+γ3 det

(
α1 β1

α2 β2

)
,

a Laplaceov razvoj determinante po prvom retku je

det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 = α1 det

(
β2 γ2

β3 γ3

)
−β1 det

(
α2 γ2

α3 γ3

)
+γ1 det

(
α2 β2

α3 β3

)
.

Općenito je Laplaceov razvoj po nekom stupcu (ili retku) suma elemenata
u tom stupcu (odnosno retku) množenih determinantama 2 × 2 matrica
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dobivenih brisanjem retka i stupca u kojem se element nalazi, a predznaci
se biraju po pravilu + − +

− + −
+ − +

 .

2.9. Napomena. Ponekad pravilo o Laplaceovom razvoju koristimo za
preglednije zapisivanje formula. Na primjer, ako su G1, G2 i G3 vektori i
αi, βi ∈ R za i = 1, 2, 3, onda izraz

(α2β3 − α3β2)G1 − (α1β3 − α3β1)G2 + (α1β2 − α2β1)G3

kraće zapisujemo kao

det

α1 β1 G1

α2 β2 G2

α3 β3 G3

 ,

misleći pritom da treba primijeniti formulu (kao što je ona) za Laplaceov
razvoj determinante po trećem stupcu.

3. Determinanta kvadratne matrice

3.1. Determinanta 1 × 1 matrice. Determinanta 1 × 1 matrice α11

je sam taj broj α11.

3.2. Determinanta 2×2 matrice. Determinanta 2×2 matrice je broj

det

(
α11 α12

α21 α22

)
= α11α22 − α12α21.

3.3. Primjer.

det

(
0 1
2 1

)
= 0 · 1− 1 · 2 = −2, det

(
−1 1
2 1

)
= −1 · 1− 1 · 2 = −3.

3.4. Zadatak. Izračunajte det

(
−1 1
0 1

)
i det

(
i
√

2
0 −i

)
.

3.5. Determinanta 3×3 matrice. Determinanta 3×3 matrice je broj

det

α11 α12 α13

α21 α22 α23

α31 α32 α33


= α11 det

(
α22 α23

α32 α33

)
− α12 det

(
α21 α23

α31 α33

)
+ α13 det

(
α21 α22

α31 α32

)
.

3.6. Primjer.

det

1 −1 1
2 0 1
3 2 1

 = det

(
0 1
2 1

)
− (−1) det

(
2 1
3 1

)
+ det

(
2 0
3 2

)
= 1.
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3.7. Zadatak. Izračunajte det

−1 1 1
0 1 2
2 1 3

.

3.8. Zadatak. Pokažite da se definicija 3.5 determinante 3× 3 matrice
podudara s definicijom iz točke 2.6.

3.9. Oznake za brisanje stupaca i redaka matrice. Neka je A =
(αij) matrica tipa n × n, zapisana po stupcima kao A = (a1, . . . , an). Za
proizvoljne indekse j, k ∈ {1, . . . , n} označimo s

Ajk = (a
(k)
1 , . . . , a

(k)
j−1, a

(k)
j+1, . . . , a

(k)
n )

matricu tipa (n − 1) × (n − 1) dobivenu od matrice A brisanjem j-tog
stupca i k-tog retka u matrici A. Posebno, u matrici Ajk nema

matričnog elementa αkj . Naša oznaka a
(k)
1 znači da je u prvom stupcu

a1 brisana k-ta koordinata. Matricu Ajk možemo zapisati kao

α11 α12 . . . ∅j . . . α1n

α21 α22 . . . ∅j . . . α2n
...

...
...

...
∅k ∅k . . . ∅kj . . . ∅k
...

...
...

...
αn1 αn2 . . . ∅j . . . αnn


,

gdje smo s oznakom ∅ za prazan skup naznačili da je izostavljen j-ti stupac
i k-ti redak iz matrice A. Na primjer,

A =


4 100 2 3
1 200 −1 2

200 100 300 600
7 100 2 5

 , A23 =

4 2 3
1 −1 2
7 2 5

 .

3.10. Determinanta n× n matrice. Determinanta n× n matrice
A = (αij) je broj

detA =

n∑
j=1

(−1)1+jα1j detAj1.

U ovoj induktivnoj definiciji determinante n × n matrice A koristimo (po
pretpostavci već definirane) determinante (n − 1) × (n − 1) matrica Aj1
dobivenih brisanjem j-tog stupca i prvog retka u matrici A. Formulu
si možemo bolje predočiti ako pǐsemo

(3.1) detA =
n∑
j=1

(−1)1+jα1j det(a
(1)
1 , . . . , a

(1)
j−1, a

(1)
j+1, . . . , a

(1)
n ).

Takoder valja uočiti da sumiramo po svim elementima prvog retka matrice
A i da predznaci u (−1)1+jα1j alterniraju

α11, −α12, α13, −α14, . . . , (−1)1+nα1n.
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Valja primijetiti da je definicija za n = 2 i 3 u skladu s općom definicijom
determinante n× n matrice.

3.11. Zadatak. Računanjem pokažite da je det


0 −1 1 1
5 5 5 5
0 0 1 2
0 2 1 3

 = −5.

3.12. Determinanta jedinične matrice.

det I = det(e1, . . . , en) = 1.

Dokaz. Tvrdnju dokazujemo indukcijom po n. Za n = 1 tvrdnja je
očita. Takoder je očito da brisanjem prvog retka i prvog stupca u jediničnoj
n × n matrici In dobivamo jediničnu (n − 1) × (n − 1) matricu In−1, pa iz
definicije slijedi

det In = 1 · det In−1 = 1 · 1 = 1.

�

3.13. Zadatak. Dokažite formulu za determinantu donje trokutaste
matrice

det


α11 0 . . . 0
α21 α22 . . . 0

...
...

...
αn1 αn2 . . . αnn

 = α11α22 . . . αnn.

4. Osnovni teorem o determinanti

4.1. Linearne funkcije. Za funkciju

g : Rn → R, x 7→ g(x)

kažemo da je linearna funkcija na Rn ako za sve vektore x, x′, x′′ ∈ Rn i
skalare λ ∈ R vrijedi svojstvo linearnosti

(4.1) g(x′ + x′′) = g(x′) + g(x′′), g(λx) = λg(x).

Općenitije, za preslikavanje

g : Rn → Rm, x 7→ g(x)

kažemo da je linearno preslikavanje sa Rn u Rm ako za sve vektore x, x′, x′′ ∈
Rn i skalare λ ∈ R vrijedi svojstvo linearnosti (4.1).

4.2. Napomena. Kompozicija linearnih preslikavanja g i f je linearno
preslikavanje jer očito vrijedi

f(g(x′ + x′′)) = f(g(x′) + g(x′′)) = f(g(x′)) + f(g(x′′)),

f(g(λx)) = f(λg(x)) = λf(g(x)).

4.3. Napomena. Za linearnu funkciju g vrijedi g(0) = 0 jer je

g(0) = g(0 + 0) = g(0) + g(0).
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4.4. Determinanta na skupu n× n matrica. Matrice tipa n× n su
po definiciji n-torke (a1, . . . , an) vektora a1, . . . , an ∈ Rn, pa skup svih n×n
matrica označavamo kao Kartezijev produkt

Rn × · · · × Rn = (Rn)n.

Determinanta je funkcija

det : (Rn)n → R, (a1, . . . , an) 7→ det(a1, . . . , an)

koja svakoj matrici A = (a1, . . . , an) pridružuje broj detA. Ako želimo
naglasiti o kojoj funkciji det govorimo napisat ćemo det n.

4.5. Multilinearne funkcije. Za funkciju

f : (Rn)n → R, (a1, . . . , an) 7→ f(a1, . . . , an)

kažemo da je linearna u i-toj varijabli (argumentu) ako je za svaki niz od
n− 1 vektora a1, . . . , ai−1, ai+1, . . . , an funkcija

x 7→ g(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an)

linearna funkcija na Rn, tj. vrijedi svojstvo linearnosti (4.1). Kažemo da je
funkcija n-linearna ili multilinearna funkcija ako je linearna u i-toj varijabli
za svaki indeks i = 1, . . . , n. Očito je 1-linearna funkcija linearna funkcija,
a u slučaju 2-linearne funkcije govorimo o bilinearnoj funkciji.

4.6. Napomena. Budući da za linearnu funkciju g vrijedi g(0) = 0, to
za multilinearnu funkciju f vrijedi

f(a1, . . . , ai−1, 0, ai+1, . . . , an) = 0.

4.7. Lema. Determinanta je multilinearna funkcija.

Dokaz. Tvrdnju dokazujemo indukcijom po n. Za n = 1 tvrdnja očito
vrijedi. Pretpostavimo da tvrdnja leme vrijedi za n− 1 ≥ 1, tj. da je

det n−1 : (Rn−1)n−1 → R

multilinearna funkcija. Neka je indeks i ∈ {1, . . . , n} i neka su dani vektori

a1, . . . , ai−1, ai+1, . . . , an u Rn. Kao u točki 3.9 označimo s x(1) vektor u
Rn−1 dobiven iz vektora x u Rn brisanjem prve koordinate ξ1. Tada je
preslikavanje

x 7→ x(1)

linearno preslikavanje s Rn u Rn−1. Iz toga slijedi da je za j > i kompozicija

x 7→ x(1) 7→ det n−1(a
(1)
1 , . . . , a

(1)
i−1, x

(1), a
(1)
i+1, . . . , a

(1)
j−1, a

(1)
j+1, . . . , a

(1)
n )

linearna funkcija jer je det n−1 linearna u i-toj varijabli, a a za j < i je
kompozicija

x 7→ x(1) 7→ det n−1(a
(1)
1 , . . . , a

(1)
j−1, a

(1)
j+1, . . . , a

(1)
i−1, x

(1), a
(1)
i+1, . . . , a

(1)
n )
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linearna funkcija jer je det n−1 linearna u (i− 1)-toj varijabli. No onda i za
sumu

x 7→ g(x) =
∑
j 6=i

(−1)1+jα1j det n−1(a
(1)
1 , . . . , a

(1)
i−1, x

(1), a
(1)
i+1, . . . , a

(1)
n )

vrijedi svojstvo linearnosti (4.1). U definiciji determinante (3.1) imamo još
i član za j = i

x 7→ (−1)1+iξ1 det n−1(a
(1)
1 , . . . , a

(1)
i−1, a

(1)
i+1, . . . , a

(1)
n )

za koji očito vrijedi svojstvo linearnosti. Znači da je

x 7→ det(a1, . . . , ai−1, x, ai+1, . . . , an)

linearna funkcija. �

4.8. Zadatak. Dokažite formulu za determinantu gornje trokutaste ma-
trice

det


α11 α12 . . . α1n

0 α22 . . . α2n
...

...
...

0 0 . . . αnn

 = α11α22 . . . αnn.

4.9. Alternirajuće multilinearne funkcije. Za multilinearnu funk-
ciju

f : (Rn)n → R, (a1, . . . , an) 7→ f(a1, . . . , an)

kažemo da je alternirajuća ako za sve n-torke vektora a1, . . . , an i sve parove
indeksa i < j vrijedi

(4.2)
f(a1, . . . , ai−1, ai, ai+1, . . . , aj−1, aj , aj+1, . . . , an)

= −f(a1, . . . , ai−1, aj , ai+1, . . . , aj−1, ai, aj+1, . . . , an).

Obično (neprecizno) kažemo da zamjenom mjesta dvaju vektora u alter-
nirajućoj funkciji mijenjamo predznak. Kopirajući dokaze lema 1.7 i 2.4
vidimo da je uvjet (4.2) za sve vektore ai, aj ∈ Rn ekvivalentan uvjetu

(4.3) f(a1, . . . , ai−1, a, ai+1, . . . , aj−1, a, aj+1, . . . , an) = 0

za sve vektore a ∈ Rn.

4.10. Napomena. Valja primijetiti da je svojstvo (4.2) alternirajuće
funkcije, ili njemu ekvivalentno svojstvo (4.3), dovoljno provjeriti za sve
susjedne parove indeksa k < k + 1 jer nam je potreban neparan broj (j −
i)+(j−i−1) zamjena susjednih stupaca da bismo zamijenili mjesta stupcima
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ai i aj :

(. . . , ai−1, ai, ai+1, . . . , aj−1, aj , aj+1, . . . )

7→(. . . , ai−1, ai+1, ai, . . . , aj−1, aj , aj+1, . . . )

...

7→(. . . , ai−1, ai+1, ai+2, . . . , ai, aj , aj+1, . . . )

7→(. . . , ai−1, ai+1, ai+2, . . . , aj , ai, aj+1, . . . )

...

7→(. . . , ai−1, ai+1, aj , . . . , aj−1, ai, aj+1, . . . )

7→(. . . , ai−1, aj , ai+1, . . . , aj−1, ai, aj+1, . . . ).

Na primjer, za par indeksa 1 < 4 trebamo 3 + 2 zamjene susjednih stupaca

(a1, a2, a3, a4)

7→(a2, a1, a3, a4)

7→(a2, a3, a1, a4)

7→(a2, a3, a4, a1)

7→(a2, a4, a3, a1)

7→(a4, a2, a3, a1).

4.11. Lema. Determinanta je alternirajuća multilinearna funkcija.

Dokaz. Tvrdnju dokazujemo indukcijom po n ≥ 2. Za n = 2 imamo

det

(
α11 α12

α21 α22

)
= α11α22 − α12α21 = −det

(
α12 α11

α22 α21

)
.

Pretpostavimo da tvrdnja leme vrijedi za n−1. Prema prethodnoj napomeni
dovoljno je dokazati svojstvo (4.3) za sve susjedne parove indeksa i < i+ 1
i vektore a. Po definiciji (3.1) imamo

det(a1, . . . , ai−1, a, a, ai+2, . . . , an) =∑
j<i

(−1)1+jα1j det n−1(a
(1)
1 , . . . , a

(1)
j−1, a

(1)
j+1, . . . , a

(1)
i−1, a

(1), a(1), a
(1)
i+2, . . . , a

(1)
n )

+ (−1)1+iα1 det n−1(a
(1)
1 , . . . , a

(1)
i−1, a

(1), a
(1)
i+2, . . . , a

(1)
n )

(−1)1+i+1α1 det n−1(a
(1)
1 , . . . , a

(1)
i−1, a

(1), a
(1)
i+2, . . . , a

(1)
n )+∑

j>i+1

(−1)1+jα1j det n−1(a
(1)
1 , . . . , a

(1)
i−1, a

(1), a(1), a
(1)
i+2, . . . , a

(1)
j−1, a

(1)
j+1, . . . , a

(1)
n )

= 0,

pri čemu su prva i zadnja suma jednake nuli jer se u alternirajućoj funkciji
detn−1 isti vektor a(1) javlja u dva argumenta, a dva sumanda za j = i, i+ 1
se krate jer je (−1)1+i + (−1)1+i+1 = 0. �
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4.12. Lema. Neka je g : (Rn)n → R multilinearna alternirajuća funk-
cija. Ako je niz vektora (a′1, . . . , a

′
n) dobiven uzastopnom primjenom ele-

mentarnih transformacija iz niza (a1, . . . , an), onda postoji µ 6= 0 takav da
je

g(a1, . . . , an) = µg(a′1, . . . , a
′
n).

Dokaz. Dovoljno je dokazati tvrdnju u slučaju elementarne transfor-
macije

(a1, . . . , an) 7→ (a′1, . . . , a
′
n).

U slučaju elementarne transformacije zamjene mjesta dvama vektorima ima-
mo µ = −1 6= 0 jer je g alternirajuća. U slučaju elementarne transformacije
množenja i-tog vektora skalarom λ 6= 0 imamo µ = 1/λ 6= 0 jer je g linearna
u i-tom argumentu. U slučaju elementarne transformacije dodavanja λai
vektoru aj imamo µ = 1 jer zbog linearnosti u j-tom argumentu

g(a1, . . . , ai, . . . , aj−1, aj + λai, . . . , an)

= g(a1, . . . , ai, . . . , aj−1, aj , . . . , an)

+ λg(a1, . . . , ai, . . . , aj−1, ai, . . . , an)

= 1 · g(a1, . . . , ai, . . . , aj−1, aj , . . . , an),

pri čemu je g(a1, . . . , ai, . . . , aj−1, ai, . . . , an) = 0 jer je g alternirajuća. �

4.13. Osnovni teorem o determinanti. Neka je f : (Rn)n → R mul-
tilinearna alternirajuća funkcija. Tada je

f(x1, . . . , xn) = f(e1, . . . , en) det(x1, . . . , xn).

Posebno, determinanta je jedinstvena multilinearna alternirajuća funkcija f
takva da je

f(e1, . . . , en) = 1.

Dokaz. Već smo dokazali da je det : (Rn)n → R multilinearna alter-
nirajuća funkcija i da je det I = 1. Po pretpostavci je f multilinearna
alternirajuća funkcija. Stavimo

κ = f(e1, . . . , en) i g(x1, . . . , xn) = f(x1, . . . , xn)− κdet(x1, . . . , xn).

Tvrdimo da je g multilinearna alternirajuća funkcija. Naime, f i det su
linearne u prvoj varijabli, pa

f(x′ + x′′, x2, . . . , xn) = f(x′, x2, . . . , xn) + f(x′′, x2, . . . , xn) i

κdet(x′ + x′′, x2, . . . , xn) = κdet(x′, x2, . . . , xn) + κdet(x′′, x2, . . . , xn)

povlači

g(x′ + x′′, x2, . . . , xn) = g(x′, x2, . . . , xn) + g(x′′, x2, . . . , xn).

Očito na taj način možemo provjeriti svojstva linearnosti od g u svakoj
varijabli. Budući da pri zamjeni mjesta dvaju vektora i κdet(a1, . . . , an)
i f(a1, . . . , an) mijenjaju predznak, onda je jasno da mijenjaja predznak i
g(a1, . . . , an). Znači da je g alternirajuća funkcija.
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Ako su vektori a1, . . . , an baza u Rn, onda prema teoremu 3.1.12 tu bazu
možemo elementarnim transformacijama prevesti u kanonsku bazu

(a1, . . . , an) ∼ (e1, . . . , en),

pa prema lemi 4.12 postoji µ takav da je

g(a1, . . . , an) = µg(e1, . . . , en) = µ(f(e1, . . . , en)− κdet(e1, . . . , en)).

Sada det(e1, . . . , en) = 1 i κ = f(e1, . . . , en) povlači g(a1, . . . , an) = 0. Ako
vektori a1, . . . , an nisu baza, onda su linearno zavisni i svodenjem na stepe-
nastu formu elementarnim transformacijama dobivamo niz vektora

(a1, . . . , an) ∼ (c1, . . . , ck, 0 . . . , 0)

za k < n, pa prema lemi 4.12 postoji µ takav da je

g(a1, . . . , an) = µg(c1, . . . , ck, 0 . . . , 0).

Sada linearnost funkcije g u n-tom argumentu povlači g(a1, . . . , an) = 0.
Znači da za svaku n-torku vektora a1, . . . , an vrijedi g(a1, . . . , an) = 0, od-
nosno

f(a1, . . . , an) = f(e1, . . . , en) det(a1, . . . , an).

Time je dokazana prva tvrdnja teorema. Ako je f(e1, . . . , en) = 1, onda
slijedi da je f determinanta. �

4.14. Primjedbe. Kao i za R2 i R3, determinantu možemo interpre-
tirati kao volumen paralelotopa3 u Rn. Intuitivno osnovni teorem o deter-
minanti znači da postoji samo jedan način mjerenja volumena paralelotopa,
ovisno o tome kojom jedinicom za mjeru γ = f(e1, . . . , en) mjerimo kocku
(e1, . . . , en). Taj jedinstveni način je multilinearna alternirajuća funkcija
f = γ det.

4.15. Zadatak. Za n × n matrice A = (αij) induktivno definirajte
funkciju

(4.4) det•A =
n∑
j=1

(−1)n+jαnj det• (a
(n)
1 , . . . , a

(n)
j−1, a

(n)
j+1, . . . , a

(n)
n )

i dokažite da je det• multilinearna alternirajuća i da je det• I = 1. Tada iz
osnovnog teorema o determinanti slijedi formula4 detA = det•A.

Ponavljajući argumente iz dokaza teorema 4.13 dobivamo:

3Paralelotop razapet vektorima a1, . . . , an definiramo kao skup

{x ∈ Rn | x = λ1a+ · · ·+ λnan, 0 ≤ λ1, . . . , λn ≤ 1}.

4Ta se formula zove Lapalaceov razvoj determinante po n-tom retku.
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4.16. Teorem. Vektori a1, . . . , an su baza od Rn ako i samo ako je

det(a1, . . . , an) 6= 0.

Dokaz. Ako su vektori a1, . . . , an baza u Rn, onda prema teoremu 3.1.12
tu bazu možemo elementarnim transformacijama prevesti u kanonsku bazu

(a1, . . . , an) ∼ (e1, . . . , en),

pa prema lemi 4.12 postoji µ 6= 0 takav da je

det(a1, . . . , an) = µ det(e1, . . . , en) = µ 6= 0.

Obrat. Ako vektori a1, . . . , an nisu baza, onda su linearno zavisni i svodenjem
na stepenastu formu elementarnim transformacijama dobivamo niz vektora

(a1, . . . , an) ∼ (c1, . . . , ck, 0 . . . , 0)

za k < n, pa prema lemi 4.12 postoji µ takav da je

det(a1, . . . , an) = µdet(c1, . . . , ck, 0 . . . , 0).

Sada linearnost det u n-tom argumentu povlači det(a1, . . . , an) = 0. �

4.17. Zadatak. Računajući determinante pokažite da su stupci ma-
trica

J1 =

(
i 0
0 −i

)
, J2 =

(
0 1
−1 0

)
i J3 =

(
0 i
i 0

)
tri uredene baze u C2.

5. Determinanta matrice i elementarne transformacije

5.1. Računanje determinante matrice pomoću elementarnih
transformacija. Osim u slučaju 2 × 2 matrica i (možda) 3 × 3 matrica,
determinantu “konkretne” matrice ne računamo po formuli danoj u defi-
niciji determinante. Najefikasniji način računanja determinante “konkretne”
matrice je izvodenjem elementarnih transformacija

(a1, . . . , an) 7→ (a′1, . . . , a
′
n)

na stupcima matrice i korǐstenjem veze izmedu

det(a1, . . . , an) i det(a′1, . . . , a
′
n).

5.2. Zamjena mjesta dvaju vektora. Budući da je po definiciji
funkcija det alternirajuća, imamo

det(a1, . . . , ai−1, b, ai+1, . . . , aj−1, a, aj+1, . . . , an)

= −det(a1, . . . , ai−1, a, ai+1, . . . , aj−1, b, aj+1, . . . , an).

5.3. Množenje jednog vektora skalarom λ 6= 0. Budući da je po
definiciji funkcija det multilinearna, imamo

det(a1, . . . , ai−1, λa, ai+1, . . . , an) = λ det(a1, . . . , ai−1, a, ai+1, . . . , an).
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5.4. Pribrajanje jednog vektora pomnoženog skalarom drugom
vektoru. Budući da je funkcija det multilinearna i alternirajuća, imamo

det(a1, . . . , ai−1, a, ai+1, . . . , aj−1, b+ λa, aj+1, . . . , an)

= det(a1, . . . , ai−1, a, ai+1, . . . , aj−1, b, aj+1, . . . , an)

+ λ det(a1, . . . , ai−1, a, ai+1, . . . , aj−1, a, aj+1, . . . , an)

= det(a1, . . . , ai−1, a, ai+1, . . . , aj−1, b, aj+1, . . . , an).

(Ovdje smo zapisali slučaj i < j, no isto vrijedi i za i > j.) Znači da nakon
ove transformacije na stupcima matrice determinanta ostaje ista.

5.5. Računanje determinante matrice. Računanje determinante po-
moću elementarnih transformacija svodi se, u suštini, na uzastopnu primje-
nu transformacije trećeg tipa: Odaberemo li jedan matrični element αki 6= 0
u i-tom stupcu a = ai matrice

A = (a1, . . . , ai−1, a, ai+1, . . . , aj−1, aj , aj+1, . . . , an),

i odaberemo li λ = −αkj/αki, onda u j-tom stupcu matrice

A′ = (a1, . . . , ai−1, a, ai+1, . . . , aj−1, aj + λa, aj+1, . . . , an),

vektor aj +λa ima k-tu koordinatu jednaku αkj + (−αkj/αki)αki = 0. Uzas-
topnom primjenom takovih transformacija dobijamo matricu u kojoj su svi
elementi u k-tom retku nula, osim početnog αki 6= 0. Stavimo k1 = k i
i1 = i. Na primjer,

det


1 −1 2 3
1 2 −1 2

2 1 −3 0
1 1 2 5

= det


3 −1 2 3
−3 2 −1 2
0 1 −3 0
−1 1 2 5

= det


3 −1 −1 3
−3 2 5 2
0 1 0 0

−1 1 5 5

.
Ovdje smo odabrali α32 = 1 6= 0. U prvom koraku mijenjamo prvi stupac i
biramo λ = −2. U drugom koraku mijenjamo treći stupac i biramo λ = 3.
Četvrti stupac ne mijenjamo jer na trećem mjestu već stoji 0. Stavimo
k1 = 3 i i1 = 2.

Nakon toga biramo αki 6= 0, i 6= i1. Ako takav ne postoji, matrica
ima nul-stupac i determinanta je nula. Ako postoji, nastavimo postupak
kao ranije. Primijetimo da pritom nećemo mijenjati postojeći k1-ti redak.
Stavimo k2 = k i i2 = i. U našem primjeru možemo odabrati α41 = −1 6= 0.
U prvom koraku mijenjamo drugi stupac i biramo λ = 1. U drugom koraku
mijenjamo treći stupac i biramo λ = 5. U trećem koraku mijenjamo četvrti
stupac i biramo λ = 5. Stavimo k2 = 4 i i2 = 1.

det


3 2 −1 3
−3 −1 5 2
0 1 0 0
−1 0 5 5

 = · · · = det


3 2 14 18
−3 −1 −10 −13
0 1 0 0
−1 0 0 0

 .
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Nakon toga biramo αki 6= 0, i 6= i1, i2 itd. U postupku dobivamo ili nul-stupac
ili završavamo s αknin 6= 0. U potonjem slučaju primijenimo elementarne
transformacije drugog tipa i dobivamo

detA = αk1i1αk2i2 . . . αknin det(eσ(1), . . . , eσ(n))

za neku permutaciju σ. Na kraju primijenimo elementarne transformacije
zamjene stupaca i svojstvo det(e1, e2, . . . , en) = 1. U našem primjeru

10 det


−3 2 −7/5 18
3 −1 1 −13
0 1 0 0
1 0 0 0

 = · · · = 10 det


6/5 3/5 −7/5 −1/5
0 0 1 0
0 1 0 0
1 0 0 0



= 10(−1/5) det


6/5 3/5 −7/5 1
0 0 1 0
0 1 0 0
1 0 0 0

 = · · · = −2 det


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

Na kraju imamo detA = −2 det(e4, e3, e2, e1) = −2 det(e1, e2, e3, e4) = −2.

5.6. Zadatak. Korǐstenjem elementarnih transformacije stupaca ma-
trice izračunajte

det


0 −1 1 1
5 5 5 5
0 0 1 2
0 2 1 3

 .

6. Cramerovo pravilo

6.1. Cramerovo pravilo. Neka je A = (a1, . . . , an) kvadratna matrica
i detA 6= 0. Tada za svaki b ∈ Rn sistem jednadžbi

ξ1a1 + · · ·+ ξnan = b

ima jedinstveno rješenje x ∈ Rn. Štovǐse, koordinate ξi rješenja x dane su
formulom

ξi =
det(a1, . . . , ai−1, b, ai+1, . . . , an)

det(a1, . . . , an)
za sve i = 1, . . . , n.

Dokaz. Prema teoremu 4.16 pretpostavka detA 6= 0 povlači da su vek-
tori a1, . . . , an baza od Rn, pa sistem Ax = b ima jedinstveno rješenje x.
Znači da postoje ξ1, . . . , ξn ∈ R takvi da je

n∑
j=1

ξjaj = ξ1a1 + · · ·+ ξnan = b.
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Tada je

det(a1, . . . , ai−1, b , ai+1, . . . , an)

= det(a1, . . . , ai−1,

n∑
j=1

ξjaj , ai+1, . . . , an)

=

n∑
j=1

ξj det(a1, . . . , ai−1, aj , ai+1, . . . , an)

= ξi det(a1, . . . , ai−1, ai, ai+1, . . . , an).

Druga jednakost vrijedi zbog linearnosti determinante u i-tom argumentu.
Ako je j 6= i, onda se u nizu a1, . . . , ai−1, aj , ai+1, . . . , an vektor aj pojavljuje
dvaput, pa zbog alternirajućeg svojstva determinante imamo

det(a1, . . . , ai−1, aj , ai+1, . . . , an) = 0

i treća jednakost vrijedi. Budući da je po pretpostavci detA 6= 0, imamo
formulu

ξi =
det(a1, . . . , ai−1, b, ai+1, . . . , an)

det(a1, . . . , an)
.

�

6.2. Pitanje. Da li se sistem0 −1 1 1
5 5 5 5
0 0 1 2

ξ1

ξ2

ξ3

 =

 1
2
−3


može riješiti Cramerovim pravilom? DA NE

6.3. Zadatak. Riješite sistem
0 −1 1 1
5 5 5 5
0 0 1 2
0 2 1 3



ξ1

ξ2

ξ3

ξ4

 =


1
2
−3
1


Cramerovim pravilom i potom Gaussovom metodom.

7. Vektorski produkt u R3

Važnu ulogu u geometriji prostora R3 igra vektorski produkt. Općenito
na Rn postoje algebarske strukture koje u nekim aspektima poopćuju vek-
torski produkt, ali ni jedna od njih nije sasvim kao vektorski produkt na
R3.
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7.1. Vektorski produkt u R3. Za vektore a, b ∈ R3 definiramo vek-
torski produkt vektora a i b kao vektor

(7.1) a× b = (α2β3 − α3β2)e1 − (α1β3 − α3β1)e2 + (α1β2 − α2β1)e3

u R3, što kraće zapisujemo kao

(7.2) a× b = det

α1 β1 e1

α2 β2 e2

α3 β3 e3

 .

Očito je vektorski produkt u R3

× : R3 × R3 → R3, (a, b) 7→ a× b

bilinearno preslikavanje5, tj. vrijedi

(a′ + a′′)× b = a′ × b+ a′′ × b, (λa)× b = λ(a× b),
a× (b′ + b′′) = a× b′ + a× b′′, a× (λb) = λ(a× b),

i alternirajuće preslikavanje6, tj. vrijedi

a× b = − b× a.

7.2. Primjer.

a =

1
2
1

 , b =

−1
0
3

 , a×b = det

1 −1 e1

2 0 e2

1 3 e3

 = 6e1−4e2+2e3 =

 6
−4
2

 .

7.3. Zadatak. Izračunajte a× b za a = (1, 1, 1) i b = (1,−1, 0).

7.4. Pitanje. Da li je definirano a× b za a = b = (1, 1) ? DA NE

7.5. Mješoviti produkt u R3. Za c = γ1e1 + γ2e2 + γ3e3 skalarni
produkt

(7.3) (a× b | c) = (α2β3 − α3β2)γ1 − (α1β3 − α3β1)γ2 + (α1β2 − α2β1)γ3,

zovemo mješovitim produktom vektora a, b i c. Očito je

(7.4) (a× b | c) = det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 ,

pa zbog alternirajućeg svojstva determinante slijedi

(7.5) (a× b | a) = 0, (a× b | b) = 0.

5ponekad kažemo i da vrijedi distributivnost vektorskog množenja u odnosu na zbra-
janje i homogenost vektorskog množenja u odnosu na množenje skalarom

6ponekad kažemo i da je vektorski produkt antikomutativno množenje
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7.6. Lema. Vektori a, b ∈ R3 su linearno nezavisni ako i samo ako je
njihov vektorski produkt a× b 6= 0.

Dokaz. Zbog linearnosti u drugom argumentu imamo a × 0 = 0. Ako
je a = λb, onda je opet a× b = (λb)× b = λ(b× b) = λ0 = 0. S druge strane,
ako su a i b linearno nezavisni, onda ih možemo nadopuniti do baze a, b, c od
R3 i teorem 4.16 povlači da je mješoviti produkt (a×b | c) = det(a, b, c) 6= 0.
No onda je nužno a× b 6= 0. �

7.7. Konstrukcija okomice na ravninu u R3. Neka su a i b linearno
nezavisni vektori. Tada je linearna ljuska 〈a, b〉 ravnina u R3. Iz relacije (7.5)
i teorema 5.4.1 slijedi da je a× b okomica na ravninu, odnosno

a× b ⊥ 〈a, b〉.

Po teoremu o projekciji 2-dimenzionalnu ravninu W = 〈a, b〉 u R3 možemo
zadati jednom jednadžbom

W = (W⊥)⊥ = (Rc)⊥ = {x ∈ R3 | (c | x) = 0}

za neki vektor (odnosno bazu) c 6= 0 u W⊥. Ako uzmemo c = a× b, onda je

W = 〈a, b〉 = {x ∈ R3 | (a× b | x) = 0} = {x ∈ R3 | det(a, b, x) = 0}.

Tako je, na primjer, za vektore a i b iz primjera 7.2 ravnina 〈a, b〉 zadana
jednadžbom

6ξ1 − 4ξ2 + 2ξ3 = 0,

odnosno

〈a, b〉 =


ξ1

ξ2

ξ3

 ∈ R3
∣∣∣ det

1 −1 ξ1

2 0 ξ2

1 3 ξ3

 = 0

 .

7.8. Primjer. Neka je

Σ = c+ 〈a, b〉 = {x = c+ d | d ∈ 〈a, b〉}

ravnina u R3 kroz točku c = (1,−1, 2) paralelna potprostoru razapetom
vektorima a = (1, 1, 0) i b = (0, 1, 1). Tada uvjet x− c = d ∈ 〈a, b〉 možemo
napisati pomoću jednadžbe

det(a, b, x− c) = 0,

odnosno

Σ =


ξ1

ξ2

ξ3

 ∈ R3
∣∣∣ det

1 0 ξ1 − 1
1 1 ξ2 + 1
0 1 ξ3 − 2

 = 0


= {x | (ξ1 − 1)− (ξ2 + 1) + (ξ3 − 2) = 0}.

Kažemo da je

(ξ1 − 1)− (ξ2 + 1) + (ξ3 − 2) = 0

jednadžba ravnine Σ.
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7.9. Zadatak. Napǐsite jednadžbu ravnine Σ u R3 kroz točku c =
(1,−1,−1) paralelnu potprostoru razapetom vektorima a = (1,−1, 2) i
b = (2, 1, 1).

7.10. Udaljenost točke od ravnine u R3. Ako je x točka i W pot-
prostor u Rn, onda je udaljenost točke x od W jednaka normi ||Q(x)|| vek-
tora Q(x) = x − P (x) okomitog na potprostor W , a projekciju P (x) ∈ W
računamo metodom najmanjih kvadrata. U slučaju kad je W = 〈a, b〉 rav-
nina u R3 razapeta vektorima a i b, onda je

e =
a× b
||a× b||

jedinični vektor okomit na ravninu W , a komponenta od x duž vektora e je

Q(x) = (x | e)e, ||Q(x)|| = |(x | e)| = |(x | a× b)|
||a× b||

.

7.11. Primjer. Vratimo se primjeru 5.6.3 iz prethodnog poglavlja u
kojem je izračunata udaljenost točke b od ravnine Y = 〈v1, v2〉 u R3 za
vektore

v1 = 1√
2
(1,−1, 0), v2 = 1√

3
(1, 1, 1), b = (−1,−2, 1).

Tada je

v1 × v2 =
1√
6

 1 1 e1

−1 1 e2

0 1 e3

 =
1√
6

−1
−1
2

 , ||v1 × v2|| =
√

6√
6

= 1,

pa je projekcija od b na okomicu e = v1 × v2 na ravninu Y jednaka

Q(b) = (b | e)e =
1 + 2 + 2√

6
e =

5√
6
e.

Znači da je udaljenost b od Y jednaka ||Q(b)|| = 5√
6
.

7.12. Zadatak 5.6.4. Nadite udaljenost točke b od ravnine 〈v1, v2〉 za

v1 = (1, 1, 1)/
√

3, v2 = (1, 1,−2)/
√

6 i b = (1, 0, 1).

7.13. Zadatak. Nadite udaljenost točke d od ravnine Π = c+ 〈v1, v2〉,

v1 = (1, 1, 1)/
√

3, v2 = (1, 1,−2)/
√

6, c = (1, 1, 1) i d = (2, 1, 2).

(Uputa: Budući da je d(x − c, y − c) = d(x, y), to je udaljenost točke d od
ravnine Π jednaka udaljenosti točke d− c od ravnine Π− c = 〈v1, v2〉.)
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7.14. Lema. Neka su a, b, c, a′, b′, c′ vektori u R3. Tada vrijedi
(7.6)

det

(a′ | a) (a′ | b) (a′ | c)
(b′ | a) (b′ | b) (b′ | c)
(c′ | a) (c′ | b) (c′ | c)

 = det

α′1 α′2 α′3
β′1 β′2 β′3
γ′1 γ′2 γ′3

det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 .

Dokaz. Fiksirajmo vektore a′, b′, c′ i označimo s f(a, b, c) lijevu stranu
jednakosti (7.6). Budući da je skalarni produkt linearan u drugom argu-
mentu, to prvi stupac (a′ | a)

(b′ | a)
(c′ | a)


koji se javlja u formuli za f ovisi linearno o a. Zbog toga linearnost deter-
minante u prvom argumentu povlači linearnost od f u prvom argumentu.
Na isti način zaključujemo da je f linearna u drugom i u trećem argument.
Očito je f alternirajuća funkcija jer je determinanta alternirajuća funkcija.
Iz teorema 4.13 slijedi da je

f(a, b, c) = f(e1, e2, e3) det(a, b, c) = f(e1, e2, e3) det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 ,

pa (7.6) vrijedi jer je

f(e1, e2, e3) = det

(a′ | e1) (a′ | e2) (a′ | e3)
(b′ | e1) (b′ | e2) (b′ | e3)
(c′ | e1) (c′ | e2) (c′ | e3)

 = det

α′1 α′2 α′3
β′1 β′2 β′3
γ′1 γ′2 γ′3

 .

�

7.15. Teorem. Za sve a, b ∈ R3 vrijedi

(7.7) ||a× b||2 = det

(
(a | a) (a | b)
(b | a) (b | b)

)
= ||a||2||b||2 − |(a | b)|2.

Dokaz. Ako su vektori a i b linearno zavisni, onda su obje strane (7.7)
jednake nuli i jednakost vrijedi. Pretpostavimo zato da su vektori a i b line-
arno nezavisni. Tada je prema lemi 7.6 a×b 6= 0. Budući da je determinanta
3 × 3 matrice jednaka determinanti njoj transponirane matrice, to iz (7.6)
za a = a′, b = b′ i c = c′ imamo

|(a× b | c)|2 =

det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

2

= det

(a | a) (a | b) (a | c)
(b | a) (b | b) (b | c)
(c | a) (c | b) (c | c)

 .

Prema (7.5) za c = a × b imamo (a | c) = (b | c) = 0, pa Laplaceov razvoj
zadnje determinante po trećem stupcu daje

||c||4 = ||a× b||4 = (c | c) det

(
(a | a) (a | b)
(b | a) (b | b)

)
.

Pokratimo li s ||c||2 = (c | c) 6= 0, dobijamo formulu (7.7). �
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7.16. Površina paralelograma u R3. Primijetimo da iz teorema 7.15
dobivamo Cauchyjevu nejednakost (5.3.7). Podsjetimo se da je Cauchyjeva
nejednakost vezana uz formulu za kosinus kuta izmedu vektora

(a | b) = ||a|| ||b|| cosϕ,

pa ako to uvrstimo u (7.7) dobivamo

||a× b||2 = ||a||2||b||2(1− cosϕ2) = ||a||2||b||2 sinϕ2.

U paralelogramu razapetom vektorima a, b ∈ R3 duljina baze je ||a||, a visina
je ||b|| sinϕ. Zato ||a × b||2 možemo interpretirati kao kvadrat površine
paralelograma razapetog vektorima a, b ∈ R3 danog formulom

Γ(a, b) = det

(
(a | a) (a | b)
(b | a) (b | b)

)
.

Iz formule u dokazu teorema 7.15 vidimo da je kvadrat volumena para-
lelepipeda razapetog vektorima a, b, c ∈ R3 dan formulom

Γ(a, b, c) = det

(a | a) (a | b) (a | c)
(b | a) (b | b) (b | c)
(c | a) (c | b) (c | c)

 .

Determinante Γ(a, b) i Γ(a, b, c) zovemo Gramovim determinantama.

7.17. Zadatak. Izračunajte površinu paralelograma razapetog vekto-
rima a = (1, 1, 1) i b = (1, 1, 0) koristeći

(1) Gramovu determinantu Γ(a, b) i
(2) neki drugi način.

Iz teorema 7.15 i formule (7.5) slijedi

7.18. Teorem. Neka su f1 i f2 ortonormirani vektori u R3. Tada je
f1, f2 i f3 = f1 × f2 ortonormirana baze u R3.

7.19. Konstrukcija ortonormirane baze u R3. Ako je f1 normirani
vektor u R3, onda nije teško naći normirani vektor f2 okomit na f1. Tako,
na primjer, za

f1 =
1√
3

1
1
1


možemo “pogoditi” niz vektora okomitih na f1: 1

−1
0

 ,

 0
1
−1

 ,

 1
0
−1

 ,

−2
1
1

 ,

 1
1
−2

 .

Uzmemo li, na primjer, prvi od tih vektora i normiramo li ga, dobivamo

f2 =
1√
2

 1
−1
0

 .



7. VEKTORSKI PRODUKT U R3 149

Stavimo li

f3 = f1×f2 =
1√
3
√

2
det

1 1 e1

1 −1 e2

1 0 e3

 =
1√
6

(e1 + e2−2e3) =
1√
6

 1
1
−2

 ,

onda je f1, f2, f3 ortonormirana baza od R3.

7.20. Primjer. Neka su a i b vektori iz primjera 7.2. Želimo li naći
ortonormiranu bazu potprostora 〈a, b〉, onda možemo računati

g1 =
a

||a||
=

1√
6

1
2
1

 i g3 =
a× b
||a× b||

=
1√
56

 6
−4
2

 =
1√
14

 3
−2
1

 .

Tada je

g2 = g1 × g3 =
1√

6
√

14
det

1 3 e1

2 −2 e2

1 1 e3

 =
1√

6 · 14

 4
2
−8

 =
1√
21

 2
1
−4


vektor iz potprostora 〈a, b〉 jer je okomit na okomicu a × b =

√
56 g3. No

onda je g1, g2 ortonormirana baza potprostora 〈a, b〉, tj.

〈a, b〉 = 〈g1, g2〉.

7.21. Jednadžbe pravca u R3. Neka je v 6= 0 vektor smjera pravca
p = 〈v〉. Po teoremu o projekciji 1-dimenzionalni potprostor p u R3 možemo
zadati dvjema jednadžbama

p = (p⊥)⊥ = (Ra+ Rb)⊥ = {x | (a | x) = (b | x) = 0}
za neku bazu a, b potprostora p⊥ od R3. Za dani vektor v ∈ R3 lako je naći
jedan vektor a 6= 0 okomit na v, a za drugi vektor onda uzmemo b = a× v.

7.22. Primjer. Neka je v = (1, 2, 1) vektor smjera pravca p = 〈v〉.
Očito je a = (1, 0,−1) okomit na v. Ako stavimo

b = a× v = det

 1 1 e1

0 2 e2

−1 1 e3

 =

 2
−2
2

 ,

onda je a, b baza potprostora p⊥ i p = (p⊥)⊥ je zadan sistemom jednadžbi

(a | x) = ξ1 − ξ3 = 0,

(b | x) = 2ξ1 − 2ξ2 + ξ3 = 0.

7.23. Primjer. Neka je pravac q = {x = c + d | d ∈ p} kroz točku
c = (3,−2, 1) paralelan s pravcem p = 〈v〉 iz prethodnog primjera. Uvjet
x− c ∈ p možemo zapisati kao sistem jednadžbi

(a | x− c) = (ξ1 − 3)− (ξ3 − 1) = 0,

(b | x− c) = 2(ξ1 − 3)− 2(ξ2 + 2) + (ξ3 − 1) = 0

kojeg zovemo jednadžbama pravca q.
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7.24. Zadatak. Neka je q = {x = c + tv | t ∈ R} pravac kroz točku
c = (3,−2, 1) s vektorom smjera v = (−2, 1,−1). Napǐsite jednadžbe pravca
q.
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POGLAVLJE 7

Linearna preslikavanja s Rn u Rm

U ovom poglavlju uvodimo pojam linearnog preslikavanja s Rn u Rm
i pokazujemo da je linearno preslikavanje u potpunosti odredeno svojom
matricom. Za linearno preslikavanje A definiramo sliku i jezgru od A i
dokazujemo teorem o rangu i defektu. Pokazujemo da je kompozicija line-
arnih preslikavanja linearno preslikavanje, te da kompoziciji preslikavanja
odgovara množenje matrica. Na kraju poglavlja pokazujemo da su općenito
linearni operatori u potpunosti odredeni svojim vrijednostima na bazi pro-
stora.

0.1. Kompozicija preslikavanja. Neka su A, B i C skupovi i
f : A→ B i g : B → C preslikavanja. Tada preslikavanje

h : A→ C,

koje elementu a iz A pridružuje element h(a) iz C po pravilu

h(a) = g(f(a)),

zovemo kompozicijom preslikavanja f i g i pǐsemo h = g ◦ f .

0.2. Asocijativnost kompozicije preslikavanja. Neka su A, B, C i
D skupovi i f : A→ B, g : B → C i h : C → D preslikavanja. Tada je

(h ◦ g) ◦ f = h ◦ (g ◦ f).

Naime, s jedne je strane ((h ◦ g) ◦ f)(a) = (h ◦ g)(f(a)) = h(g(f(a))), a s
druge strane je (h ◦ (g ◦ f))(a) = h((g ◦ f)(a)) = h(g(f(a))), dakle jednako
prvom, i to za svaki a ∈ A.

0.3. Identiteta na skupu. Neka je A skup. Identiteta id na skupu A,
ili idA ako želimo naglasiti skup A, je bijekcija

id : A→ A, id(a) = a za sve a ∈ A.

0.4. Kompozicija preslikavanja s identitetom. Za svako preslika-
vanje f : A→ B vrijedi

f ◦ idA = f, idB ◦ f = f.

Naime, za sve a ∈ A vrijedi (f ◦ idA)(a) = f(idA(a)) = f(a). Isto tako, za
sve a ∈ A vrijedi (idB ◦ f)(a) = idB(f(a)) = f(a).

153
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1. Linearna preslikavanja

1.1. Definicija linearnog preslikavanja s Rn u Rm. Kažemo da je
preslikavanje

A : Rn → Rm

linearno preslikavanje ili linearan operator ako za sve vektore x, y ∈ Rn i sve
skalare λ ∈ R vrijedi

A(x+ y) = A(x) +A(y), A(λx) = λA(x).

Ako je A linearno, onda je običaj umjesto A(x) pisati Ax.

1.2. Linearne funkcije. Uz oznake iz prethodne točke za m = 1
imamo poseban slučaj linearnog preslikavanja

A : Rn → R

kojeg zovemo linearna funkcija ili linearni funkcional na Rn. Ako je A
linearna funkcija, onda je za vrijednost funkcije u točki x običaj pisati A(x),
a ne Ax.

1.3. Pitanje. Za koje je n = 0, 1, 2, 3 funkcija fn linearna funkcija,

fn : R→ R, fn(x) = xn ?

1.4. Svojstvo linearnosti preslikavanja i linearne kombinacije.
Primijetimo da je zbrajanje vektora x+y operacija u području definicije Rn
preslikavanja A, a da je zbrajanje vektora A(x)+A(y) operacija u području
vrijednosti Rm preslikavanja A. Grubo govoreći, u slučaju linearnog presli-
kavanja je svejedno da li izvodimo operacije zbrajanja i množenja skalarom
prije “primjene” preslikavanja A ili nakon “primjene” preslikavanja A. To
vrijedi i za proizvoljne linearne kombinacije:

(1.1) A(λ1x1 + · · ·+ λsxs) = λ1Ax1 + · · ·+ λsAxs.

Dokaz. Tvrdnju dokazujemo indukcijom po s. Za s = 1 tvrdnja vrijedi
jer po pretpostavci imamo A(λ1x1) = λ1Ax1. Pretpostavimo da tvrdnja
vrijedi za neki s ≥ 1. Tada je

A(λ1x1 + · · ·+ λsxs + λs+1xs+1)

= A((λ1x1 + · · ·+ λsxs) + λs+1xs+1)

= A(λ1x1 + · · ·+ λsxs) +A(λs+1xs+1)

= (λ1Ax1 + · · ·+ λsAxs) + λs+1Axs+1

= λ1Ax1 + · · ·+ λsAxs + λs+1Axs+1.

Primijetimo da druga jednakost vrijedi zbog pretpostavljenog svojstva za
sumu dva vektora. �
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1.5. Primjer: identiteta I : Rn → Rn je linearno preslikavanje.
Običaj je identitetu na skupu Rn označavati s I. Identiteta je očito linearno
preslikavanje

I(x+ y) = x+ y = I(x) + I(y), I(λx) = λx = λI(x).

1.6. Pitanje. Da li je centralna simetrija x 7→ −x u R3 linearno pre-
slikavanje? DA NE

1.7. Primjer: rotacija u ravnini za kut π
2 je linearno preslika-

vanje. Preslikavanje A : R2 → R2 definirano formulom

A

(
ξ1

ξ2

)
=

(
−ξ2

ξ1

)
je linearno preslikavanje. Naime,

A(a+ b) = A

(
α1 + β1

α2 + β2

)
=

(
−(α2 + β2)
α1 + β1

)
=

(
−α2

α1

)
+

(
−β2

β1

)
= Aa+Ab,

a na sličan način vidimo i

A(λa) = A

(
λα1

λα2

)
=

(
−λα2

λα1

)
= λ

(
−α2

α1

)
= λAa.

Linearnost preslikavanja A možemo dokazati i geometrijski: Interpreti-
ramo li a = ( α1

α2 ) kao vektor-strelicu u euklidskoj ravnini, onda je vektor-
strelica Aa =

(−α2
α1

)
dobiven iz a rotacijom oko ishodǐsta za kut π

2 (nacrtajte
sliku!). Rotacija A prevodi paralelogram s vrhovima 0, a, b, a+ b u paralelo-
gram s vrhovima 0, Aa,Ab,A(a+ b), a ovaj drugi mora biti (zbog definicije
zbrajanja vektor-strelica) paralelogram 0, Aa,Ab,Aa + Ab. Sada jednakost
vrhova daje relaciju

A(a+ b) = Aa+Ab.

Na sličan geometrijski način možemo dokazati i relaciju

A(λa) = λAa.

1.8. Primjer: rotacija u ravnini za kut ϕ je linearno presli-
kavanje. Geometrijski argument o linearnosti rotacije za kut π

2 možemo

ponoviti za bilo koju rotaciju oko ishodǐsta: rotacija Rϕ : R2 → R2 oko
ishodǐsta u euklidskoj ravnini za kut ϕ je linearno preslikavanje.

2. Zadavanje linearnog preslikavanja matricom

2.1. Zadavanje linearnog preslikavanja matricom. Neka je zadan
niz od n vektora a1, a2, . . . , an u Rm, ili, što je isto, matrica

(2.1) (a1, . . . , an) =


α11 α12 . . . α1n

α21 α22 . . . α2n
...

...
...

αm1 αm2 . . . αmn

 .
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Budući da proizvoljni vektor x ∈ Rn možemo na jedinstveni način zapisati
kao linearnu kombinaciju vektora kanonske baze

x = ξ1e1 + · · ·+ ξnen,

možemo definirati preslikavanje A : Rn → Rm, x 7→ A(x), formulom

(2.2) A(x) = ξ1a1 + · · ·+ ξnan.

Tako definirano preslikavanje je linearno. Naime, budući da je i-ta koordi-
nata od λx jednaka λξi, to je

A(λx) = (λξ1)a1 + · · ·+ (λξn)an = λ(ξ1a1 + · · ·+ ξnan) = λA(x).

Budući da je i-ta koordinata od x+ y jednaka ξi + ηi, to je

A(x+ y) = (ξ1 + η1)a1 + · · ·+ (ξn + ηn)an

= (ξ1a1 + · · ·+ ξnan) + (η1a1 + · · ·+ ηnan) = A(x) +A(y).

Primijetimo da je Aei = ai jer je i-ta koordinata od ei jednaka jedan,
a sve ostale su nula. Zato obično kažemo da smo linearno preslikavanje A
zadali vrijednostima (a1, . . . , an) na vektorima kanonske baze.

2.2. Primjer. Linearno preslikavanje A : R3 → R2 zadano je na kanon-
skoj bazi e1, e2, e3 u R3 nizom od tri vektora(

1
0

)
,

(
1
2

)
,

(
1
−1

)
formulom

A

ξ1

ξ2

ξ3

 = ξ1

(
1
0

)
+ ξ2

(
1
2

)
+ ξ3

(
1
−1

)
=

(
ξ1 + ξ2 + ξ3

2ξ2 − ξ3

)
.

2.3. Pitanje. Da li je matricom(
1 1 1 1
0 0 0 0

)
zadano linearno preslikavanje s R2 u R4? DA NE

2.4. Pitanje. Kojom je matricom zadano linearno preslikavanje

A

ξ1

ξ2

ξ3

 =

(
ξ1 − ξ2 + ξ3

3ξ1 − 2ξ2 − ξ3

)
?
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3. Matrica linearnog preslikavanja

3.1. Linearno preslikavanje odredeno je vrijednostima na ka-
nonskoj bazi. Neka je A : Rn → Rm linearano preslikavanje i e1, . . . , en
kanonska baza u Rn. Tada su u potpunosti odredeni vektori

a1 = Ae1, a2 = Ae2, . . . an = Aen

u Rm, napǐsimo ih kao

a1 =


α11

α21
...

αm1

 , a2 =


α12

α22
...

αm2

 , . . . an =


α1n

α2n
...

αmn

 .

Budući da je A linearno, dovoljno je znati vektore a1, a2, . . . , an da bi odredili
Ax za svaki vektor x ∈ Rn. Naime, proizvoljni vektor x ∈ Rn možemo na
jedinstveni način zapisati kao linearnu kombinaciju vektora kanonske baze

x = ξ1e1 + · · ·+ ξnen,

pa zbog linearnosti preslikavanja A imamo

(3.1) Ax = A(ξ1e1 + · · ·+ ξnen) = ξ1Ae1 + · · ·+ ξnAen = ξ1a1 + · · ·+ ξnan.

Znači da je vektor Ax izražen kao linearna kombinacija vektora a1, . . . , an u
Rm u kojoj su koeficijenti koordinate ξ1, . . . , ξn vektora x :

(3.2) Ax = ξ1


α11

α21
...

αm1

+ ξ2


α12

α22
...

αm2

+ · · ·+ ξn


α1n

α2n
...

αmn

 .

3.2. Pitanje. Da li je linearno preslikavanje A : R2 → R3 odredeno
vrijednostima u kanonskoj bazi e1, e2, e3 prostora R3? DA NE

3.3. Matrica linearnog preslikavanja. Razmatranje u prethodnoj
točki pokazuje da je linearno preslikavanje A : Rn → Rm u potpunosti
odredeno n-torkom vektora (Ae1, . . . , Aen) = (a1, . . . , an) iz Rm koju zo-
vemo matricom linearnog preslikavanja A u kanonskoj bazi i zapisujemo kao

(Ae1, . . . , Aen) =


α11 α12 . . . α1n

α21 α22 . . . α2n
...

...
...

αm1 αm2 . . . αmn

 .

Matrica je tipa m× n.
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3.4. Matrica linearnog preslikavanja zadanog matricom. Primi-
jetimo li da je i-ta koordinata vektora ei kanonske baze jednaka 1, a sve
ostale 0, onda vidimo da za linearno preslikavanje A : Rn → Rm definirano
formulom (2.2) vrijedi

Aei = ai.

Znači da je matrica (2.1) s kojom smo zadali linearno preslikavanje A u
stvari matrica (Ae1, . . . , Aen) tog linearnog preslikavanja A.

3.5. Matrica identitete je jedinična matrica. Budući da je za iden-
titetu Iej = ej , to su stupci matrice preslikavanja I : Rn → Rn upravo
elementi kanonske baze prostora Rn. Tu matricu označavamo s I,

I = (e1, . . . , en),

i zovemo je jediničnom matricom. Na primjer,

1 = I,

(
1 0
0 1

)
= I,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I,

gdje je redom I jedinična matrica tipa 1× 1, tipa 2× 2 i tipa 4× 4.

3.6. Pitanje. Da li je
(−1 0 0

0 −1 0
0 0 −1

)
matrica centralne simetrije x 7→ −x

u R3? DA NE

3.7. Primjer: matrica rotacije u ravnini za kut ϕ. Rotacija A =
Rϕ oko ishodǐsta za kut ϕ je linearno preslikavanje, pa je u potpunosti
odredeno vektorima (nacrtajte sliku!)

a1 = Ae1 = A

(
1
0

)
=

(
cosϕ
sinϕ

)
, a2 = Ae2 = A

(
0
1

)
=

(
− sinϕ
cosϕ

)
.

Matrica rotacije za kut ϕ je (
cosϕ − sinϕ
sinϕ cosϕ

)
.

Posebno su matrice rotacija za kuteve 0, π
2 , π i 3π

2 redom(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
.

3.8. Zadatak. Napǐsite matrice rotacija u R3 za kuteve 0, π
2 , π i 3π

2
oko 1) x-osi, 2) y-osi i 3) z-osi.

3.9. Zadatak. Geometrijskim argumentom dokažite da je refleksija u
euklidskoj ravnini s obzirom na simetralu prvog kvadranta linearno preslika-
vanje. Napǐsite matricu odgovarajućeg linearnog preslikavanja T : R2 → R2.
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3.10. Zadatak. Neka je a = (−1, 1) i neka je preslikavanje T : R2 → R2

zadano formulom

T (x) = x− 2(x | a)

(a | a)
a.

Dokažite da je T linearno preslikavanje i izračunajte mu matricu. Interpre-
tirajte preslikavanje T geometrijski.

3.11. Matrica linearne funkcije. Kao i u općem slučaju, linearna je
funkcija A : Rn → R zadana vrijednostima A(e1) = α1, . . . , Aen = αn na
kanonskoj bazi, odnosno 1× n matricom

(α1, α2, . . . , αn).

Vrijednost funkcije A(x) računamo po formuli

A(x) = α1ξ1 + α2ξ2 + · · ·+ αnξn.

Na primjer, f(ξ1, ξ2, ξ3) = ξ1 − 3ξ2 + 4ξ3 je linearna funkcija na R3 s
matricom (1,−3, 4).

3.12. Množenje matrice i vektora. Za linearno preslikavanje A s
matricom (Ae1, . . . , Aen) slika Ax ∈ Rm proizvoljnog vektora x ∈ Rn dana
je formulom (3.1). Tu formulu (3.1) za računanje Ax, po koordinatama
zapisanu kao (3.2), obično zovemo množenje matrice (a1, . . . , an) i vektora
s koordinatama ξ1, . . . , ξn i pǐsemo:

(3.3) Ax =


α11 α12 . . . α1n

α21 α22 . . . α2n
...

...
...

αm1 αm2 . . . αmn



ξ1

ξ2
...
ξn

 =


α11ξ1 + · · ·+ α1nξn
α21ξ1 + · · ·+ α2nξn

...
αm1ξ1 + · · ·+ αmnξn

 .

Primijetimo da je definirano množenje matrice s vektorom samo zam×n
matrice A s vektor-stupcem x tipa n× 1, i da je rezultat vektor-stupac Ax
tipa m× 1. Istaknimo to kao “formulu”

(m× n) · (n× 1) = (m× 1).

Stavimo li b = Ax i označimo li koordinate vektora b s β1, . . . , βm, tada
formulu (3.3) za množenje matrice s vektorom možemo zapisati kraće kao

(3.4) βi =
n∑
j=1

αijξj za sve i = 1, . . . ,m.

Primijetimo da je formula (2.2) kojom smo definirali preslikavanje A u stvari
formula za množenje matrice i vektora. Zbog toga vrijedi svojstvo da je
množenje vektora matricom A linearno preslikavanje

A(x+ y) = Ax+Ay, A(λx) = λAx.
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3.13. Primjeri produkta matrice i vektora.(
1 2 1
0 2 −1

)1
1
1

 =

(
4
1

)
,

1 2
0 −1
1 1

( 1
−1

)
=

−1
1
0

 .

3.14. Pitanje. Da li je definiran produkt matrice i vektora1 2
0 −1
1 1

1
1
1

? DA NE

3.15. Produkt jedinične matrice i vektora. Budući da je za iden-
titetu Ix = x, to je formula za računanje vektora Ix množenjem jedinične
matrice I s vektorom x opet vektor x. Na primjer

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1
2
3
−1

 =


1
2
3
−1

 .

3.16. Primjer. Za rotaciju A = Rϕ vektor Ax računamo koristeći
množenje matrice rotacije (Ae1, Ae2) i vektora x(

cosϕ − sinϕ
sinϕ cosϕ

)(
ξ1

ξ2

)
=

(
ξ1 cosϕ− ξ2 sinϕ
ξ1 sinϕ+ ξ2 cosϕ

)
.

Posebno rotacije vektora x za kuteve π
2 i π računamo koristeći množenje

matrice i vektora(
0 −1
1 0

)(
ξ1

ξ2

)
=

(
−ξ2

ξ1

)
,

(
−1 0
0 −1

)(
ξ1

ξ2

)
=

(
−ξ1

−ξ2

)
.

3.17. Primjer. Za linearnu funkciju f(ξ1, ξ2, ξ3) = ξ1−3ξ2+4ξ3 na R3

vrijednost funkcije f(x) na vektoru x računamo koristeći množenje matrice
linearne funkcije (1,−3, 4) i vektora x:

(1,−3, 4)

ξ1

ξ2

ξ3

 = ξ1 − 3ξ2 + 4ξ3.

3.18. Poistovjećivanje linearnog preslikavanja i matrice. Budući
da svakom linearnom preslikavanju pripada matrice, i da svakoj matrici pri-
pada linearno preslikavanje kojemu je to pripadna matrica, mi vrlo često ne
pravimo razliku1 izmedu m× n matrice (Ae1, . . . , Aen) i linearnog preslika-
vanja A : Rn → Rm,

x 7→ Ax,

1Kod poistovjećivanja zanemarujemo razlike medu stvarima, ali je dobro pamtiti što
smo zanemarili. U ovom konkretnom slučaju treba imati na umu i posebnu ulogu kanonske
baze u formuli (3.1).
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definiranog formulom (3.3) za produkt Ax matrice (Ae1, . . . , Aen) i vektora
x, već pǐsemo A = (Ae1, . . . , Aen). U tom je smislu matrica

A =

(
1 2 3
4 5 6

)
linearno preslikavanje A : R3 → R2 zadano formulom

A :

ξ1

ξ2

ξ3

 7→
(

1 2 3
4 5 6

)ξ1

ξ2

ξ3

 =

(
ξ1 + 2ξ2 + 3ξ3

4ξ1 + 5ξ2 + 6ξ3

)
.

4. Linearno preslikavanje kao sistem linearnih funkcija

4.1. Sistem linearnih funkcija. Linearno preslikavanje A : Rn → Rm
možemo shvatiti kao m-torku funkcija

A =


f1

f2
...
fm

 , Ax =


f1(x)
f2(x)

...
fm(x)

 ,

odnosno A = (f1, . . . , fm), koju ponekad zovemo sistemom od m funkcija
f1, . . . , fm. Te su funkcije dane formulom (3.3) za množenje vektora matri-
com

f1(ξ1, . . . , ξn) = α11ξ1 + · · ·+ α1nξn ,

f2(ξ1, . . . , ξn) = α21ξ1 + · · ·+ α2nξn ,(4.1)

. . .

fm(ξ1, . . . , ξn) = αm1ξ1 + · · ·+ αmnξn ,

a i-ti redak (αi1, . . . , αin) matrice A je matrica i-te linearne funkcije fi.

4.2. Primjer. Linearno preslikavanje A : R3 → R2 zadano matricom(
3 1 −1
−1 0 1

)
možemo shvatiti kao sistem od dvije linearne funkcije od tri varijable

f1(ξ1, ξ2, ξ3) = 3ξ1 + ξ2 − ξ3,

f2(ξ1, ξ2, ξ3) = −ξ1 + ξ3

možemo ga zapisati i kao

A(ξ1, ξ2, ξ3) = (3ξ1 + ξ2 − ξ3,−ξ1 + ξ3).
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4.3. Pitanje. Linearno preslikavanje A : R2 → R3 zadano je formulom
A(ξ1, ξ2) = (5ξ1 + ξ2,−ξ1,−ξ1 + 2ξ2). Da li je 5 1

−1 0
−1 2


matrica linearnog preslikavanja A? DA NE

4.4. Sistem jednadžbi Ax = b i linearno preslikavanje A. Neka je
A = (a1, . . . , an) matrica tipa m×n i b vektor u Rm. Tada sistem jednadžbi

ξ1a1 + · · ·+ ξnan = b

možemo shvatiti kao problem nalaženja svih vektora

x = (ξ1, . . . , ξn) ∈ Rn

koje linearno preslikavanje

A : Rn → Rm

preslikava u vektor b, tj. da je

Ax = b.

Očito je matrica sistema A ujedno i matrica linearnog preslikavanja.

5. Slika i jezgra linearnog preslikavanja

5.1. Slika linearnog operatora. Neka je A : Rn → Rm linearno pre-
slikavanje. Slika preslikavanja A je skup

imA = {Ax ∈ Rm | x ∈ Rn}.

Slika linearnog preslikavanja A : Rn → Rm je potprostor vektorskog prostora
Rm. Štovǐse,

(5.1) imA = 〈Ae1, . . . , Aen〉.

Dokaz. Ax,Ay ∈ imA povlači Ax + Ay = A(x + y) ∈ imA. Takoder
imamo λAx = A(λx) ∈ imA. Znači da je slika od A potprostor vektorskg
prostora Rm. Budući da za vektor x = ξ1e1 + · · ·+ ξnen u Rn imamo

Ax = ξ1Ae1 + · · ·+ ξnAen,

to očito vrijedi (5.1). �

5.2. Rang matrice i linearnog operatora. Rang linearnog preslika-
vanja A : Rn → Rm je dimenzija slike od A, tj.

rangA = dim imA = dim〈Ae1, . . . , Aen〉.

Rang matrice A = (a1, . . . , an) je rang pripadnog preslikavanja, tj.

rangA = rang (a1, . . . , an) = dim〈a1, . . . , an〉.
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5.3. Surjektivnost preslikavanja i slika. Po definiciji je A surjek-
cija ako i samo ako je imA = Rm. Stovǐse, A je surjekcija ako i samo ako
je rangA = m.

Naime, prema teoremu 3.4.7, Rm je jedini m-dimenzionalni potprostor
od Rm.

5.4. Egzistencija rješenja sistema Ax = b i slika od A. Očito
sistem jednadžbi Ax = b ima rješenje ako i samo ako je b ∈ imA.

5.5. Jezgra linearnog operatora. Neka je A : Rn → Rm linearno
preslikavanje. Jezgra preslikavanja A je skup

kerA = {x ∈ Rn | Ax = 0}.

Jezgra linearnog preslikavanja A : Rn → Rm je potprostor vektorskog prosto-
ra Rn.

Dokaz. x, y ∈ kerA povlači A(x+ y) = Ax+Ay = 0, odnosno x+ y ∈
kerA. Takoder imamo A(λx) = λAx = 0, pa je λx ∈ kerA. Znači da je
jezgra od A potprostor vektorskg prostora Rn. �

5.6. Defekt matrice i linearnog operatora. Defekt linearnog pre-
slikavanja A : Rk → Rn je dimenzija jezgre od A, tj.

defektA = dim kerA.

Defekt matrice A = (a1, . . . , ak) je defekt pripadnog preslikavanja.

5.7. Injektivnost preslikavanja i jezgra. Podsjetimo se da je pre-
slikavanje A injekcija ako Ax = Ay povlači x = y. U slučaju linearnih
preslikavanja imamo:

Linearno preslikavanje A je injekcija ako i samo ako je kerA = 0.
Štovǐse, A je injekcija ako i samo ako je defektA = 0.

Naime, za linearnu injekciju Ax = 0 = A0 povlači x = 0, pa je kerA = 0.
Obratno. Ako je jezgra od A nula, onda je A injekcija jer Ax − Ay =
A(x − y) = 0 povlači x − y = 0. Druga tvrdnja slijedi iz prve jer samo
nul-prostor ima dimenzija nula.

5.8. Jedinstvenost rješenja sistema Ax = b i jezgra od A. Ako je
kerA = 0, onda Ax = b = Ay povlači x = y.

5.9. Teorem o rangu i defektu. Neka je A : Rn → Rm linearno pre-
slikavanje. Tada je

rangA+ defektA = n.

Dokaz. Neka je

v1, . . . , vp

baza jezgre od A. Taj linearno nezavisan skup u Rn nadopunimo do baze

v1, . . . , vp, vp+1, . . . , vn.
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Vektori Av1, . . . , Avn razapinju sliku preslikavanja A. No vektori v1, . . . , vp
su u jezgri preslikavanja A i za njih je Avi = 0, pa imamo da vektori

Avp+1, . . . , Avn

razapinju sliku preslikavanja A. Za dokaz teorema dovoljno je dokazati da
je to baza slike preslikavanja A, tj. da je taj skup linearno nezavisan. Zato
pretpostavljamo da je

(5.2) λp+1Avp+1 + · · ·+ λnAvn = 0

i dokazujemo da su svi koeficijenti nula. Zbog linearnosti preslikavanja A iz
(5.2) slijedi

A(λp+1vp+1 + · · ·+ λnvn) = 0.

Znači da je vektor λp+1vp+1 + · · ·+λnvn u jezgri preslikavanja A. Prikažemo
li taj vektor u bazi jezgre

λp+1vp+1 + · · ·+ λnvn = λ1v1 + · · ·+ λpvp

dobivamo

−λ1v1 − · · · − λpvp + λp+1vp+1 + · · ·+ λnvn = 0.

Budući da je v1, . . . , vn baza prostora Rn, svi koeficijenti u toj kombinaciji
moraju biti nula. Posebno je λp+1 = · · · = λn = 0, što je i trebalo dokazati.

�

6. Kompozicija linearnih preslikavanja

6.1. Kompozicija linearnih preslikavanja. Ako su

A : Rn → Rm i B : Rm → Rk

linearna preslikavanja, onda je kompozicija

B ◦A : Rn → Rk, (B ◦A)(x) = B(A(x))

takoder linearno preslikavanje. Naime, zbog linearnosti preslikavanja A i B
imamo

B(A(x+ y)) = B(A(x) +A(y)) = B(A(x)) +B(A(y)),

B(A(λx)) = B(λA(x)) = λB(A(x)).

Kompoziciju B ◦A linearnih preslikavanja A i B označavamo kratko s BA.
Po dogovoru za linearno preslikavanje C pǐsemo Cx umjesto C(x), pa po
definiciji kompozicije BA imamo

(BA)x = B(Ax),

što onda pǐsemo bez zagrada kao

BAx.
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6.2. Množenje matrica. Neka je A : Rn → Rm linearno preslikavanja
s matricom (a1, . . . , an) tipa m × n i neka je B : Rm → Rk linearno presli-
kavanja s matricom (b1, . . . , bm) tipa k ×m. Kompozicija BA : Rn → Rk je
linearno preslikavanje i ima matricu

C = (c1, . . . , cn) = (BAe1, . . . , BAen)

tipa k×n, gdje je e1, . . . , en kanonska baza u Rn. Stupce cj = B(Aej) = Baj
matrice C računamo po formuli (3.3) za množenje matrice i vektora. Matricu

(6.1) C = (Ba1, . . . , Ban)

zovemo produktom matrica (b1, . . . , bm) i (a1, . . . , an).

Primijetimo da je definirano množenje dvije matrice samo za k × m
matricu s m× n matricom i da je rezultat matrica tipa k× n. Istaknimo to
kao “formulu”

(k ×m) · (m× n) = (k × n).

Stavimo li A = (αij), B = (βij) i C = (γij), tada formulu (6.1) za množenje
matrica

C = BA

možemo zapisati pomoću matričnih koeficijenata kao

(6.2) γij =
m∑
r=1

βirαrj za sve i = 1, . . . , k, j = 1, . . . , n.

6.3. Primjer. Za matrice

A =

(
1 2 3
4 5 6

)
, B =

(
1 −1
0 2

)
produkt AB nije definiran, a za BA imamo

BA =

(
1 −1
0 2

)(
1 2 3
4 5 6

)
=

(
−3 −3 −3
8 10 12

)
.

6.4. Množenje n × n matrica nije komutativno. Za dvije n × n
matrice A i B definirani su produkti AB i BA, no općenito oni nisu jednaki.
Na primjer(

0 1
0 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
,

(
0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
.

6.5. Zadatak. Dokažite2 da je RϕRψ = Rϕ+ψ, tj.(
cosϕ − sinϕ
sinϕ cosϕ

)(
cosψ − sinψ
sinψ cosψ

)
=

(
cos (ϕ+ ψ) − sin (ϕ+ ψ)
sin (ϕ+ ψ) cos (ϕ+ ψ)

)
.

2Za funkcije sin i cos vrijede adicioni teoremi:

sin(ϕ+ ψ) = sinϕ cosψ + cosϕ sinψ,

cos (ϕ+ ψ) = cosϕ cosψ − sinϕ sinψ.
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6.6. Množenje jediničnom matricom. Za linearna preslikavanja pri-
rodno je definirana kompozicija preslikavanja, uz pretpostavku da je po-
dručje vrijednosti jednog preslikavanja jednako području definicije drugog
preslikavanja. Množenje matrica definirano je tako da je produkt matrica
preslikavanja upravo matrica kompozicije. Budući da kompozicija s identi-
tetom ne mijenja linearno preslikavanje, to i množenje s njenom jediničnom
matricom ne mijenja matricu preslikavanja. Zato za množenje jediničnom
matricom I vrijedi

AI = A, IB = B

(kada su produkti matrica definirani).

6.7. Asocijativnost množenja matrica. Budući da je kompozicija
asocijativna operacija, to je i pripadno množenje matrica asocijativno: za
tri matrice A, B i C (tipa k ×m, m× n i n× p) je

(AB)C = A(BC).

6.8. Vǐsestruki produkti operatora na Rn. Neka su A1, A2, . . . , Ak
linearni operatori s Rn u Rn. Tada vǐsestruki produkt operatora definiramo
induktivno koristeći množenje dva po dva operatora:

A1A2A3 = (A1A2)A3, A1A2A3A4 = (A1A2A3)A4

i općenito
A1A2 · · ·Ak−1Ak = (A1A2 · · ·Ak−1)Ak.

Produkt od k faktora Ai = A zovemo k-tom potencijom operatora A i zapi-
sujemo kao Ak.

6.9. Asocijativnost za vǐsestruke produkte. Zbog asocijativnosti
množenja operatora za sve r i s imamo

(6.3) (A1 · · ·Ar)(Ar+1 · · ·Ar+s) = A1 · · ·ArAr+1 · · ·Ar+s.
Formulu dokazujemo indukcijom po r + s = k koristeći svojstvo asocijativ-
nosti za produkt tri operatora

(A1 · · ·Ar)(Ar+1 · · ·Ar+s)
= (A1 · · ·Ar)((Ar+1 · · ·Ar+s−1)Ar+s)

= ((A1 · · ·Ar)(Ar+1 · · ·Ar+s−1))Ar+s

= (A1 · · ·ArAr+1 · · ·Ar+s−1)Ar+s

= A1 · · ·ArAr+1 · · ·Ar+s−1Ar+s

(treća jednakost vrijedi zbog pretpostavke indukcije za r + s − 1 = k − 1).
Formulu (6.3) zovemo svojstvom asocijativnosti za vǐsestruke produkte ope-
ratora.

6.10. Potencije operatora na Rn. Zbog asocijativnosti množenja za
linearno preslikavanje A : Rn → Rn vrijedi

Ak+m = AkAm.
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6.11. Zadatak. Izračunajte sve potencije od J za

J =

(
0 −1
1 0

)
.

7. Pojam linearnog operatora

7.1. Definicija linearnog operatora. Neka su V i W vektorski pro-
stori nad poljem K. Kažemo da je preslikavanje

A : V →W

linearan operator ili linearno preslikavanje s V u W ako za sve vektore x, y ∈
V i sve skalare λ ∈ K vrijedi

A(x+ y) = A(x) +A(y), A(λx) = λA(x).

Ako je A linearno, onda je običaj umjesto A(x) pisati Ax.

7.2. Svojstvo linearnosti preslikavanja i linearne kombinacije.
Ponavljajući doslovce argument iz točke 1.4 vidimo da je A linearan operator
ako i samo ako za proizvoljne linearne kombinacije vrijedi

(7.1) A(λ1x1 + · · ·+ λsxs) = λ1Ax1 + · · ·+ λsAxs.

7.3. Linearna preslikavanja Cn u Cm. Osim linearnih preslikavanja
s Rn u Rm, posebno su važna linearnih preslikavanja s Cn u Cm. Budući da
smo u dosadašnjem proučavanju linearnih preslikavanja s Rn u Rm koristili
samo svojstva zbrajanja i množenja realnih brojeva popisanih u definiciji
polja, to se sva razmatranja jednako prenose za svako dano polje, pa posebno
i za polje kompleksnih brojeva— samo treba zamijeniti R sa C.

7.4. Realne matrice kao kompleksne matrice. Budući da realne
brojeve možemo shvatiti kao kompleksne brojeve, to realne matrice možemo
shvatiti kao matrice linearnih operatora s Rn u Rm ili kao matrice linearnih
operatora sa Cn u Cm. No operatori na Rn i Cn nemaju ista svojstva. Na
primjer, realna matrica (

0 −1
1 0

)
je matrica rotacije A u R2 za kut π

2 , pa ne postoji vektor v 6= 0 koji bi
bio proporcionalan vektoru Av. S druge strane, shvatimo li tu matricu kao
matricu linearnog preslikavanja B sa C2 u C2, onda je(

0 −1
1 0

)(
i
1

)
= i

(
i
1

)
,

pa je vektor B ( i1 ) proporcionalan vektoru ( i1 ). Ovaj primjer pokazuje da
operator B na kompleksnom prostoru ima svojstvo koje operator A na re-
alnom prostoru nema. Kao što ćemo vidjeti, to je vezano za svojstvo skupa
kompleksnih brojeva C da jednadžba x2 + 1 = 0 ima rješenje u C (rješenje
je x = ±i).
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7.5. Pitanje. Da li je(
0 −1
1 0

)(
i
−1

)
= −i

(
i
−1

)
? DA NE

7.6. Zadatak. Izračunajte(
0 −1
1 0

)2

,

(
i 0
0 −i

)2

,

(
0 i
i 0

)2

.

7.7. Množenje linearnih operatora. Ako su U , V i W vektorski
prostori nad istim poljem K i

B : U → V i A : V →W

dva linearna operatora, onda produkt operatora AB definiramo kao kompo-
ziciju

(AB)(x) = (A ◦B)(x) = A(B(x)) za svaki x ∈ U.
Lako je provjeriti da je AB takoder linearan operator s U u W . Operacija
množenja je asocijativna

(AB)C = A(BC).

Kao i obično, identitetu idV na V obično označavamo s I,

I : V → V, I : x 7→ x za svaki x ∈ V.

Za identite na V i W i operator A : V →W imamo

AI = A, IA = A.

7.8. Linearan operator odreden je vrijednostima na bazi. Ključ-
ni moment našeg razmatranja linearnih preslikavanja s Rn u Rm je jednostav-
na primjedba da je to linearno preslikavanje u potpunosti odredeno svojim
vrijednostima u (kanonskoj) bazi. To ključno svojstvo vrijedi i općenito za
linearne operatore:

Teorem Neka su V i W vektorski prostori i B baza od V .

(1) Linearno preslikavanje A : V →W u potpunosti je odredeno svojim
vrijednostima

A(e), e ∈ B
na elementima baze B vektorskog prostora V .

(2) Ako je na bazi B vektorskog prostora V zadano preslikavanje

a : B →W, e 7→ a(e),

onda postoji jedinstveno linearno preslikavanje A : V → W takvo
da je A(e) = a(e).
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Dokaz. Za dokaz teorema treba samo ponoviti argumente iz točke 3.1
i točke 2.1:

(1) Ako je v vektor u V , onda postoje vektori baze x1, . . . , xs ∈ B takvi
da imamo jedinstveni prikaz vektora v kao kombinacije

v = λ1x1 + · · ·+ λsxs.

No tada zbog linearnosti (7.1) operatora A imamo

Av = λ1Ax1 + · · ·+ λsAxs.

Budući da su za dani v u potpunosti odredeni koeficijenti λ1, . . . , λs, a po
pretpostavci su odredene i vrijednosti Ax1, . . . , Axs operatora A na elemen-
tima baze, to je u potpunosti odreden i vektor Av. Znači da je preslikavanje
v 7→ Av u potpunosti odredeno.

(2) Neka su zadani vektori a(e) ∈W za svaki e ∈ B. Ako je vektor v ∈ V
prikazan kao v = λ1x1 + · · · + λsxs pomoću vektora baze x1, . . . , xs ∈ B,
onda stavimo

A(v) = λ1a(x1) + · · ·+ λsa(xs) ∈W.
Time smo definirali preslikavanje

A : V →W, v 7→ A(v)

i preostaje vidjeti da je to preslikavanje linearno. Za skalar µ zbog prikaza
vektora µv = µλ1x1 + · · ·+ µλsxs po definiciji imamo

A(µv) = µλ1a(x1) + · · ·+ µλsa(xs) = µA(v).

Na sličan način dokazujemo i da je A(v + u) = A(v) +A(u). �

7.9. Teorem. Neka su V i W vektorski prostori i B baza od V . Tada
je linearno preslikavanje A : V →W izomorfizam ako i samo ako su vektori

(7.2) Ae, e ∈ B

baza vektorskog prostora W .

Dokaz. Neka je A izomorfizam, tj. linearna bijekcija. Zbog surjektiv-
nosti preslikavanja A za svaki vektor w ∈W postoji v ∈ V takav da je w =
Av, pa raspisujući v kao linearnu kombinaciju vektora baze x1, . . . , xs ∈ B
dobivamo

w = Av = A(λ1x1 + · · ·+ λsxs) = λ1Ax1 + · · ·+ λsAxs.

Znači da skup vektora (7.2) razapinje W . Zbog injektivnosti preslikavanja
A imamo Av = 0 samo za v = 0, pa relacija

λ1Ax1 + · · ·+ λsAxs = 0

povlači

λ1x1 + · · ·+ λsxs = 0.

Sada iz linearne nezavisnosti baze B slijedi λ1 = · · · = λs = 0, a to znači da
je skup vektora (7.2) linearno nezavisan.
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Obratno, ako su vektori (7.2) baza u W , onda prema prethodnom te-
oremu 7.8 postoji jedinstveno linearno preslikavanje

C : W → V

koje je na bazi (7.2) od W zadano vrijednostima

C(Ae) = e, e ∈ B.
Tada su CA : V → V i AC : W → W linearna preslikavanja koja su na
odgovarajućim bazama identitete

CAe = e, AC(Ae) = A(CAe) = Ae,

pa zbog jedinstvenosti takvih preslikavanja mora biti

CA = id V , AC = idW .

Znači da je A bijekcija s inverznim preslikavanjem C. �



POGLAVLJE 8

Regularni operatori na Rn

0.1. Pojmovi injekcije i surjekcije. Neka su A i B dva skupa i
f : A→ B preslikavanje sa skupa A u skup B.

Kažemo da je preslikavanje f injekcija ako x 6= y povlači f(x) 6= f(y).
Drugim riječima, injekcija pridružuje različitim elementima iz A različite
elemente u B. Očito je preslikavanje f injekcija ako i samo ako f(x) = f(y)
povlači x = y.

Kažemo da je preslikavanje f surjekcija ako za svaki element b ∈ B
postoji neki element a ∈ A takav da je b = f(a). Drugim riječima, pri
preslikavanju f svaki je element iz B slika nekog elementa iz A.

0.2. Bijekcija. Kažemo da je preslikavanje f bijekcija ako je injekcija i
surjekcija. Ako je f bijekcija, onda možemo identificirati elemente skupa A
s elementima skupa B tako da element a identificiramo s njegovom slikom
f(a), pǐsemo

a←→ f(a).

Naime, zbog injektivnosti različite elemente x, y ∈ A identificiramo s različitim
elementima f(x), f(y) ∈ B, a zbog surjektivnosti smo svaki element b ∈ B
identificirali s nekim elementom a ∈ A. Grubo govoreći, ako je f bijekcija,
onda skupovi A i B “izgledaju isto”.

0.3. Inverzno preslikavanje. Ako je f bijekcija, onda postoji inverzno
preslikavanje g : B → A koje elementima f(a) ∈ B pridružuje elemente
a ∈ A, pǐsemo

g : f(a) 7→ a.

Drugim riječima, ako je b = f(a), onda je g(b) = a. Očito je inverzno
preslikavanje takoder bijekcija i vrijedi

g(f(a)) = a, f(g(b)) = b.

Inverzno preslikavanje g označavamo s f−1.

0.4. Identiteta i inverzno preslikavanje. Ako je f : A→ B bijekcija
i g : B → A inverzno preslikavanje od f , onda je

g ◦ f = idA i f ◦ g = idB

jer je g(f(a)) = a za sve a ∈ A i f(g(b)) = b za sve b ∈ B.

171
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0.5. Lema. Neka su f : A→ B i g : B → A preslikavanja. Ako je

g ◦ f = idA ,

onda je f injekcija i g surjekcija.

Dokaz. f(x) = f(y) povlači x = y jer je

x = idA(x) = (g ◦ f)(x) = g(f(x)) = g(f(y)) = (g ◦ f)(y) = idA(y) = y.

Znači da je f injekcija. S druge strane, iz upravo izvedene formule x =
g(f(x)) vidimo da je svaki x ∈ A slika g(y) elementa y = f(x), pa je g
surjekcija. �

1. Linearne surjekcije i injekcije

1.1. Linearne surjekcije. Neka jeA : Rn → Rm linearno preslikavanje.
Kažemo da je A linearna surjekcija (sa Rn na Rm) ako je preslikavanje A
surjektivno, tj. ako za svaki vektor b u Rm postoji neki vektor x u Rn takav
da je b = Ax. Drugim riječima, linearno preslikavanje A je surjekcija ako i
samo ako sistem jednadžbi

Ax = b

ima rješenje za svaki b ∈ Rm.

1.2. Teorem. Neka je A : Rn → Rm linearno preslikavanje i e1, . . . , en
kanonska baza u Rn. Tada je A surjekcija ako i samo ako vektori Ae1, . . . , Aen
razapinju Rm.

Dokaz. Neka vektori Ae1, . . . , Aen razapinju Rm. Tada svaki y ∈ Rm
možemo prikazati kao linearnu kombinaciju

y = λ1Ae1 + · · ·+ λnAen.

No zbog linearnosti preslikavanja A imamo

y = A(λ1e1 + · · ·+ λnen),

tj. y je slika vektora λ1e1 + · · ·+ λnen iz Rn. Znači da je A surjekcija.
Obrat. Pretpostavimo da je A surjekcija. Neka je y = Ax za vektor

x = ξ1e1 + · · ·+ ξnen

iz Rn. Tada zbog linearnosti preslikavanja A imamo

y = A(ξ1e1 + · · ·+ ξnen) = ξ1Ae1 + · · ·+ ξnAen,

tj. y je linearna kombinacija vektora Ae1, . . . , Aen. Znači da ti vektori
razapinju Rm. �

Prema teoremu 3.3.10 je broj izvodnica od Rm veći ili jednak m, pa
u slučaju linearne surjekcije imamo neposrednu posljedicu prethodnog te-
orema:

1.3. Korolar. Ako je A : Rn → Rm linearna surjekcija, onda je n ≥ m.
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1.4. Pitanje. Da li je linearno preslikavanje zadano matricom1 2
1 1
3 1


surjekcija? DA NE

1.5. Zadatak. Koristeći elementarne transformacije dokažite da je li-
nearno preslikavanje zadano matricom1 2 1

1 1 2
3 1 1


surjekcija.

1.6. Linearne injekcije. Neka je A : Rn → Rm linearno preslikavanje.
Kažemo da je A linearna injekcija (sa Rn u Rm) ako je preslikavanje A
injektivno, tj. ako Ax = Ay povlači x = y.

1.7. Teorem. Neka je A : Rn → Rm linearno preslikavanje. Tada je A
injekcija ako i samo ako homogeni sistem jednadžbi

Ax = 0

ima jedinstveno rješenje x = 0.

Dokaz. Pretpostavimo da jednadžba Ax = 0 ima jedinstveno rješenje
x = 0. Neka je Au = Av. Tada je zbog linearnosti preslikavanja A

A(u− v) = Au−Av = 0,

pa je rješenje sistema x = u−v = 0, odnosno u = v. Znači da je A injekcija.
Obrat. Pretpostavimo da je A injekcija. Budući da je A0 = 0, to zbog

injektivnosti Ax = 0 povlači x = 0. �

1.8. Teorem. Neka je A : Rn → Rm linearno preslikavanje i e1, . . . , en
kanonska baza u Rn. Tada je A injekcija ako i samo su vektori Ae1, . . . , Aen
linearno nezavisni.

Dokaz. Pretpostavimo da su vektori Ae1, . . . , Aen linearno nezavisni.
Ako je Ax = 0 za vektor

x = ξ1e1 + · · ·+ ξnen,

onda je zbog linearnosti preslikavanja A

Ax = ξ1Ae1 + · · ·+ ξnAen = 0,

pa zbog linearne nezavisnosti vektora Ae1, . . . , Aen slijedi ξ1 = · · · = ξn = 0,
tj. x = 0. Sada iz teorema 1.7 slijedi da je A injekcija.

Obrat. Pretpostavimo da je A injekcija. Ako je

ξ1Ae1 + · · ·+ ξnAen = 0,
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onda je zbog linearnosti preslikavanja A

Ax = A(ξ1e1 + · · ·+ ξnen) = 0,

pa zbog injektivnosti preslikavanja A imamo x = ξ1e1 + · · · + ξnen = 0, tj.
ξ1 = · · · = ξn = 0. Znači da su vektori Ae1, . . . , Aen linearno nezavisni. �

Prema teoremu 3.3.10 je broj linearno nezavisnih vektora u Rm manji
ili jednak m, pa u slučaju linearne injekcije imamo neposrednu posljedicu
prethodnog teorema:

1.9. Korolar. Ako je A : Rn → Rm linearna injekcija, onda je n ≤ m.

1.10. Pitanje. Da li je linearno preslikavanje zadano matricom(
1 2 1
1 1 2

)
injekcija? DA NE

1.11. Zadatak. Koristeći elementarne transformacije dokažite injek-
tivnost linearnog preslikavanja zadanog matricom1 2 1

1 1 2
3 1 1

 .

1.12. Linearne bijekcije na Rn. Ako je A : Rn → Rm linearna bijek-
cija, onda je n = m.

Naime, s jedne je strane A surjekcija, pa je prema korolaru 1.3 n ≥ m, a
s druge je strane A injekcija, pa je prema korolaru 1.9 n ≤ m. Primijetimo
da je to u suštini isti dokaz kao dokaz iste tvrdnje teorema 3.??. Neposredna
posljedica teorema 1.2 i 1.8 je i teorem 7.7.9:

Neka je A : Rn → Rn linearno preslikavanje i e1, . . . , en kanonska baza u
Rn. Tada je A bijekcija ako i samo ako su vektori Ae1, . . . , Aen baza u Rn.

Koristeći teorem 3.3.18 dobivamo i treću neposrednu posljedicu teore-
ma 1.2 i 1.8:

1.13. Teorem. Neka je A : Rn → Rn linearno preslikavanje. Tada je
ekvivalentno:

(1) A je bijekcija,
(2) A je surjekcija,
(3) A je injekcija.

Ovo je jedan od najvažnijih teorema linearne algebre. Posebno je važna
i korisna tvrdnja da injektivnost preslikavanja povlači surjektivnost. Naime,
provjera da je A injekcija svodi se na provjeru da jedan sistem jednadžbi

Ax = 0
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ima jedinstveno rješenje x = 0, a provjera da je A surjekcija svodi se na
provjeru da svaki od beskonačno mnogo sistema jednadžbi

Ax = b, b ∈ Rn

ima rješenje.

1.14. Primjer. Za dokaz da je linearno preslikavanje zadano matricom1 2 1
1 1 2
3 1 1


linearna bijekcija dovoljno je dokazati da su stupci matrice linearno nezavi-
sni.

2. Regularni operatori na Rn

2.1. Regularni linearni operatori. Ako je

A : Rn → Rn

linearna bijekcija1, onda je i inverzno preslikavanje

A−1 : Rn → Rn

linearno preslikavanje2. Zbog ovog svojstva linearne bijekcije na na Rn zo-
vemo invertibilnim ili regularnim linearnim operatorima na Rn, a operator
A−1 zovemo inverzom od A.

2.2. Inverzna matrica. Neka je A matrica tipa n×n. Za n×n matricu
B kažemo da je inverzna matrica ili inverz od A ako vrijedi

AB = BA = I.

Ako inverz od A postoji, onda mora biti jedinstven. Naime, ako za neku
n× n matricu B′ vrijedi AB′ = B′A = I, onda zbog svojstva množenja s I
i asocijativnosti množenja matrica imamo

B′ = B′I = B′(AB) = (B′A)B = IB = B.

Ako postoji, inverz od A označavamo s A−1.

1odnosno: izomorfizam od Rn ili automorfizam na Rn

2Naime, za proizvoljna dva vektora a i b postoje jedinstveni vektori x i y takvi da
je a = A(x) i b = A(y), odnosno x = A−1(a) i y = A−1(b), pa koristeći linearnost
preslikavanja A dobivamo

A−1(a+ b) = A−1(A(x) +A(y)) = A−1(A(x+ y)) = x+ y = A−1(a) +A−1(b).

Na sličan način dokazujemo i svojstvo linearnosti u odnosu na množenja skalarom

A−1(αa) = A−1(αA(x)) = A−1(A(αx)) = αx = αA−1(a).
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2.3. Primjer. Matrica ( 0 0
0 0 ) nema inverznu matricu jer za sve 2 × 2

matrice (βij) imamo(
0 0
0 0

)(
β11 β12

β21 β22

)
=

(
0 0
0 0

)
6=
(

1 0
0 1

)
.

2.4. Zadatak. Razmǐsljajte geometrijski i nadite inverz matrice(
cosϕ − sinϕ
sinϕ cosϕ

)
.

2.5. Regularni operatori i regularne matrice. Ako je A regularan
operator, onda iz relacije

AA−1 = A−1A = I,

slijedi da je matrica preslikavanja A−1 inverzna matrica matrice preslikava-
nja A. Obratno, ako matrica A ima inverznu matricu B, tj. ako je

AB = BA = I,

onda je linearno preslikavanje definirano matricom A bijekcija. Naime, po-
istovjetimo li matrice i pripadna preslikavanja, onda je prema lemi 0.5 zbog
relacije

AB = I

preslikavanje A surjekcija, a zbog relacije

BA = I

je preslikavanje A injekcija. Matrice koje imaju inverz zovemo invertibilnim
ili regularnim matricama. U skladu s prijašnjim dogovorom mi ćemo često
poistovjećivati regularne operatore i regularne matrice

2.6. Primjedba. Linearno preslikavanjeAmože biti bijekcija samo ako
je A : Rn → Rn za neki n. Zato iz prethodnog razmatranja slijedi da za
matrice A i B može biti AB = BA = I samo ako su obe matrice tipa n× n
za neki n. Tako je, na primjer(

1 0
)(1

0

)
= 1, ali

(
1
0

)(
1 0

)
=

(
1 0
0 0

)
6=
(

1 0
0 1

)
.

2.7. Zadatak. Nadite 2 × 3 matricu A i 3 × 2 m atricu B tako da je
AB = I i izračunajte BA.

2.8. Teorem. Neka su A i B kvadratne matrice tipa n × n. Tada su
sljedeće tri tvrdnje ekvivalentne:

(1) AB = BA = I ,
(2) AB = I ,
(3) BA = I .

Ako vrijedi jedna od tvrdnji, onda je B = A−1 i A = B−1.
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Dokaz. Shvatimo matrice A i B kao linearna preslikavanja Rn → Rn.
Ako je AB = I, onda je prema lemi 0.5 preslikavanje A surjekcija. No onda
je prema teoremu 1.13 preslikavanje A bijekcija i postoji inverz A−1. Sada
iz pretpostavke AB = I slijedi

B = IB = (A−1A)B = A−1(AB) = A−1I = A−1,

pa vrijedi AB = BA = I.
Ako je BA = I, onda je prema lemi 0.5 preslikavanje A injekcija. No

onda je prema teoremu 1.13 preslikavanje A bijekcija i postoji A−1. Sada iz
pretpostavke BA = I slijedi

B = BI = B(AA−1) = (BA)A−1 = IA−1 = A−1,

pa vrijedi AB = BA = I. �

2.9. Pitanje. Da li iz relacije ( 1 1
0 1 )

(
1 −1
0 1

)
= ( 1 0

0 1 ) slijedi

( 1 1
0 1 )

−1
=
(

1 −1
0 1

)
i
(

1 −1
0 1

)−1
= ( 1 1

0 1 ) ? DA NE

2.10. Teorem. Kvadratna n×n matrica A je regularna ako i samo ako
postoje rješenja b1, . . . , bn sistema jednadžbi

(2.1) Ax1 = e1, . . . , Axn = en,

pri čemu su desne strane sistema vektori kanonske baze u Rn. Ako je A
regularna, onda je

A−1 = (b1, . . . , bn).

Dokaz. Ako je A−1 = (b1, . . . , bn) inverzna matrica matrice A, onda
zbog pravila o množenju matrica imamo

AA−1 = A(b1, . . . , bn) = (Ab1, . . . , Abn) = A−1 = (e1, . . . , en) = I.

Znači da je vektor bi rješenje sistema Ax = ei.
Obratno, ako sistemi (2.1) imaju rješenja b1, . . . , bn, onda je AB = I za

matricu B = (b1, . . . , bn) i tvrdnja slijedi iz teorema 2.8. �

Primjedba. Ako su vektori b1, . . . , bn iz Rn rješenja n sistema jednadžbi
(2.1), onda je (b1, . . . , bn) = A−1, pa zbog jedinstvenosti inverza slijedi da je
za svaki i = 1, . . . , n rješenje bi sistema Axi = ei jedinstveno.

2.11. Primjer. Očito su stupci matrice

A =

1 1 2
0 1 −1
0 0 1


linearno nezavisni, pa je A regularna matrica. Tri sistema jednadžbi (2.1)
riješavamo istovremeno Gaussovom metodom:

(A | e1, e2, e3) =

1 1 2 | 1 0 0
0 1 −1 | 0 1 0
0 0 1 | 0 0 1

 7→
1 1 2 | 1 0 0

0 1 0 | 0 1 1
0 0 1 | 0 0 1

 7→
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0 1 0 | 0 1 1
0 0 1 | 0 0 1

 7→
1 0 0 | 1 −1 −3

0 1 0 | 0 1 1
0 0 1 | 0 0 1

 = (I | b1, b2, b3).

Dobivena matrica B = (b1, b2, b3) je inverz od A, tj.

A−1 =

1 −1 −3
0 1 1
0 0 1

 .

2.12. Zadatak. Stupci matrice

A =

1 2 −2
1 3 −4
2 4 −3


su baza u R3. Izračunajte inverz od A.

2.13. Zadatak. Koristeći teorem 2.10 dokažite da kvadratna matrica
koja ima jedan redak nula nema inverz.

2.14. Samo produkt regularnih matrica je regularna matrica.
Neka su A i B kvadratne n × n matrice i neka je produkt AB regularna
matrica. Tada su A i B regularne matrice.

Dokaz. Ako je AB regularna matrica, onda je operator AB : Rn → Rn
injekcija i surjekcija. Tada je očito B injekcija i A surjekcija, pa tvrdnja da
su B i A bijekcije slijedi iz teorema 1.13. �

3. Opća linearna grupa GL(n,R)

3.1. Produkt regularnih operatora. Ako su A i B regularni opera-
tori na Rn, onda je i kompozicija AB regularan operator i vrijedi

(AB)−1 = B−1A−1

jer je zbog asocijativnosti kompozicije

B−1A−1AB = B−1IB = B−1B = I,

ABB−1A−1 = AIA−1 = AA−1 = I.

Za vǐsestruke produkte regularnih operatora imamo

(A1A2 · · ·Ak−1Ak)
−1 = A−1

k A−1
k−1 · · ·A

−1
2 A−1

1 .

Produkt od k faktora Ai = A−1 zapisujemo kao A−k.

3.2. Pitanje. Da li je (A−1)−1 = A−2 ? DA NE

3.3. Zadatak. Neka je A =

(
1 1
0 1

)
i B =

(
1 0
1 1

)
. Pokažite da

(AB)−1 6= A−1B−1.
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3.4. Pojam grupe. Za neprazan skup G kažemo da je grupa ako je
zadana binarna operacija

? : G×G→ G, (a, b) 7→ a ? b,

tako da za sve elemente a, b, c ∈ G vrijedi

(1) (a ? b) ? c = a ? (b ? c) (asocijativnost);
(2) postoji neutralni element e tako da je a ? e = e ? a = a;
(3) svaki a ∈ G ima inverzni element a−1 tako da je a?a−1 = a−1?a = e.

Binarnu operaciju u grupi često zovemo množenjem3, a neutralni element e
zovemo jedinicom u grupi.

3.5. Opća linearna grupa GL(n,R). Na skupu svih regularnih ope-
ratora na Rn imamo operaciju množenja (kompoziciju preslikavanja) koja je
asocijativna, postoji jedinica I i svaki element A ima inverz A−1. Znači da
je taj skup grupa i zovemo ga općom linearnom grupom GL(n,R) (čitamo
“ge el en er”).

3.6. Opća linearna grupa nije komutativna. Za n ≥ 2 množenje
nije komutativno. Na primjer, za n = 2 imamo regularne operatore zadane
matricama tako da je(

1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
6=
(

1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
.

Općenitije, za regularne n× n matrice

A = (e1, e1 + e2, e3, . . . , en) i B = (e1 + e2, e1, e3, . . . , en).

imamo AB 6= BA. Zbog toga kažemo da je GL(n,R) nekomutativna grupa.

3.7. Uredena baza u Rn. Uredena baza u Rn je baza t1, . . . , tn shva-
ćena kao niz vektora, tj. kao n-torka vektora (t1, t2, . . . , tn) u kojem t1
zovemo prvim elementom baze, t2 zovemo drugim elementom baze itd. Prema
teoremu 1.12 uredena baza je regularna matrica

T = (t1, . . . , tn)

čiji su stupci baza t1, . . . , tn u Rn. Zbog toga skup regularnih matrica
GL(n,R) možemo “geometrijski” shvatiti kao skup svih uredenih baza u
Rn. Na primjer, jediničnu matricu možemo shvatiti kao kanonsku bazu

I = (e1, . . . , en),

a matricu 
0 . . . 0 1
0 . . . 1 0
...

...
...

1 . . . 0 0

 = (en, . . . , e1)

3Primjer grupe je i skup svih cijelih brojeva Z s obzirom na operaciju zbrajanja +. U
slučaju operacije zbrajanja neutralni element zovemo nula i označavamo ga s 0, a inverzni
element od a radije zovemo suprotnim elementom i označavamo ga s −a.
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kao uredenu bazu (en, . . . , e1) u Rn kojoj je en prvi element, . . . , e1 n-ti
element.

3.8. Elementarne matrice. Matricu dobivenu nekom elementarnom
transformacijom stupaca jedinične matrice zovemo elementarnom matricom.
Znači da imamo tri tipa elementarnih n× n matrica

(e1, . . . , ei−1, ej , ei+1, . . . , ej−1, ei, ej+1, . . . , en), i < j,(3.1)

(e1, . . . , ei−1, λei, ei+1, . . . , , en), λ 6= 0,(3.2)

(e1, . . . , ei−1, ei + λej , ei+1, . . . , en), j 6= i.(3.3)

Na primjer, imamo 4× 4 elementarne matrice
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,


1 0 0 0

0
√

2 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
λ 0 0 1

 .

3.9. Množenje matrice elementarnom matricom. Neka je

A = (a1, . . . , an)

m×n matrica i E elementarna matrica (3.1). Tada je po definiciji množenja
matrica

AE = A(e1, . . . , ei−1, ej , ei+1, . . . , ej−1, ei, ej+1, . . . , en)

= (Ae1, . . . , Aei−1, Aej , Aei+1, . . . , Aej−1, Aei, Aej+1, . . . , Aen)

= (a1, . . . , ai−1, aj , ai+1, . . . , aj−1, ai, aj+1, . . . , an).

Znači da je A 7→ AE elementarna transformacija zamjene i-tog i j-tog stupca
matrice A.

Ako je E elementarna matrica (3.2), onda je

AE = A(e1, . . . , ei−1, λei, ei+1, . . . , , en)

= (Ae1, . . . , Aei−1, Aλei, Aei+1, . . . , Aen)

= (a1, . . . , ai−1, λai, ai+1, . . . , an).

Znači da je A 7→ AE elementarna transformacija množenja i-tog stupca
matrice A skalarom λ 6= 0.

Ako je E elementarna matrica (3.3), onda je

AE = A(e1, . . . , ei−1, ei + λej , ei+1, . . . , , en)

= (Ae1, . . . , Aei−1, A(ei + λej), Aei+1, . . . , Aen)

= (a1, . . . , ai−1, ai + λaj , ai+1, . . . , an).

Znači da je A 7→ AE elementarna transformacija pribrajanja i-tom stupcu
matrice A j-tog stupca pomnoženog skalarom λ.
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3.10. Regularna matrica je produkt elementarnih matrica. Za
regularnu matricu T = (t1, . . . , tn) su vektori t1, . . . , tn baza od Rn, pa prema
teoremu 3.1.17 postoji niz elementarnih transformacija

I 7→ I ′ 7→ . . . 7→ T,

ili zapisano pomoću elementarnih matrica

I 7→ IE1 7→ IE1E2 7→ . . . 7→ IE1E2 . . . Es = T.

Znači da T možemo napisati kao produkt elementarnih matrica

T = E1E2 . . . Es.

3.11. Primjer. Za niz elementarnih transformacija

A =

1 1 2
0 1 −1
0 0 1

 7→
1 1 3

0 1 0
0 0 1

 7→
1 1 0

0 1 0
0 0 1

 7→
1 0 0

0 1 0
0 0 1

 = I

imamo inverzne transformacije

I =

1 0 0
0 1 0
0 0 1

 7→
1 1 0

0 1 0
0 0 1

 7→
1 1 3

0 1 0
0 0 1

 7→
1 1 2

0 1 −1
0 0 1

 = A

pa je

A = IE1E2E3 = I(e1, e2 + e1, e3)(e1, e2, e3 + 3e1)(e1, e2, e3 − e2).

Znači da je

A =

1 1 0
0 1 0
0 0 1

1 0 3
0 1 0
0 0 1

1 0 0
0 1 −1
0 0 1

 .

3.12. Zadatak. Napǐsite regularnu matricu

A =

(
1 2
1 3

)
kao produkt elementarnih matrica.

4. Matrice permutacija

4.1. Grupa permutacija Sn. Bijekciju

σ : {1, . . . , n} → {1, . . . , n}
obično zovemo permutacijom skupa {1, . . . , n} i obično zapisujemo kao niz

σ(1), . . . , σ(n).

Tako, na primjer, niz 2431 označava permutaciju

1 7→ 2, 2 7→ 4, 3 7→ 3, 4 7→ 1

skupa {1, 2, 3, 4}. Kompozicija permutacija σ ◦ ν je permutacija koju zapi-
sujemo σν i zovemo produktom permutacija σ i ν, a kompoziciju zovemo
množenjem. Skup permutacija s tom binarnom operacijom je grupa jer je
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množenje asocijativno, postoji jedinica id i svaka permutacija σ ima inverz
σ−1. Grupu permutacija skupa {1, . . . , n} označavamo sa Sn.

4.2. Pitanje. Da li niz 123123 predstavlja permutaciju u S6 ? DA NE

4.3. Primjer. Za permutaciju σ = 3412 je σ2 = id. Naime

σ2(1) = σ(σ(1)) = σ(3) = 1,

σ2(2) = σ(σ(2)) = σ(4) = 2,

σ2(3) = σ(σ(3)) = σ(1) = 3,

σ2(4) = σ(σ(4)) = σ(2) = 4.

4.4. Pitanje. Da li je 4231 inverz permutacije 4231 u S4 ? DA NE

4.5. Matrice permutacija. Za permutaciju σ skupa {1, . . . , n} defi-
niramo n× n matricu permutacije

Tσ = (eσ(1), . . . , eσ(n)).

Drugim riječima, matrica permutacije σ je matrica regularnog operatora Tσ
na Rn definiranog na kanonskoj bazi relacijama

Tσej = eσ(j) , j = 1, . . . , n.

Na primjer, za permutaciju 4231 u S4 imamo 4× 4 matricu permutacije

Tσ = (e4, e2, e3, e1) =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 ,

a za identitetu id = 1234 je matrica permutacije jedinična matrica

Tid = (e1, e2, e3, e4) = I.

4.6. Pitanje. Da li je
(

0 1 0
1 0 1
0 1 0

)
matrica permutacije? DA NE

4.7. Množenje matrica permutacija. Budući da za produkt permu-
tacija σν vrijedi

Tσνej = e(σν)(j) = eσ(ν(j)) = Tσeν(j) = Tσ(Tνej),

to za matrice permutacija vrijedi formula

(4.1) Tσν = TσTν .

Budući da je Tid = I, iz gornje formule slijedi I = TσTσ−1 , odnosno

(4.2) Tσ−1 = (Tσ)−1.
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4.8. Primjer. Budući da je σ2 = id za permutaciju σ = 3412, to je

T 2
σ = I, (Tσ)−1 = Tσ,

ili zapisano pomoću matrica
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

4.9. Matrica inverza permutacije. Neka je σ permutacija skupa {1, . . . , n}.
Tada je

(4.3) (Tσ)t = Tσ−1 .

Na primjer,

(e3, e1, e4, e2)t =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


t

=


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 = (e2, e4, e1, e3).

Dokaz. Matrica Tσ permutacije σ ∈ Sn u svakom stupcu i svakom retku
ima jednu jedinicu i sve ostale elemente nula. Zato je i transponirana matrica
(Tσ)t matrica permutacije Tν za neku permutaciju ν. Matrične elemente od
Tσ = (eσ(1), . . . , eσ(n)) = (αij) i transponirane matrice Tν = (βij) možemo
zapisati

αij =

{
1 kad je i = σ(j)

0 inače,
βji =

{
1 kad je j = ν(i)

0 inače.

No po definiciji transponirane matrice imamo βji = αij , pa

i = σ(j) = σ(ν(i)) i j = ν(i) = ν(σ(j))

povlači σν = νσ = id, odnosno ν = σ−1. �

5. Trukutaste matrice

5.1. Pojam podgrupe. Ako je G s binarnom operacijom ? grupa,
onda kažemo da je podskup H ⊂ G podgrupa ako je H s operacijom ?
grupa. To znači da H sadrži jedinicu i da je zatvoreno za operacije množenja
i invertiranja.

5.2. Primjer. Skup svih matrica permutacija

{Tσ | σ ∈ Sn} ⊂ GL(n,R)

je podgrupa opće linearne grupe jer je zbog (4.1) zatvoren za množenje
matrica, sadrži jediničnu matricu i zbog (4.2) je zatvoren za invertiranje
matrica.
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S druge strane, skup svih prirodnih brojeva N ⊂ Z je zatvoren za ope-
raciju zbrajanja u grupi cijelih brojeva Z, ali N nije podgrupa jer nema
neutralni element 0 i za prirodan broj n ne sadrži njemu suprotni −n.

5.3. Množenje trokutastih matrica. Neka su A = (αij) i B = (βij)
gornje trokutaste n× n matrice. Tada je i AB gornja trokutasta matrica.

Naime, po pretpostavci je αij = 0 i βij = 0 za i > j. Zato je za i > j

γij =
n∑
k=1

αikβkj =
n∑
k=i

αikβkj = 0,

gdje je prva jednakost definicija matričnog elementa u produktu matrica
C = AB, druga jednakost vrijedi zbog αik = 0 za i > k, a treća jednakost
vrijedi jer je βkj = 0 za k ≥ i > j.

Na sličan način vidimo i da je produkt donjih trokutastih matrica donja
trokutasta matrica.

5.4. Zadatak. Izračunajte produkte AB i BA za donje trokutaste ma-
trice

A =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 i B =


1 0 0 0
2 1 0 0
3 1 1 0
4 1 1 1


i uvjerite se da je AB 6= BA.

5.5. Regularne trokutaste matrice. Neka je A gornja ili donja tro-
kutasta matrica. Tada je A regularna ako i samo ako su joj svi dijagonalni
elementi αii različiti od nule.

Naime, ako su svi dijagonalni elementi gornje trokutaste matrice A
različiti od nule, onda obratnim hodom Gaussove metode vidimo da sis-
tem jednadžbi Ax = 0 ima jedinstveno rješenje x = 0 i da je prema teoremu
1.7 i 1.13 matrica A regularna. Obratno, neka je αjj = 0 za neki j i neka je
j najmanji takav indeks, tj. neka je αii 6= 0 za i < j. Tada obratnim hodom
Gaussove metode za sistem Ax = 0 vidimo da je za ξn = · · · = ξj+1 = 0
jednadžba

0ξj + αj,j+10 + · · ·+ αj,n0 = 0

zadovoljena za svaki skalar ξj i da za svaki izbor ξj jednadžbe

αiiξi + αi,i+1ξi+1 + · · ·+ αinξn = 0

odreduju jedinstvene ξi za i < j. Znači da sistem Ax = 0 nema jedinstveno
rješenje i da prema teoremu 1.7 i 1.13 matrica A nije regularna.

Tvrdnju za donje trokutaste matrice dokazujemo na sličan način.
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5.6. Pitanje. Da li je donja trokutasta matrica

A =

1 0 0
1 1 0
0 1 1


regularna? DA NE

5.7. Invertiranje trokutastih matrica. Neka je A regularna gornja
trokutasta matrica. Tada je inverz od A gornja trokutasta matrica.

Naime, inverz od A računamo istovremenim rješavanjem n sistema jed-
nadžbi Gaussovim eliminacijama

(A | I) 7→ . . . 7→ (I | B),

gdje je B na kraju postupka traženi inverz. Postupak započinjemo dijelje-
njem n-tog retka s αnn 6= 0 i eliminacijom prvih n − 1 elemenata u n-tom
stupcu matrice A, pri čemu umjesto vektora en u matrici I dobivamo neki
novi vektor. Zatim dijelimo (n − 1)-ti redak s αn−1,n−1 6= 0 i eliminiramo
prvih n − 2 elemenata u (n − 1)-tom stupcu matrice A, pri čemu umjesto
vektora en−1 iz početne matrice I dobivamo neki novi vektor kojemu je zad-
nja koordinata 0. Nastavljajući taj postupak dobivamo gornju trokutastu
matricu B.

Na sličan način vidimo i da je inverz donje trokutaste matrice donja
trokutasta matrica započinjući postupak s elementom α11.

5.8. Zadatak. Invertirajte donju trokutastu matricu1 0 0
1 1 0
0 1 1

 .

5.9. Podgrupe gornjih i donjih trokutastih matrica. Iz gornjih
razmatranja slijedi da je skup svih regularnih gornjih trokutastih n× n real-
nih matrica podgrupa opće linearne grupe GL(n,R). Isto tako je skup svih
regularnih donjih trokutastih n × n realnih matrica podgrupa opće linearne
grupe GL(n,R).

6. Matrica operatora u paru baza

6.1. Koordinate vektora u bazi. Neka je V konačno dimenzionalni
vektorski prostor nad poljem K i neka je B = (b1, b2, . . . , bn) uredena baza
od V . Tada je koordinatizacija s obzirom na bazu B

V → Kn, x 7→ xB
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izomorfizam vektorskih prostora koji vektoru x iz V pridružuje njegove ko-
ordinate xB u Kn :

x = ξ1b1 + ξ2b2 + · · ·+ ξnbn 7→ xB =


ξ1

ξ2
...
ξn

 .

Linearnost koordinatizacije

(x+ y)B = xB + yB, (λx)B = λxB.

možemo općenitije zapisati kao

(6.1)

(
k∑
i=1

λixi

)
B

=
k∑
i=1

λi(xi)B.

6.2. Primjer. Neka je V realni vektorski prostor polinoma stupnja ≤ 2
i E uredena baza

(1, x, x2).

Tada imamo koordinatizaciju V → R3,

(α0 + α1x+ α2x
2)E =

α0

α1

α2

 .

6.3. Napomena. Primijetimo da u slučaju V = Kn s kanonskom ba-
zom E = (e1, . . . , en) imamo

x = xE .

Na primjer, u R3 imamo

x = ξ1

1
0
0

+ ξ2

0
1
0

+ ξ3

0
0
1

 =

ξ1

ξ2

ξ3

 = xE .

6.4. Matrica linearnog operatora. Neka je V vektorski prostor s
uredenom bazom E = (e1, . . . , en) i W vektorski prostor s uredenom bazom
F = (f1, . . . , fm). Neka je

A : V →W

linearan operator. Tom linearnom operatoru pridružujemo matricu tipa
m× n čiji su stupci koordinate vektora Ae1, . . . , Aen

(6.2) AFE = ((Ae1)F , . . . , (Aen)F ).

Ako je AFE = (αij), onda dogovor o matrici operatora znači

(6.3) Aej =
m∑
i=1

αijfi, za j = 1, . . . , n.
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6.5. Napomena. Primijetimo da je pojam matrice linearnog presli-
kavanja A : Rn → Rm uveden u prethodnom poglavlju u skladu s općom
konstrukcijom jer za kanonske baze E u Rn i F u Rm imamo matricu pres-
likavanja

AFE = ((Ae1)F , . . . , (Aen)F ) = (Ae1, . . . , Aen).

6.6. Primjer. Neka je V vektorski prostor polinoma stupnja ≤ 2 i E i
F uredene baze

E = (1, x, x2), F = (1, x+ 1, (x+ 1)2).

Da bismo izračunali matricu IEF identitete I moramo računati vrijednosti
identitete na elementima baze F i te vrijednosti raspisati u bazi E

I(1) = 1 = 1 · 1 + 0x+ 0x2,

I(x+ 1) = x+ 1 = 1 · 1 + 1x+ 0x2,

I((x+ 1)2) = (x+ 1)2 = 1 · 1 + 2x+ 1x2.

Sada koeficijente zapǐsemo u stupce

IEF =

1 1 1
0 1 2
0 0 1

 .

6.7. Zadatak. Neka su V , E i F kao u prethodnom zadatku. Napǐsite
matricu identitete IFE .

6.8. Pitanje. Neka je e1, e2 kanonska baza u prostoru R2 koji shvatimo
kao euklidsku ravninu. Da li je (

0 1
−1 0

)
matrica rotacije za kut π

2 u uredenoj bazi (e2, e1) ? DA NE

6.9. Teorem. Koordinate vektora Ax u bazi F računamo kao množenje
matrice operatora AFE i koordinata vektora x u bazi E, tj.

(6.4) (Ax)F = AFExE .

Dokaz. Zbog linearnosti operatora A i inearnosti koordinatizacije (6.1)
imamo

(Ax)F =

(
A

(
n∑
i=1

ξiei

))
F

=

(
n∑
i=1

ξiAei

)
F

=

n∑
i=1

ξi (Aei)F .

No zadnji izraz je upravo definicija množenja matrice ((Ae1)F , . . . , (Aen)F )
i vektora xE s koordinatama ξ1, . . . , ξn. �
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6.10. Kompozicija operatora i množenje matrica. Ako su V,W,U
tri prostora s uredenim bazama E,F,G

A : V →W, B : W → U,

onda je za kompoziciju BA : V → U matrica dobivena množenjem matrica

(6.5) (BA)GE = BGFAFE .

Zaista, koristeći definiciju matrice operatora i formulu (6.4) za j-ti stu-
pac dobivamo

(BAej)G = BGF (Aej)F ,

a to je upravo formula za j-ti stupac u produktu na desnoj strani (6.5).

6.11. Slučaj iste baze. Ako je V vektorski prostor s uredenom bazom
E i A : V → V linearan operator, onda je običaj pisati

AE = AEE .

U tom slučaju formula (6.4) glasi

(6.6) (Ax)E = AExE .

Očito je matrica identitete jedinična matrica, tj.

(id)E = I.

6.12. Primjer. Neka je V vektorski prostor polinoma stupnja ≤ 2 i E
uredena baza

E = (1, x, x2).

Označimo s A deriviranje polinoma A : V → V , A : f 7→ f ′. Deriviranje
polinoma je linearan operator jer vrijede pravila deriviranja

(f + g)′ = f ′ + g′ , (λf)′ = λf ′ .

Matricu AE operatora A u bazi E odredujemo tako da izračunamo vrijed-
nosti operatora na elementima baze

(1)′ = 0 = 0 · 1 + 0x+ 0x2,

(x)′ = 1 = 1 · 1 + 0x+ 0x2,

(x2)′ = 2x = 0 · 1 + 2x+ 0x2

i onda koeficijente upǐsemo u stupce matrice

AE =

0 1 0
0 0 2
0 0 0

 .

6.13. Zadatak. Izračunajte produkte IEF IFE i IFEIEF iz primjera 6.6
i zadatka 6.7.
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6.14. Matrica inverza operatora. Za regularan operator T : V → V
formula (6.5) za id = T−1T = TT−1 daje

(id)E = (T−1)ETE = TE(T−1)E ,

pa zbog jedinstvenosti inverza imamo

(T−1)E = (TE)−1.

6.15. Promjena baze i operator prijelaza. Neka su E = (e1, . . . , en)
i E′ = (e′1, . . . , e

′
n) dvije uredene baze u V . Operator

T : V → V

zadan na bazi e1, . . . , en formulom

Te1 = e′1, . . . , T en = e′n

zovemo operatorom prijelaza iz baze E u bazu E′. Kvadratnu n×n matricu
TE zovemo matricom operatora prijelaza iz baze E u bazu E′ ili matricom
prijelaza iz baze E u bazu E′. Podsjetimo se da je TE definirana kao

TE = ((e′1)E , . . . , (e
′
n)E) = ((Te1)E , . . . , (Ten)E).

6.16. Primjer. Neka je E kanonska baza u R3 i neka je E′ uredena
baza

e′1 =

1
2
1

 , e′2 =

 1
−1
−1

 , e′3 =

2
1
2

 .

Budući da u ovom primjeru imamo napisane koordinate vektora e′1,e′2 i e′3
u kanonskoj bazi, jedino što nam preostaje da te koordinate napǐsemo u
stupce matrice:

TE =

1 1 2
2 −1 1
1 −1 2

 .

6.17. Operator prijelaza i matrica prijelaza u Rn. Neka su

T = (t1, . . . , tn) i S = (s1, . . . , sn)

dvije uredene baze u Rn. Tada su matrice T i S regularne, pa možemo
definirati operatore

A = TS−1 i B = ST−1.

Tada je

AS = (TS−1)S = T (S−1S) = TI = T,

ili zapisano kao množenje matrica

(As1, . . . , Asn) = (t1, . . . , tn).

Znači da je A operator prijelaza iz baze S u bazu T , odnosno

t1 = As1, . . . , tn = Asn.
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Na sličan način vidimo i da je B operator prijelaza iz baze T u bazu S,
odnosno

s1 = Bt1, . . . , sn = Btn.

Matrice A i B nisu4 matrice prijelaza iz jedne u drugu bazu jer je

AS = S−1AS = S−1ST−1S = T−1S,

a matrica prijelaza iz baze T u bazu S je

BT = T−1BT = T−1ST−1T = T−1S.

6.18. Promjena koordinata s promjenom baze. Za vektor x imamo
zapis u bazi E′

x =
n∑
j=1

ξ′je
′
j ,

pa zbog linearnosti koordinatizacije imamo

xE = (

n∑
j=1

ξ′je
′
j)E =

n∑
j=1

ξ′j(e
′
j)E .

Tu formulu prepoznajemo kao množenje matrice TE = ((e′1)E , . . . , (e
′
n)E) i

vektora xE′ s kordinatama ξ′1, . . . , ξ
′
n. Dakle imamo formulu za transforma-

ciju koordinata pri promjeni baze:

(6.7) xE = TExE′ .

Budući da je matrica prijelaza regularna matrica, koordinate xE′ vektora x
u bazi E′ računamo iz koordinata xE vektora x u bazi E po formuli

(6.8) xE′ = (TE)−1xE .

6.19. Promjena matrice operatora s promjenom baze. Neka su
E = (e1, . . . , en) i E′ = (e′1, . . . , e

′
n) dvije uredene baze u V s matricom

prijelaza TE i F = (f1, . . . , fm) i F ′ = (f ′1, . . . , f
′
m) dvije uredene baze u W

s matricom prijelaza SF . Operatoru

A : V →W

možemo pridružiti matrice AF,E i AF ′,E′. Tada je

AF ′E′ = (SF )−1AFETE .

Dokaz. Koristeći formulu (6.7) računamo koordinate vektora

SF (Ae′j)F ′ = (Ae′j)F = (ATej)F = AFE(Tej)E .

Po definiciji množenja matrica to su j-ti stupci u matricama

SFAF ′E′ = AFETE ,

pa formula slijedi množenjem te jednakosti s lijeva inverzom (SF )−1. �

4Ovo je dobar primjer kako nije uvijek dobro identificirati operatore na Rn s njihovim
matricama!
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Posebno je važan slučaj kad je A : V → V . Tada formula glasi

(6.9) AE′ = (TE)−1AETE .

6.20. Zadatak. Neka je V vektorski prostor polinoma stupnja ≤ 2 i E
i F uredene baze

E = (1, x, x2), F = (1, x+ 1, (x+ 1)2).

U primjeru 6.12 našli smo matricu AE operatora deriviranja u bazi E.
Izračunajte matricu operatora deriviranja AF u bazi F .
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Determinanta operatora

U ovom poglavlju dokazujemo Binet-Cauchyjev teorem koristeći osnovni
teorem o determinanti. Zbog Binet-Cauchyjevog teorema možemo definirati
determinantu linearnog operatora na konačno dimenzionalnom vektorskom
prostoru i pojam jednako orijentiranih baza na realnom prostoru, a pred-
znak permutacije definiramo kao determinantu pripadne matrice permuta-
cije. Nakon toga dokazujemo Laplaceov razvoj determinante, te formule za
Gram-Schmidtov postupak ortogonalizacije koristeći Gramove matrice.

1. Binet-Cauchyjev teorem

1.1. Binet-Cauchyjev teorem. Neka su A i B matrice tipa n × n.
Tada je

det(AB) = detA · detB.

Dokaz. Definirajmo funkciju f : (Rn)n → R formulom

f(v1, . . . , vn) = det(Av1, . . . , Avn).

Budući da je A linearno preslikavanje i determinanta linearna funkcija u
i-toj varijabli, to je i kompozicija

x 7→ Ax 7→det(Av1, . . . , Avi−1, Ax,Avi+1, . . . , Avn)

= f(v1, . . . , vi−1, x, vi+1, . . . , vn)

linearna funkcija. Znači da je f multilinearna funkcija. Budući da je deter-
minanta alternirajuća funkcija, to je i f alternirajuća:

f(v1, . . . , vi−1, a, vi+1, . . . , vj−1, b, vj+1, . . . , vn)

= det(Av1, . . . , Avi−1, Aa,Avi+1, . . . , Avj−1, Ab,Avj+1, . . . , Avn)

= −det(Av1, . . . , Avi−1, Ab,Avi+1, . . . , Avj−1, Aa,Avj+1, . . . , Avn)

= −f(v1, . . . , vi−1, b, vi+1, . . . , vj−1, a, vj+1, . . . , vn).

Prema teoremu 9.4.13 vrijedi

f(b1, . . . , bn) = f(e1, . . . , en) det(b1, . . . , bn),

odnosno

det(Ab1, . . . , Abn) = det(Ae1, . . . , Aen) det(b1, . . . , bn),

a to i jest Binet-Cauchyjeva formula det(AB) = detAdetB. �

193
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1.2. Apsolutna vrijednost kompleksnog broja. Zapǐsemo li kom-
pleksni broj z = α+ iβ kao realnu 2× 2 matricu, onda je

det

(
α −β
β α

)
= α2 + β2 = |z|2.

Tada iz Binet-Cauchyjevog teorema slijedi |z1z2| = |z1||z2|.

1.3. Apsolutna vrijednost kvaterniona. Za kvaternione imamo

detZ = det

(
α −β̄
β ᾱ

)
= |α|2 + |β|2 = |Z|2.

Tada iz Binet-Cauchyjevog teorema slijedi |Z1Z2| = |Z1||Z2|.

1.4. Determinanta je invarijanta. Ako je T regularna n×n matrica,
onda je prema Binet-Cauchyjevom teoremu za svaku n× n matricu A

detT−1AT = detT−1 detAdetT = detT−1 detT detA

= detT−1T detA = det I detA = detA.

Funkciju f na skupu n×n matrica zovemo invarijantom ako za svaku regu-
larnu n× n matricu T vrijedi

f(T−1AT ) = f(A).

Posebno, funkcija det na skupu n× n matrica je invarijanta.

1.5. Determinanta linearnog operatora. Razmatranje iz prethodne
točke možemo ponoviti i u općenitijoj situaciji: Neka je A : V → V linear-
ni operator na konačno dimenzionalnom prostoru V i E = (e1, . . . , en) i
E′ = (e′1, . . . , e

′
n) dvije uredene baze u V . Tada su matrice operatora A u

tim bazama vezane relacijom

AE′ = T−1
E AETE ,

pri čemu je TE matrica prijelaza, pa primjenom Binet-Cauchyjevog teorema
dobivamo

detAE′ = detAE .

Znači da determinanta matrice operatora ne ovisi o izboru baze, pa je zovemo
determinantom operatora i pǐsemo

detA = detAE .

1.6. Zadatak. Izračunajte determinantu det(I + d
dx) linearnog opera-

tora I + d
dx na prostoru polinoma P (x) stupnja ≤ 2.
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1.7. Determinanta preslikavanja je faktor povećanja volumena.
Neka je B matrica tipa 3× 3, shvatimo je kao linearno preslikavanje

B : R3 → R3.

Neka su a1, a2, a3 vektori u R3. Oni odreduju paralelepiped

{y ∈ R3 | y = λ1a1 + λ2a2 + λ3a3, 0 ≤ λ1, λ2, λ3 ≤ 1}
volumena det(a1, a2, a3) kojeg linearno preslikavanje B prevodi u paralele-
piped

B
(
{y ∈ R3 | y = λ1a1 + λ2a2 + λ3a3, 0 ≤ λ1, λ2, λ3 ≤ 1}

)
= {By ∈ R3 | By = λ1Ba1 + λ2Ba2 + λ3Ba3, 0 ≤ λ1, λ2, λ3 ≤ 1}

volumena det(Ba1, Ba2, Ba3). Prema Binet-Cauchyjevom teoremu

det(Ba1, Ba2, Ba3) = detB · det(a1, a2, a3)

preslikavanje B je povečalo volumen početnog paralelepipeda za faktor1

detB.

Intuitivno shvaćanje determinate det(a1, a2, a3) kao volumena ili detB kao
faktora povećanja volumena daje nam geometrijsko razumijevanje nekih
čisto algebarskih tvrdnji kao što je

Lema. Ako je detB = 0, onda B nije regularna matrica.

Razmǐsljajući intiutivno, matrica B za koju je detB = 0 nema inverz, jer
paralelepiped (a1, a2, a3) volumena det(a1, a2, a3) 6= 0 preslikava u paralele-
piped (Ba1, Ba2, Ba3) volumena 0 i nema tog preslikavanja C s faktorom
povećanja volumena detC koje bi paralelepiped volumena 0 vratilo u početni
paralelepiped volumena različitog od nula.

Formalni dokaz leme je u suštini isti: Neka je detB = 0. Pretpostavimo
li da B ima inverz C, onda bi, koristeći Binet-Cauchyjev teorem, dobili
kontradikciju

0 = 0 detC = detB detC = detBC = det I = 1.

1.8. Specijalna linearna grupa SL(n,R). Linearna preslikavanja koja
čuvaju volumen2 čine grupu. Ta se grupa zove specijalna linearna grupa
SL(n,R) (čitamo: grupa es el en er):

SL(n,R) = {A ∈Mn(R) | detA = 1}.
Naime, za A,B ∈ SL(n,R) imamo detAB = detAdetB = 1 · 1 = 1,
dakle AB ∈ SL(n,R). Takoder det I = 1, pa je I ∈ SL(n,R). Na kraju,
detA−1 = 1/detA = 1/1 = 1, pa je detA−1 ∈ SL(n,R).

1Ova interpretacija determinante javlja se u integralnom računu kod teorema o za-
mjeni varijabli.

2tj. ona preslikavanja A za koja je faktor povečanja volumena detA = 1
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1.9. Orijentacija baze realnog vektorskog prostora. Neka su E =
(e1, . . . , en) i E′ = (e′1, . . . , e

′
n) dvije uredene baze u realnom vektorskom

prostoru V . Matricu prijelaza TE iz baze E u bazu E′ možemo shvatiti i
kao matricu identitete na V u paru baza

TE = ((Te1)E , . . . , (Ten)E) = ((e′1)E , . . . , (e
′
n)E) = idEE′ .

Kažemo da su baze E i E′ jednako orijentirane ako je

det
(
idEE′

)
> 0.

U tom slučaju zbog Binet-Cauchyjevog teorema imamo

det
(
idEE′

)
det
(
idE′E

)
= det

(
idEE′ idE′E

)
= det

(
idEE

)
= det I = 1 > 0,

pa je

det
(
idE′E

)
> 0.

Znači da su baze E i E′ jednako orijentirane ako i samo ako su baze E′ i
E jednako orijentirane. Štovǐse, ako su baze E i E′ i baze E′ i E′′ jednako
orijentirane, onda su i su baze E i E′′ jednako orijentirane jer je

det
(
idEE′′

)
= det

(
idEE′ idE′E′′

)
= det

(
idEE′

)
det
(
idE′E′′

)
> 0.

Odavle slijedi da u V postoje dvije disjunktne klase baza takve da su baze iz
iste klase jednako orijentirane, a baze iz različitih klasa nisu jednako orijen-
tirane3.

1.10. Pitanje. Da li su kanonska baza (e1, e2) u R2 i baza (e2, e1) su-
protno orijentirane? DA NE

1.11. Zadatak. Neka je V vektorski prostor polinoma stupnja ≤ 2 i E
i F uredene baze

E = (1, x, x2), F = (1, x+ 1, (x+ 1)2).

Da li su E i F jednako orijentirane?

2. Determinanta i grupa permutacija

2.1. Matrice permutacija. Podsjetimo se da za permutaciju σ skupa
{1, . . . , n} definiramo n× n matricu permutacije

Tσ = (eσ(1), . . . , eσ(n)).

Tako, na primjer, za permutaciju 4231 u S4 imamo 4× 4 matricu permuta-
cije4

Tσ = (e4, e2, e3, e1) =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 ,

3Obično kažemo da su baze suprotno orijentirane ako nisu jednako orijentirane.
4vidi točku 8.4.5
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a za identitetu id = 1234 je matrica permutacije jedinična matrica

Tid = (e1, e2, e3, e4) = I.

2.2. Predznak permutacije. Neka je σ permutacija skupa {1, . . . , n}
i Tσ matrica permutacije. Tada je

detTσ = det(eσ(1), . . . , eσ(n)) ∈ {1,−1}.

Naime, u matrici (eσ(1), . . . , eσ(n)) vektor e1 možemo premijestiti na prvo
mjesto zamjenom s prvim vektorom u matrici. Potom e2 možemo premijes-
titi na drugo mjesto, i tako redom sve dok ne dobijemo jediničnu matricu
I = (e1, . . . , en). Budući da kod zamjene mjesta dvaju vektora mijenjamo
predznak alternirajućoj funkciji det, to je konačni rezultat (−1)s det I, gdje
je s broj izvršenih zamjena. Budući da je det I = 1, konačni rezultat je ±1.
Na primjer, za permutaciju 3241 imamo

det(e3, e2, e4, e1) = −det(e1, e2, e4, e3) = (−1)2 det(e1, e2, e3, e4) = 1.

To smo, doduše, mogli postići i na drugi način

det(e3, e2, e4, e1) = −det(e3, e2, e1, e4) = (−1)2 det(e3, e1, e2, e4)

= (−1)3 det(e1, e3, e2, e4) = (−1)4 det(e1, e2, e3, e4) = 1,

ali rezultat je isti. Broj

ε(σ) = detTσ

zovemo predznakom permutacije σ i često ga označavamo i kao (−1)σ. Tako
je, na primjer, predznak permutacije 3241 jednak 1. Očito je predznak
identitete 1, uz uvedene oznake pǐsemo

ε(id) = detTid = det I = 1.

2.3. Zadatak. Izračunajte predznak permutacije 32514.

2.4. Predznak produkta permutacija. Neka su σ i ν permutacije
skupa {1, . . . , n}. Primjenom Binet-Cauchyjevog teorema na formulu (8.4.1)

Tσν = TσTν

dobivamo formulu za predznak produkta permutacija

detTσν = detTσ detTν .

Kada je σν = id, odnosno ν = σ−1, imamo

detTσ detTσ−1 = 1.

Budući da je predznak permutacije jednak ±1, dobivamo da su predznaci
permutacija σ i σ−1 isti

detTσ−1 = detTσ.

2.5. Zadatak. Napǐsite inverz permutacije 32514 i izračunajte pred-
znak inverza.
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3. Determinanta transponirane matrice

3.1. Indeksi s indeksima. Recimo da tri “opća” vektora a1, a2 i a3

trebamo napisati u kanonskoj bazi. Tada bismo, u skladu s dogovorom,
pisali

a1 =
n∑
i=1

αi1ei, a2 =
n∑
i=1

αi2ei, a3 =
n∑
i=1

αi3ei.

Ako kojim slučajem treba koristiti različite indekse sumacije, onda se odlučimo
za slova i, j i k i pǐsemo

a1 =
n∑
i=1

αi1ei, a2 =
n∑
j=1

αj2ej , a3 =
n∑
k=1

αk3ek.

Birati tri različita slova i, j i k je lako, ali što ako treba birati sto različitih
slova? Odgovor je u pisanju indeksa s indeksima: u našem slučaju možemo
birati tri različita slova j1, j2, j3 i pisati

a1 =

n∑
j1=1

αj11ej1 , a2 =

n∑
j2=1

αj22ej2 , a3 =

n∑
j3=1

αj33ej3 .

3.2. Teorem. Neka je A = (αij) kvadratna n× n matrica. Tada je

(3.1) detA =
∑

σ∈S(n)

ε(σ)ασ(1)1 · · ·ασ(n)n.

Dokaz.

detA = det(a1, a2 . . . , an)

= det(
∑
j1

αj11ej1 ,
∑
j2

αj22ej2 , . . . ,
∑
jn

αjnnejn)(3.2)

=
∑
j1

αj11 det(ej1 ,
∑
j2

αj22ej2 , . . . ,
∑
jn

αjnnejn)(3.3)

=
∑
j1

αj11

∑
j2

αj22 det(ej1 , ej2 , . . . ,
∑
jn

αjnnejn)(3.4)

...

=
∑
j1

αj11

∑
j2

αj22 · · ·
∑
jn

αjnn det(ej1 , ej2 , . . . , ejn)(3.5)

=
∑
j1

∑
j2

· · ·
∑
jn

αj11αj22 · · ·αjnn det(ej1 , ej2 , . . . , ejn)(3.6)

=
∑

j1,j2,...,jn

αj11αj22 · · ·αjnn det(ej1 , ej2 , . . . , ejn)(3.7)

=
∑

σ∈S(n)

ασ(1)1ασ(2)2 · · ·ασ(n)n det(eσ(1), . . . , eσ(n)).(3.8)
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Ovdje smo u (3.2) napisali vektore a1, a2 . . . , an u kanonskoj bazi koristeći
različite indekse. Potom smo u (3.3) koristili linearnost determinante u
prvom argumentu, u (3.4) linearnost u drugom argumentu i tako redom
do zadnjeg argumenta u (3.5). Koristeći distributivnost množenja prema
zbrajanju dobili smo (3.6) i to prepisali kraće u (3.7) naznačivši da svi
indeksi j1, j2, . . . , jn poprimaju sve moguće vrijednosti iz skupa {1, . . . , n}.
Medutim, ako neka dva indeksa poprime istu vrijednost jr = js, onda je
det(ej1 , ej2 . . . , ejn) = 0 jer ima isti vektor ejr = ejs na dva mjesta, r-tom i s-
tom. Znači da je dovoljno napisati sumu za sve medusobno različite indekse
j1, j2, . . . , jn. No svaki takav izbor odreduje jedinstvenu permutaciju

σ = (σ(1), σ(2), . . . , σ(n)) = (j1, j2, . . . , jn),

kako je i napisano u (3.8). Ovdje smo se odlučili pisati predznak permutacije
kao det(eσ(1), . . . , eσ(n)) = ε(σ). �

3.3. Teorem. Za kvadratnu matricu A = (αij) vrijedi

detA =
∑

τ∈S(n)

ε(τ)α1τ(1) · · ·αnτ(n).

Dokaz. Neka je A = (αij). Prema teoremu 3.2

detA =
∑

σ∈S(n)

ε(σ)ασ(1)1 · · ·ασ(n)n.

Budući da je za permutaciju σ skup vrijednosti σ(1), . . . , σ(n) čitav skup
1, . . . , n, to produkt

ασ(1)1 · · ·ασ(n)n

možemo prepisati u drugom poretku

α1τ(1) · · ·αnτ(n),

pri čemu je faktor ασ(k)k = αpτ(p) za σ(k) = p i k = τ(p). Znači da je

τ = σ−1, pa formulu za determinantu možemo prepisati kao

detA =
∑

σ∈S(n)

ε(σ)ασ(1)1 · · ·ασ(n)n

=
∑

σ∈S(n)
τ=σ−1

ε(τ−1)α1τ(1) · · ·αnτ(n)

=
∑

τ∈S(n)

ε(τ)α1τ(1) · · ·αnτ(n).

Zadnja jednakost vrijedi jer je svaki τ oblika τ = σ−1 za točno jedan σ = τ−1

i jer je ε(τ−1) = ε(τ). �
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3.4. Teorem. Za svaku kvadratnu matricu A vrijedi

detAt = detA.

Dokaz. Prema teoremu 3.2 i teoremu 3.3 imamo

detAt =
∑

σ∈S(n)

ε(σ)α′σ(1)1 · · ·α
′
σ(n)n =

∑
σ∈S(n)

ε(σ)α1σ(1) · · ·αnσ(n) = detA.

�

3.5. Funkcija det : At 7→ detAt je n-linearna alternirajuća funkcija stu-
paca matrice At. Budući da su stupci matrice At reci u matrici A, teorem
3.4 daje

Teorem. Funkcija det : A 7→ detA je n-linearna alternirajuća funkcija
redaka matrice A.

Zbog ovog teorema determinantu matrice možemo računati i elementar-
nim transformacijama na recima, ili čak kombinacijom elementarnih tran-
sformacija po stupcima i recima.

4. Laplaceov razvoj determinante

Ovdje zadržavamo oznake iz točke 3.9. Posebno, matrica Ajk dobivena
je iz matrice A brisanjem j-tog stupca i k-tog retka.

4.1. Teorem. Za svaki j ∈ {1, . . . , n} za matricu A vrijedi Laplaceov
razvoj determinante od A po j-tom stupcu:

detA =
n∑
k=1

(−1)j+kαkj detAjk.

Za svaki j ∈ {1, . . . , n} za matricu A vrijedi Laplaceov razvoj determinante
od A po j-tom retku:

detA =
n∑
k=1

(−1)j+kαjk detAkj .

Dokaz.

det(a1, . . . , aj−1, aj , aj+1, . . . , an)

= det(a1, . . . , aj−1,
n∑
k=1

αkjek , aj+1, . . . , an)(4.1)

=

n∑
k=1

αkj det(a1, . . . , aj−1, ek, aj+1, . . . , an)(4.2)

=
n∑
k=1

(−1)j−1αkj det(ek, a1, . . . , aj−1, aj+1, . . . , an)(4.3)
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=
n∑
k=1

(−1)j−1(−1)k−1αkj det(a
(k)
1 , . . . , a

(k)
j−1, a

(k)
j+1, . . . , a

(k)
n )(4.4)

=
n∑
k=1

(−1)j+kαkj detAjk.

U prvom smo koraku (4.1) stupac ai zapisali u kanonskoj bazi, (4.2) vrijedi
zbog multilinearnosti determinante, (4.3) vrijedi zbog alternirajućeg svoj-
stva determinante. Da bismo vidjeli (4.4) računamo

det(ek, a1, . . . , aj−1, aj+1, . . . , an)

= det



0 α11 α12 . . . ∅j . . . α1n

0 α21 α22 . . . ∅j . . . α2n
...

...
...

...
...

1 αk1 αk2 . . . ∅kj . . . αkn
...

...
...

...
...

0 αn1 αn2 . . . ∅j . . . αnn



= (−1)k−1 det



1 αk1 αk2 . . . ∅j . . . αkn
0 α11 α12 . . . ∅j . . . α1n

0 α21 α22 . . . ∅j . . . α2n
...

...
...

...
...

∅k ∅k ∅k . . . ∅kj . . . ∅k
...

...
...

...
...

0 αn1 αn2 . . . ∅j . . . αnn



= (−1)k−1 det



α11 α12 . . . ∅j . . . α1n

α21 α22 . . . ∅j . . . α2n
...

...
...

...
∅k ∅k . . . ∅kj . . . ∅k
...

...
...

...
αn1 αn2 . . . ∅j . . . αnn


= (−1)k−1 det(a

(k)
1 , . . . , a

(k)
j−1, a

(k)
j+1, . . . , a

(k)
n ) = (−1)k−1 detAjk.

Prema teoremu 3.5 determinanta je alternirajuća funkcija redaka matrice,
pa premještanjem k-tog retka na prvo mjesto dobivamo drugu jednakost.
Treća jednakost slijedi iz početne definicije determinante.

Time je dokazan Laplaceov razvoj determinante po j-tom stupcu. Po
teoremu 3.4 je detA = detAt, pa Laplaceov razvoj detA po recima slijedi
iz Laplaceovog razvoja detAt po stupcima. �

4.2. Primjedba. Primijetimo da matrica predznaka (−1)k+j počinje
s + na mjestu k = j = 1 i zatim “alternira”. Na primjeru 4 × 4 matrice
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imamo 
+ − + −
− + − +
+ − + −
− + − +

 .

4.3. Primjer. Laplaceov razvoj determinante matrice tipa 3 × 3 po
trećem stupcu je

det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 = γ1 det

(
α2 β2

α3 β3

)
−γ2 det

(
α1 β1

α3 β3

)
+γ3 det

(
α1 β1

α2 β2

)
,

a Laplaceov razvoj determinante po prvom retku je

det

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 = α1 det

(
β2 γ2

β3 γ3

)
−β1 det

(
α2 γ2

α3 γ3

)
+γ1 det

(
α2 β2

α3 β3

)
.

4.4. Napomena. Ponekad pravilo o Laplaceovom razvoju koristimo
za preglednije zapisivanje formula. Na primjer, ako su G1, G2 i G3 vektori
i αi, βi ∈ R za i = 1, 2, 3, onda izraz

(α2β3 − α3β2)G1 − (α1β3 − α3β1)G2 + (α1β2 − α2β1)G3

kraće zapisujemo kao

det

α1 β1 G1

α2 β2 G2

α3 β3 G3

 ,

misleći pritom da treba primijeniti formulu (kao što je ona) za Laplaceov
razvoj determinante po trećem stupcu.

5. Gramova determinanta

U ovom je paragrafu V realan ili kompleksan unitaran prostor sa skalar-
nim produltom ( | ).

5.1. Gramova matrica i determinanta. Neka su a1, . . . , an vektori
u V . Matricu

(5.1) G(a1, . . . , an) = det


(a1 | a1) (a1 | a2) . . . (a1 | an)
(a2 | a1) (a2 | a2) . . . (a2 | an)

...
...

...
(an | a1) (an | a2) . . . (an | an)


zovemo Gramovom matricom, a determinantu Gramove matrice

(5.2) Γ(a1, . . . , an) = detG(a1, . . . , an)

zovemo Gramovom determinantom.
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5.2. Teorem. Vektori a1, . . . , an su linearno nezavisni ako i samo ako
je Γ(a1, . . . , an) 6= 0.

Dokaz. Množimo li linearnu kombinaciju

(5.3) ξ1a1 + · · ·+ ξnan = 0

s lijeva vektorima a1, . . . , an dobivamo da je n-torka brojeva (ξ1, . . . , ξn)
rješenje sistema jednadžbi

(5.4) ξ1(ai | a1) + · · ·+ ξn(ai | an) = 0, i = 1, . . . , n .

Prema Cramerovom pravilu Γ(a1, . . . , an) 6= 0 povlači da sistem (5.4) ima
jedinstveno rješenje ξ1 = · · · = ξn = 0. No to onda znači da je (5.3) trivijalna
kombinacija i da su vektori a1, . . . , an linearno nezavisni.

Obratno, pretpostavimo da su vektori a1, . . . , an linearno nezavisni. Ako
je (ξ1, . . . , ξn) rješenje sistema jednadžbi (5.4), onda množenjem i-te jed-
nadžbe s ξi i zbrajanjem po svim i = 1, . . . , n dobivamo

0 =

n∑
i=1

ξi

n∑
j=1

ξj(ai | aj) = (

n∑
i=1

ξiai |
n∑
j=1

ξjaj)

i stroga pozitivnost skalarnog produkta povlači
∑n

i=1 ξiai = 0. Sada line-
arna nezavisnost vektora povlači ξ1 = · · · = ξn = 0, što znači da homogeni
sistem jednadžbi (5.4) ima jedinstveno rješenje i da su stupci Gramove ma-
trice linearno nezavisni vektori u Cn. Iz teorema 3.3.18 slijedi da su stupci
Gramove matrice baza od Cn, a teorem 9.4.16 povlači Γ(a1, . . . , an) 6= 0. �

5.3. Gram-Scmidtov postupak ortogonalizacije. Neka su vektori
a1, . . . , an ∈ V linearno nezavisni. Tada definiramo niz vektora y1, . . . , yn
formulom koju treba shvatiti kao Laplaceov razvoj determinante po k-tom
stupcu

(5.5) yk = det


(a1 | a1) (a1 | a2) . . . (a1 | ak−1) a1

(a2 | a1) (a2 | a2) . . . (a2 | ak−1) a2
...

...
...

...
(ak−1 | a1) (ak−1 | a2) . . . (ak−1 | ak−1) ak−1

(ak | a1) (ak | a2) . . . (ak−1 | ak−1) ak

 .

To znači da je

(5.6) yk = γ1a1 + γ2a2 + · · ·+ γk−1ak−1 + γkak,

pri čemu je

(5.7) γk = Γ(a1, . . . , ak−1).

Iz teorema 5.2 slijedi γk 6= 0, pa indukcijom po k dokazujemo jednakost
linearnih ljuski

〈y1, . . . , yk−1, yk〉 = 〈a1, . . . , ak−1, yk〉 = 〈a1, . . . , ak−1, ak〉.
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Zbog jednakosti linearnih ljuski

〈y1, . . . , yk−1〉 = 〈a1, . . . , ak−1〉

iz (5.6) slijedi

(5.8) yk = β1y1 + β2y2 + · · ·+ βk−1yk−1 + γkak

za neke koeficijente β1, . . . βk−1. Pomnožimo li (5.5) (odnosno (5.6)) skalarno
s desna sa aj za j = 1, . . . , k − 1 dobivamo

(yk | aj)=det


(a1 | a1) (a1 | a2) . . . (a1 | ak−1) (a1 | aj)
(a2 | a1) (a2 | a2) . . . (a2 | ak−1) (a2 | aj)

...
...

...
...

(ak−1 | a1) (ak−1 | a2) . . . (ak−1 | ak−1) (ak−1 | aj)
(ak | a1) (ak | a2) . . . (ak−1 | ak−1) (ak | aj)

=0

jer je u gornjoj matrici j-ti stupac jednak k-tom stupcu. Znači da je

yk ⊥ 〈a1, . . . , ak−1〉 = 〈y1, . . . , yk−1〉,

pa množenjem (5.8) sa yk dobivamo

(5.9) (yk | yk) = (yk | β1y1 + β2y2 + · · ·+ βk−1yk−1 + γkak) = γk(yk | ak).

S druge strane, skalarnim množenjem (5.5) s desna s ak dobivamo

(5.10) (yk | ak) = Γ(a1, . . . , ak),

pa iz (5.9) i (5.7) slijedi

(5.11) (yk | yk) = Γ(a1, . . . , ak−1) Γ(a1, . . . , ak).

5.4. Teorem. Neka su a1, . . . , an linearno nezavisni vektori u realnom
unitarnom prostoru V . Tada je Γ(a1, . . . , an) > 0, a

√
Γ(a1, . . . , an) je

volumen paralelotopa razapetog vektorima a1, . . . , an.

Dokaz. Iz teorema 5.2 i linearne nezavisnosti vektora a1, . . . , ak sli-
jedi Γ(a1, . . . , ak) 6= 0. Za k = 1 iz pozitivnosti skalarnog produkta slijedi
Γ(a1) = (a1 | a1) > 0. Općenito Γ(a1, . . . , ak) > 0 slijedi indukcijom ko-
risteći (5.11) i (yk | yk) > 0.

Za n = 1 je “volumen” dužine koju “razapinje” vektor a1 jednak duljini
tog vektora

||a1|| =
√

(a1 | a1) =
√

Γ(a1).

Općenito volumen paralelotopa razapetog vektorima a1, . . . , ak u realnom
unitarnom prostoru definiramo induktivno kao “površinu baze” razapete
vektorima a1, . . . , ak−1, dakle√

Γ(a1, . . . , ak−1),

pomnoženu “visinom” paralelotopa, a to je projekcija

(ak | ek)
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vektora ak na okomicu ek = yk/||yk|| na bazu. Znači da je volumen parale-
lotopa razapetog vektorima a1, . . . , ak−1 jednak

(ak | ek)
√

Γ(a1, . . . , ak−1)

=
(ak | yk)√

Γ(a1, . . . , ak−1)Γ(a1, . . . , ak)

√
Γ(a1, . . . , ak−1)

=
Γ(a1, . . . , ak)√
Γ(a1, . . . , ak)

=
√

Γ(a1, . . . , ak),

pri čemu smo koristili (5.11) za normu od yk i (5.10) za skalarni produkt
(ak | yk). �

5.5. Teorem. Neka su a1, . . . , an linearno nezavisni vektori u Rn. Tada
je

Γ(a1, . . . , an) = (det(a1, . . . , an))2 .

Dokaz. Element (ai | aj) u Gramovoj matrici možemo shvatiti kao
množenje i-tog retka matrice At i j-tog stupca matrice A = (a1, . . . , an), pa
je Gramova matrica produkt matrica

G = G(a1, . . . , an) = AtA.

Prema teoremu 3.4 je detAt = detA, pa Binet-Cauchyjev teorem daje

detG = detAtA = detAt detA = (detA)2.

�





POGLAVLJE 10

Algebra operatora na Rn

U ovom poglavlju na skupu n× n matrica uvodimo operacije zbrajanja
i množenja skalarom. S obzirom na dobivenu strukturu vektorskog prostora
množenje n×n matrica je bilinearna binarna operacija i dobivenu algebarsku
strukturu zovemo asocijativnom algebrom s jedinicom. Kao važne primjere
takve strukture pročavamo kompleksne brojeve kao realne 2 × 2 matrice i
kvaternione kao kompleksne 2× 2 matrice.

1. Vektorski prostor linearnih preslikavanja s Rn u Rm

1.1. Zbrajanje preslikavanja i množenje skalarom. Neka su

A : Rn → Rm i B : Rn → Rm

dva linearna preslikavanja. Budući da na vektorskom prostoru Rm imamo
operacije zbrajanja i množenja skalarom λ ∈ R, možemo definirati nova
preslikavanja

A+B : Rn → Rm i λA : Rn → Rm

tako da za svaku točku x iz Rn stavimo

(A+B)(x) = Ax+Bx, (λA)(x) = λAx.

Ponekad kažemo da smo te operacije definirali po točkama.
To su linearna preslikavanja. Naime, koristeći definiciju zbrajanja, svoj-

stvo linearnosti od A i B i opet definiciju zbrajanja, dobivamo

(A+B)(x+ y) = A(x+ y) +B(x+ y) = Ax+Ay +Bx+By

= (A+B)(x) + (A+B)(y),

(A+B)(µx) = A(µx) +B(µx) = µAx+ µBx = µ(Ax+Bx)

= µ(A+B)(x).

Slično dokazujemo i linearnost preslikavanja λA.

1.2. Matrica sume linearnih preslikavanja. Matrica linearnog pre-
slikavanja (A+B) : Rn → Rm je

(1.1) ((A+B)e1, . . . , (A+B)en) = (Ae1 +Be1, . . . , Aen +Ben).

Znači da je svaki stupac matrice preslikavanja A + B suma odgovarajućih
stupaca matrice preslikavanja A i matrice preslikavanja B. Budući da ne
želimo praviti razliku izmedu preslikavanja i njihovih matrica, formulom

(1.2) (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

207



208 10. ALGEBRA OPERATORA NA Rn

definiramo zbrajanja matrica tipa m× n, tako da (1.1) glasi

((A+B)e1, . . . , (A+B)en) = (Ae1, . . . , Aen) + (Be1, . . . , Ben).

Očito je matrica linearnog preslikavanja λA dobivena množenjem s λ
svakog stupca matrice preslikavanja A

(1.3) ((λA)e1, . . . , (λA)en) = (λAe1, . . . , λAen).

Budući da ne želimo praviti razliku izmedu preslikavanja i njihovih matrica,
formulom

(1.4) λ(a1, . . . , an) = (λa1, . . . , λan)

definiramo množenje skalarom matrica tipa m× n, tako da (1.3) glasi

((λA)e1, . . . , (λA)en) = λ(Ae1, . . . , Aen).

1.3. Primjeri zbrajanja matrica i množenja matrice skalarom.1 1
0 2
2 3

+

1 2
1 2
1 1

 =

2 3
1 4
3 4

 , 3

1 2
0 2
1 3

 =

3 6
0 6
3 9

 .

1.4. Zadatak. Izračunajte(
1 1
0 2

)
+

(
1 2
1 2

)
, 3

(
1 2
0 2

)
.

1.5. Nul-preslikavanje i nul-matrica. Linearno preslikavanje
A : Rn → Rm definirano sAx = 0 za svako x iz Rn zovemo nul-preslikavanjem
i označavamo ga s 0. Pripadna matrice tipam×n je nul-matrica i označavamo
je s 0. Na primjer, (

0 0
0 0

)
= 0,

(
0 0 0 0
0 0 0 0

)
= 0,

gdje je prva nula matrica tipa 2×2, a druga nula je matrica tipa 2×4. Nul-
preslikavanje i nul-matrica su neutralni elementi za odgovarajuće operacije
zbrajanja.

1.6. Svojstva operacija zbrajanja matrica i množenja skalarom.
Ako su (αij) i (βij) matrice tipa m × n, onda definicije zbrajanja matrica
(1.2) i množenja matrica skalarom (1.4) možemo zapisati kao

(αij) + (βij) = (αij + βij), λ(αij) = (λαij).

Shvatimo li matrične elemente αij kao koordinate vektora u Rm·n, onda je
gornja formula upravo definicija zbrajanja vektora i množenja vektora skala-
rom, pa za te operacije vrijede sva svojstva popisana u točki 2.2.3. Posebno,
imamo nul-matricu 0, neutralni element za zbrajanje, te za svaku matricu
(αij) njoj suprotnu

−(αij) = (−αij).
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Znači da je skup svih matrice tipa m×n s operacijama zbrajanja i množenja
skalarom u stvari vektorski prostor Rm·n, samo što koordinate zovemo ma-
tričnim koeficijentima i općenito ih zapisujemo u kvadaratnu shemu, a ne
u samo jedan redak ili samo jedan stupac. Budući da na matricama imamo
osim zbrajanja i množenja skalarom i druge operacije, običaj je vektorski
prostor (Rm)n svih m× n matrica označavati drugačije – mi ćemo koristiti
oznaku

Mm×n ili Mm×n(R)

ako želimo naglasiti da govorimo o realnim m×n matricama. Naglasimo da
je dimenzija tog vektorskog prostora

dimMm×n = m · n.

1.7. Linearne kombinacije matrica. Kao i inače za vektorske pro-
store, linearnom kombinacijom matrica zovemo matricu ili izraz

λ1A1 + · · ·+ λsAs

u kojem su λi brojevi (skalari), a Ai matrice istoga tipa. Na primjer, matricu
rotacije možemo napisati kao linearnu kombinaciju(

cosϕ − sinϕ
sinϕ cosϕ

)
= cosϕ

(
1 0
0 1

)
+ sinϕ

(
0 −1
1 0

)
.

1.8. Kanonska baza vektorskog prostora matrica tipa m × n.
Svaku matricu A = (αij) tipa m× n možemo na jedinstveni način prikazati
kao linearnu kombinaciju

A =

m∑
i=1

n∑
j=1

αijEij ,

gdje je Eij matrica koja ima matrični element 1 u i-toj koordinati j-tog
stupca, a sve ostale elemente 0. Ili, drugim riječima,

Eij = (0, . . . , 0, ei, 0, . . . , 0),

pri čemu se element ei kanonske baze prostora Rm nalazi na j-tom mjestu.
Te matrice zovemo kanonskom bazom vektorskog prostora matrica tipa m×n.
Tako, na primjer, za 2× 2 matrice imamo kanonsku bazu

E11 =

(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =

(
0 0
0 1

)
u kojoj možemo na jedinstveni način prikazati svaku 2× 2 matricu(

α11 α12

α21 α22

)
= α11

(
1 0
0 0

)
+ α12

(
0 1
0 0

)
+ α21

(
0 0
1 0

)
+ α22

(
0 0
0 1

)
.

1.9. Zadatak. Pokažite da za 2× 2 matrice imamo i bazu(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 −1
1 0

)
.
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1.10. Vektorski prostor linearnih preslikavanja s Rn u Rm. Ope-
racije zbrajanja A+ B preslikavanja i množenja λA preslikavanja skalarom
definirane su po točkama i nasljeduju dobra svojstva zbrajanja i množenja
skalarom u Rm. Tako, na primjer, za svako x ∈ Rn i tri preslikavanja A, B
i C imamo

(Ax+Bx) + Cx = Ax+ (Bx+ Cx)

zbog asocijativnosti zbrajanja u Rm. No to znači da imamo jednakost pre-
slikavanja

(A+B) + C = A+ (B + C),

odnosno asocijativnost operacije zbrajanja preslikavanja. Na sličan način
vidimo da operacije zbrajanja preslikavanja i množenja preslikavanja skala-
rom imaju sva svojstva iz definicije vektorskog prostora. Mi ćemo vektorski
prostor linearnih preslikavanja s Rn u Rm označavati s

L(Rn,Rm).

1.11. Izomorfizam vektorskih prostora linearnih preslikavanja
s Rn u Rm i m×n matrica. Ne samo da je pridruživanje matrice linearnom
preslikavanju bijekcija koja nam je dozvolila poistovjećivanje linearnog pre-
slikavanja i matrice

A←→ (Ae1, . . . , Aen),

nego su i operacije zbrajanja matrica i množenja matrice skalarom definirane
u skladu s tom identifikacijom

A+B ←→ (Ae1, . . . , Aen) + (Be1, . . . , Ben), λA←→ λ(Ae1, . . . , Aen).

Znači da imamo izomorfizam vektorskog prostora linearnih preslikavanja s
Rn u Rm i vektorskog prostora matrica tipa m× n

L(Rn,Rm) ∼=Mm×n(R).

Odavle posebno slijedi

dimL(Rn,Rm) = n ·m.

1.12. Izomorfizam vektorskih prostora linearnih operatora i
matrica. Neka su V i W dva vektorska prostora nad istim poljem K. Skup1

L(V,W )

svih linearnih operatora A : V →W je vektorski prostor s operacijama zbra-
janja i množenja skalarom λ ∈ K definiranim po točkama:

(A+B)(x) = Ax+Bx, (λA)(x) = λAx

1Linearno preslikavanje zovemo i homomorfizmom vektorskih prostora, od grčke riječi
homomorfan=sličnog oblika, a skup linearnih operatora L(V,W ) često označavamo i kao
Hom (V,W ).
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za svaki x ∈ V . Na isti način kao prije vidimo da su A + B i λA linearni
operatori, te da je L(V,W ) s tim operacijama vektorski prostor. Kao i
obično, nul-operator označavamo s 0,

0 : V →W, 0: x 7→ 0 za svaki x ∈ V.

Ako su V i W konačno dimenzionalni vektorski prostori s uredenim
bazama E i F , onda linearne operatore možemo identificirati s njihovim
matricama u tom paru baza

A←→ AFE .

Budući da su koordinatizacije v 7→ vE i w 7→ wF linearna preslikavanja, to je
i bijekcija A 7→ AFE linearno preslikavanje. Znači da su vektorski prostora
operatora i matrica izomorfni, tj.

L(V,W ) ∼=Mm×n(K)

za n = dimV i m = dimW . Odavle slijedi

(1.5) dimL(V,W ) = dimV · dimW.

1.13. Zadatak. Dokažite da je A 7→ AFE linearno preslikavanje.

1.14. Zadatak. Izračunajte dimenziju vektorskog prostora

L(L(R,R2),M3×3(R)) ?

2. Algebra n× n matrica

2.1. Distributivnost množenja matrica prema zbrajanju. Mno-
ženje matrica definirano je samo uz uvjet da su odredenog tipa, općenito
smo to zapisali “formulom”

(k ×m) · (m× n) = (k × n).

Znači da imamo preslikavanje

Mk×m ×Mm×n →Mk×n, (A,B) 7→ AB

koje matrici A tipa k ×m i matrici B tipa m × n pridruži njihov produkt
AB — matricu tipa k × n. Za množenje matrica vrijede dva svojstva di-
stributivnosti prema zbrajanju matrica — u vektorskim prostorima Mm×n
i Mk×n, te Mk×m i Mk×n :

A(B + C) = AB +AC, (A+D)B = AB +DB.

Naime, neka je A = (αij), B = (βij) i C = (γij). Koristeći formulu za
matrični element na mjestu ij matrice A(B + C) dobivamo

m∑
r=1

αir(βrj + γrj) =
m∑
r=1

(αirβrj + αirγrj) =
m∑
r=1

αirβrj +
m∑
r=1

αirγrj ,
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a to je matrični element na mjestu ij matrice AB + AC. Na sličan način
dokazujemo i drugu formulu, kao i homogenost množenja matricom u odnosu
na množenje skalarom u vektorskim prostorima Mk×m, Mm×n i Mk×n :

(λA)B = λ(AB), A(λB) = λ(AB).

Vrlo često ova svojstva množenja matrica zovemo svojstvom bilinearnosti
množenja i zapisujemo kratko kao

A

(
s∑
i=1

λiBi

)
=

s∑
i=1

λiABi ,

 r∑
j=1

µjAj

 =

r∑
j=1

µjAjB ,

ili još općenitije kao “množenje svaki sa svakim” r∑
j=1

µjAj

( s∑
i=1

λiBi

)
=

r∑
j=1

s∑
i=1

µjλiAjBi .

2.2. Bilinearnost množenja linearnih operatora. Ako su V , W i
U tri vektorska prostora nad istim poljem K i

B : V →W i A : W → U

linearni operatori, onda je produkt AB definiran kao kompozicija

AB : V → U, (AB)(v) = A(B(v)).

Općenito imamo preslikavanje

L(V,W )× L(W,U)→ L(V,U), (B,A) 7→ AB

koje paru linearnih operatora B i A pridruži njihov produkt AB. Kao i u
slučaju množenja matrica imamo svojstvo bilinearnosti

A(λ1B1 +λ2B2) = λ1AB1 +λ2AB2 , (µ1A1 +µ2A2)B = µ1A1B+µ2A2B ,

Naime, za prvu tvrdnju računamo

(A(λ1B1 + λ2B2))(v) = A((λ1B1 + λ2B2)(v))

= A(λ1B1(v) + λ2B2(v))

= λ1A(B1(v)) + λ2A(B2(v))

= λ1(AB1)(v) + λ2(AB2)(v)

= (λ1AB1 + λ2AB2)(v),

pri čemu prva jednakost vrijedi zbog definicije kompozicije, druga zbog de-
finicije operatora λ1B1 + λ2B2, treća zbog linearnosti operatora A, četvrta
zbog definicije kompozicije i peta zbog definicije linearne kombinacije ope-
ratora AB1 i AB2. Kad je V = Rn, W = Rm, U = Rk i

Rn B−→ Rm A−→ Rk,

onda imamo malo drugačiji dokaz distributivnosti množenja matrica.
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2.3. Pojam algebre. Neka je A vektorski prostor. Kažemo da je A
algebra ako je dano množenje

· : A×A → A, (A,B) 7→ A ·B

koje je bilinearno, tj. za sve vektore A,B,C ∈ A i skalare λ, µ vrijedi

(λA+ µB) · C = λ(A · C) + µ(B · C),

C · (λA+ µB) = λ(C ·A) + µ(C ·B).

U algebri vrlo često ne pǐsemo znak za množenje elemenata i umjesto A ·B
pǐsemo samo AB. Ako je množenje asocijativno, tj. za sve A,B,C ∈ A
vrijedi

(AB)C = A(BC),

onda kažemo da jeA asocijativna algebra. Ako postoji jedinica I za množenje,
tj. za sve A ∈ A vrijedi

IA = AI = A,

onda kažemo da je A asocijativna algebra s jedinicom. Algebre koje ćemo mi
razmatrati bit će isključivo asocijativne algebre s jedinicom, pa ćemo govoriti
samo algebra. Ako je množenje u A komutativno, tj. za sve A,B ∈ A vrijedi

AB = BA,

onda kažemo da je A komutativna algebra2.

2.4. Strukturne konstante algebre. Neka je A algebra i e1, . . . , em
baza vektorskog prostora A. za svaki par indeksa i, j ∈ {1, . . . ,m} produkt
vektora eiej možemo zapisati u bazi

eiej =
m∑
k=1

Nijkek,

a koeficijente

Nijk, i, j, k ∈ {1, . . . ,m}
zovemo strukturnim konstantama algebre A. Zbog bilinearnosti množenja u
algebri produkt proizvoljna dva elementa možemo izraziti pomoću njihovih
koordinata i strukturnih konstanti:

xy =

(
m∑
i=1

ξiei

) m∑
j=1

ηjej

 =
m∑

i,j=1

ξiηjeiej =
m∑

i,j,k=1

ξiηjNijkek.

Štovǐse, za danu bazu e1, . . . , em vektorskog prostora A i proizvoljni iz-
bor strukturnih konstanti Nijk gornjom je formulom definirano bilinearno
množenje na A, kažemo da smo množenje zadali na bazi.

2a mislimo: komutativna asocijativna algebra s jedinicom
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2.5. Zadatak. Na A = R2 s kanonskom bazom e1, e2 definirano je bi-
linearno množenje na bazi tablicom množenja

e1e1 = e1 ,

e1e2 = e2 ,

e2e1 = e2 ,

e2e2 = 0 .

Dokažite da je s tim množenjem A asocijativna komutativna algebra s jedi-
nicom.

2.6. Zadatak. Na A = R3 zadajte bilinearno množenje na kanonskoj
bazi e1, e2, e3 tako da A bude asocijativna komutativna algebra s jedinicom.

2.7. Pitanje. Na R3 imamo bilinearno vektorsko množenje a × b. Da
li je to množenje asocijativno?

2.8. Algebra n× n matrica. Skup Mn×n(R) svih n× n realnih ma-
trica, često pǐsemo Mn(R) ili Mn, je vektorski prostor na kojem imamo
operaciju množenja matrica. Pogledamo li svojstva operacija zbrajanja ma-
trica, množenja matrice skalarom i množenja matrica, onda vidimo da je
Mn asocijativna algebra s jedinicom. Podsjetimo se da je

dimMn = n2.

2.9. Zadatak. Neka je V vektorski prostor, ne nužno konačno dimen-
zionalni. Provjerite da je vektorski prostor L(V ) linearnih operatora na
V asocijativna algebra s jedinicom s obzirom na kompoziciju kao operaciju
množenja.

2.10. Izomorfizam algebri. Ako su A i B dvije algebre, onda izomor-
fizam Φ: A → B vektorskih prostora zovemo izomorfizmom algebri ako za
sve elemente A,B ∈ A vrijedi

Φ(AB) = Φ(A)Φ(B).

Drugim riječima, izomorfizam algebri je bijekcija pomoću koje možemo iden-
tificirati ne samo elemente skupova, nego i operacije zbrajanja, množenja
skalarom i množenja na tim skupovima jer vrijedi

Φ(A+B) = Φ(A) + Φ(B), Φ(λA) = λΦ(A), Φ(AB) = Φ(A)Φ(B).

Kažemo da je Φ izomorfizam algebri s jedinicom ako je

Φ(1) = 1.

Kao i obično, ako postoji izomorfizam algebri Φ: A → B, onda kažemo da
su algebre A i B izomorfne i pǐsemo

A ∼= B.
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Ako su Φ: A → B i Ψ: B → C izomorfizami algebri, onda je i kompozicija
Ψ ◦ Φ: A → C izomorfizam algebri jer je to opet linearna bijekcija i vrijedi

Ψ(Φ(AB)) = Ψ(Φ(A)Φ(B)) = Ψ(Φ(A))Ψ(Φ(B)).

Izomorfizam algebre Φ: A → A obično zovemo automorfizmom od A.

2.11. Izomorfizam algebri linearnih operatora i matrica. Ako
je V konačno dimenzionalni vektorski prostor s uredenom bazom E, onda
linearne operatore A možemo identificirati s njihovim matricama AE = AEE
u toj bazi,

A←→ AE .

Ta je bijekcija izomorfizam vektorskih prostora, tj.

A+B ←→ AE +BE , λA←→ λAE .

Budući da je matrica produkta operatora produkt pripadnih matrica, tj.
(AB)E = AEBE , to imamo

AB ←→ AEBE .

To znači da su algebra operatora L(V ) i algebra matrica Mn izomorfne,

L(V ) ∼=Mn.

2.12. Unutarnji automorfizmi algebre. Ako je V konačno dimen-
zionalni vektorski prostor s uredenim bazama E i F , onda imamo dva izo-
morfizma

AE ←→ A←→ AF .

No tada je njihova kompozicija

AE 7→ AF

automorfizam algebre n× n matrica. Ako je T matrica prijelaza iz baze E
u bazu F , onda za matrice operatora A ∈ L(V ) imamo AF = T−1AET , pa
gornji automorfizam algebre n× n matrica možemo zapisati formulom

B 7→ T−1BT.

Općenito, ako je A asocijativna algebra s jedinicom i T ∈ A regularni ele-
ment3, onda je preslikavanje

B 7→ T−1BT

automorfizam (dokažite!) kojeg zovemo unutarnjim automorfizmom algebre
A ili konjugacijom regularnim elementom T u algebri A.

2.13. Podalgebra. Ako je A algebra, onda kažemo da je potprostor B
podalgebra ako je zatvoren i za operaciju množenja, tj. ako je AB ∈ B kad
su oba elementa A i B u B. Nas će najvǐse zanimati podalgebre s jedinicom,
tj. podalgebre koje sadrže jedinicu I algebre A.

3Kao u slučaju linearnih operatora, regularan element asocijativne algebre s jedinicom
znači invertibilan element te algebre, tj. element koji ima inverz.
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2.14. Komutativna podalgebra dijagonalnih matrica. Za matricu
A = (αij) kažemo da je dijagonalna ako je αij = 0 za i 6= j, odnosno

A =


α11 0 . . . 0
0 α22 . . . 0
...

...
...

0 0 . . . αnn

 .

Vidimo da je matrica A dijagonalna ako i samo ako za kanonsku bazu
e1, . . . , en preslikavanje A čuva 1-dimenzionalne potprostore

〈e1〉, . . . , 〈en〉,

tj. ako za kanonsku bazu i neke skalare α11, . . . , αnn vrijedi

(2.1) Ae1 = α11e1, Ae2 = α22e2, . . . , Aen = αnnen.

Za skalar λ i dijagonalnu matricu B = (βij) iz relacije (2.1) slijedi da je za
sve j = 1, . . . , n

(2.2)

(λA)ej = (λαjj)ej ,

(A+B)ej = (αjj + βjj)ej ,

(AB)ej = (αjjβjj)ej ,

a to znači i da su matrice λA, A + B i AB dijagonalne. Naravno, formulu
za množenje dijagonalnih matrica AB možemo zapisati i kaoα11 . . . 0

...
...

0 . . . αnn


β11 . . . 0

...
...

0 . . . βnn

 =

α11β11 . . . 0
...

...
0 . . . αnnβnn

 .

Očito za sve dijagonalne matrice A i B vrijedi

AB = BA.

Znači da je skup svih dijagonalnih n × n matrica komutativna podalgebra
algebre matrica Mn.

2.15. Pitanje. Ako su A i B dijagonalne n × n matrice, da li je onda
A2 −B2 = (A+B)(A−B)? DA NE

2.16. Zadatak. Pokažite da je algebra dijagonalnih n×n matrica izo-
morfna algebri funkcija sa skupa {1, . . . , n} u polje R s operacijama defini-
ranim po točkama

(λA)(j) = λA(j),

(A+B)(j) = A(j) +B(j),

(AB)(j) = A(j)B(j)

za sve j = 1, . . . , n.
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2.17. Zadatak. Pokažite da je n× n matrica A gornja trokutasta ako
i samo ako za kanonsku bazu e1, . . . , en preslikavanje A čuva potprostore

〈e1〉, 〈e1, e2〉, . . . , 〈e1, e2, . . . , en−1〉,

tj. ako za k = 1, 2, . . . , n− 1 vrijedi A〈e1, e2, . . . , ek〉 ⊂ 〈e1, e2, . . . , ek〉.

2.18. Zadatak. Pokažite da su gornje trokutaste matrice podalgebra
algebre kvadratnih n × n matrica. Pokažite da algebra gornjih trokutastih
matrica nije komutativna za n ≥ 2.

2.19. Zadatak. Nadite gornje trokutaste 2× 2 matrice A i B takve da
je A2 −B2 6= (A+B)(A−B).

2.20. Algebra n × n matrica s koeficijentima u algebri. Neka je
A asocijativna algebra s jediniciom nad poljem K, ne nužno komutativna.
Skup Mn(A) svih n× n matrica A = (αij) s koeficijentima u A, tj.

Mn(A) = {A = (αij)i,j=1,...,n | αij ∈ A za sve i, j = 1, . . . , n},

je asocijativna algebra nad poljem K s jedinicom za operacije zbrajanja,
množenja skalarom λ ∈ K i množenja n × n matrica A = (αij)i,j=1,...,n i
B = (βij)i,j=1,...,n zadanih formulama

A+B = (αij + βij)i,j=1,...,n ,

λA = (λαij)i,j=1,...,n ,

AB = (
n∑
k=1

αikβkj)i,j=1,...,n .

Ako je A konačno dimenzionalna, onda je

dimMn(A) = n2 dimA.

2.21. Zadatak. Dokažite sve iskazane tvrdnje u prethodnoj točki.

2.22. Zadatak. Dokažite da je M2(M2(R)) ∼=M4(R).

2.23. Zadatak. Na vektorskom prostoru kvadratnih n×n matrica de-
finiramo komutator matrica A i B kao

[A,B] = AB −BA.

Pokažite da je komutator bilinearna operacija, tj

[A, λ1B1 + λ2B2] = λ1[A,B1] + λ2[A,B2] ,

[µ1A1 + µ2A2, B] = µ1[A1, B] + µ2[A2, B] .
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2.24. Zadatak. Za kvadratnu n×n matricu A = (αij) definiramo trag
matrice

trA =
n∑
i=1

αii = α11 + · · ·+ αnn.

Očito je tr : Mn(R)→ R linearna funkcija. Iz formule za množenje matrica
A = (αij) i B = (βij) slijedi

tr (AB) =
n∑
i=1

 n∑
j=1

αijβji

 =
n∑
i=1

n∑
j=1

αijβji =
n∑
j=1

(
n∑
i=1

βjiαij

)
= tr (BA).

Odavle slijedi da za komutator matrica vrijedi

tr [A,B] = tr (AB −BA) = trAB − trBA = 0.

2.25. Zadatak. Na vektorskom prostoru kvadratnih n×n matrica de-
finiramo antikomutator matrica A i B kao

{A,B} = AB +BA.

Pokažite da je antikomutator bilinearna operacija.

3. Hermitski adjungirana matrica

U ovom paragrafu pretpostavljamo da je V konačno dimenzionalni uni-
tarni prostor nad poljem realnih ili kompleksnih brojeva.

3.1. Matrica operatora u ortonormiranoj bazi. Neka je
E = (e1, . . . , en) ortonormirana baza od V . Tada su koordinate ξi vektora

x = ξ1e1 + · · ·+ ξnen

dane formulom

(3.1) ξi = (x | ei), i = 1, . . . , n.

Ako je A : V → V linearni operator, onda je matrica AE = (αij) operatora
A u bazi E odredena formulom

Aej =

n∑
i=1

αijei, j = 1, . . . , n.

Budući da koordinate αij vektora Aej u ortonormiranoj bazi E možemo
računati pomoću formule (1.1), to je matrica operatora u ortonormiranoj
bazi dana formulom

αij = (Aej | ei), i, j = 1, . . . , n.
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3.2. Lema. Neka su A i B linearni operatori na V . Tada je A = B
ako i samo ako je

(Ax | y) = (Bx | y) za sve x, y ∈ V.

Dokaz. Neka je E = (e1, . . . , en) ortonormirana baza od V . Tada je

(Aej | ei) = (Bej | ei), za sve i, j = 1, . . . , n.

Znači da su matrice AE i BE operatora jednake, pa slijedi i jednakost ope-
ratora A = B. Obrat je očigledan. �

3.3. Hermitski adjungirana matrica. Neka je A = (αij) realna ili
kompleksna n× n matrica. Tada matricu

A∗ = (βij), βij = αji, i, j = 1, . . . , n,

zovemo hermitski adjungiranom matricom matrici A. Znači da je A∗ dobi-
vena iz A transponiranjem i, ako se radi o kompleksnoj matrici, kompleksnim
konjugiranjem svakog matričnog elementa.

3.4. Primjer.0 1 −1
2 3 −2
3 4 5

∗=

 0 2 3
1 3 4
−1 −2 5

,
 i 1 −1

2− 2i 3 −2
3 + i 4 5

∗=

−i 2 + 2i 3− i
1 3 4
−1 −2 5

.

3.5. Hermitski adjungirani operator. Neka je A : V → V linearni
operator. Tada postoji jedinstveni linearni operator A∗ : V → V takav da je

(Ax | y) = (x | A∗y) za sve x, y ∈ V.
Operator A∗ zovemo hermitski adjungiranim operatorom operatoru A.

Dokaz. Dokažimo prvo jedinstvenost. Pretpostavimo da su B i C ope-
ratori na V takvi da je

(Ax | y) = (x | By) i (Ax | y) = (x | Cy) za sve x, y ∈ V.
Tada je zbog hermitske simetrije skalarnog produkta

(By | x) = (Ax | y) = (Cy | x) za sve x, y ∈ V,
pa iz leme 1.2 slijedi B = C.

Dokažimo sada da operator A∗ postoji. Odaberimo neku ortonormiranu
bazu E = (e1, . . . , en) od V . Ako operator A∗ postoji, onda mora biti

(3.2) (Aei | ej) = (ei | A∗ej) za sve i, j = 1, . . . , n.

Zbog hermitske simetrije skalarnog produkta to je ekvivalentno

(A∗ej | ei) = (Aei | ej) za sve i, j = 1, . . . , n.

Zato definiramo linearan operator A∗ tako da mu je u bazi E matrica
(A∗)E = (βij) jednaka

(3.3) (A∗)E = (AE)∗, βij = (A∗ej | ei) = (Aei | ej) = αji,
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tj. jednaka adjungiranoj matrici matrice AE = (αij) operatora A. Sada
zbog (1.2) za proizvoljne

x =
n∑
i=1

ξiei i y =
n∑
j=1

ηjej

imamo

(Ax | y) = (A
n∑
i=1

ξiei |
n∑
j=1

ηjej) =
n∑

i,j=1

ξiηj(Aei | ej)

=

n∑
i,j=1

ξiηj(ei | A∗ej) = (

n∑
i=1

ξiei | A∗
n∑
j=1

ηjej) = (x | A∗y).

�

3.6. Napomena. Zbog hermitske simetrije skalarnog produkta je

(A∗y | x) = (y | Ax) za sve x, y ∈ V.

3.7. Svojstva hermitskog adjungiranja.

(1) (A∗)∗ = A, obično pǐsemo A∗∗ = A i kažemo da je ∗ involucija.
(2) I∗ = I.
(3) (AB)∗ = B∗A∗, obično kažemo da je ∗ antiautomorfizam množenja.
(4) (λA+ µB)∗ = λ̄A∗ + µ̄B∗, u kompleksnom slučaju kažemo da je ∗

antilinearno.

Dokaz. Sve tvrdnje slijede iz relacija

(Ax | y) = (x | A∗y) i (A∗x | y) = (x | Ay)

primjenom leme 1.2:

((A∗)∗x | y) = (x | A∗y) = (Ax | y).

(I∗x | y) = (x | Iy) = (x | y) = (Ix | y).

((AB)∗x | y) = (x | ABy) = (A∗x | By) = (B∗A∗x | y).

((λA+ µB)∗x | y) = (x | (λA+ µB)y) = λ̄(x | Ay) + µ̄(x | By)

= λ̄(A∗x | y) + µ̄(B∗x | y) = ((λ̄A∗ + µ̄B∗)x | y).

�

3.8. Hermitske matrice. Neka je A = (αij) realna ili kompleksna
n× n matrica. Kažemo da je A hermitska matrica ako je

A∗ = A,

odnosno
αij = αji za sve i, j = 1, . . . , n.

Primijetimo da su zbog αii = αii svi dijagonalni elementi hermitske matrice
realni brojevi. Realne hermitske matrice zovemo i simetričnim matricama.
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3.9. Paulijeve matrice su hermitske. Paulijeve matrice su matrice

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Očito su σx, σy i σz hermitske matrice.

3.10. Zadatak. Provjerite da su matrice A i B hermitske,

A =

(
2 1
1 3

)
, B =

 0 2 + 2i 1
2− 2i 3 −3i

1 3i 5

 .

3.11. Antihermitske matrice. Neka je A = (αij) realna ili komplek-
sna n× n matrica. Kažemo da je A antihermitska matrica ako je

A∗ = −A,

odnosno

αij = −αji za sve i, j = 1, . . . , n.

Primijetimo da su zbog αii = −αii svi dijagonalni elementi antihermitske
matrice čisto imaginarni brojevi. Realne antihermitske matrice zovemo i
antisimetričnim matricama.

3.12. Primjeri antihermitskih matrica.

J1 =

(
i 0
0 −i

)
, J2 =

(
0 1
−1 0

)
, J3 =

(
0 i
i 0

)
.

3.13. Zadatak. Općenito produkt hermitskih matrica nije hermitska
matrica i produkt antihermitskih matrica nije antihermitska matrica, na
primjer(

0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
,

(
0 1
−1 0

)(
i 0
0 i

)
=

(
0 i
−i 0

)
.

Dokažite da je antikomutator hermitskih matrica hermitska matrica, te da
je komutator antihermitskih matrica antihermitska matrica. Izračunajte sve
antikomutatore Paulijevih matrica i sve komutatore matrica J1, J2 i J3 iz
prethodnog primjera.

3.14. Unitarne matrice. Za kompleksnu n×nmatricuA = (a1, . . . , an)
kažemo da je unitarna ako su vektori a1, . . . , an ortonormirana baza u Cn.
Budući da je kanonski skalarni produkt u Cn dan formulom

(a | b) = α1β1 + · · ·+ αnβn ,

to uvjet (ai | aj) = δij ortonormiranosti vektora možemo zapisati kao mno-
ženje matrica

A∗A = I ili ekvivalentno AA∗ = I.

Realne unitarne matrice zovemo i ortogonalnim matricama.
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3.15. Primjeri unitarnih matrica.

J1 =

(
i 0
0 −i

)
, J2 =

(
0 1
−1 0

)
, J3 =

(
0 i
i 0

)
.

3.16. Zadatak. Dokažite da su sve ortonormirane baze u C2 oblika(
α −β̄ζ
β ᾱζ

)
, |α|2 + |β|2 = 1, |ζ| = 1, α, β, ζ ∈ C.

3.17. Grupa unitarnih matrica. Valja primijetiti da je (i) produkt
unitarnih matrica opet unitarna matrica jer

(U1U2)∗(U1U2) = U∗2U
∗
1U1U2 = U∗2 IU2 = U∗2U2 = I,

da je (ii) jedinična matrica I unitarna i da je (iii) inverz unitarne matrice
U−1 = U∗ unitarna matrica jer

(U−1)∗U−1 = (U∗)∗U∗ = UU∗ = I.

Drugim riječima, skup U(n) svih unitarnih n× n matrica je grupa.

3.18. Zadatak. Dokažite da je skup SU(n) svih unitarnih n×nmatrica
determinante 1 takoder grupa.

4. Kompleksni brojevi kao 2× 2 realne matrice

4.1. Kompleksni brojevi. Kompleksni brojevi su uredeni parovi (α, β)
realnih brojeva koje zapisujemo kao

z = α+ iβ.

Operacije zbrajanja i množenja kompleksnih brojeva definirane su formu-
lama

(α+ iβ) + (α′ + iβ′) = (α+ α′) + i(β + β′),

(α+ iβ) · (α′ + iβ′) = (αα′ − ββ′) + i(αβ′ + βα′).

Skup svih kompleksnih brojeva s tako definiranim operacijama zbrajanja i
množenja označavamo sa C.

4.2. Skup C kao R2. Kompleksne brojeve x = ξ1+iξ2 možemo zapisati
kao vektor-stupce

x =

(
ξ1

ξ2

)
u R2. Tada je zbrajanje kompleksnih brojeva x′ + x′′ zbrajanje vektora u
R2, a množenjem kompleksnog broja x = ξ1 + iξ2 realnim brojem λ = λ+ i0
dobivamo

λx = (λ+ i0)(ξ1 + iξ2) = (λξ1 − 0ξ2) + i(λξ2 + 0ξ1),

što zapisujemo kao

λx = λ

(
ξ1

ξ2

)
=

(
λξ1

λξ2

)
, λ ∈ R.
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Znači da je skup C vektorski prostor R2 s operacijama zbrajanja i množenja
realnim brojevima λ. Kanonsku bazu označavamo s

1 =

(
1
0

)
i i =

(
0
1

)
4.3. Množenje kompleksnim brojem je linearni operator na R2.

Budući da je množenje kompleksnih brojeva distributivno prema zbrajanju
te asocijativno i komutativno, za kompleksni broj z vrijedi

z · (x′ + x′′) = z · x′ + z · x′′, z · (λx) = λ(z · x),

pa je preslikavanje

(4.1) z : R2 → R2, x 7→ z · x

linearan operator. Za kompleksni broj

z = α+ iβ

su z · 1 = α + iβ i z · i = −β + iα vrijednosti linearnog preslikavanja (4.1)
na kanonskoj bazi, pa je (

α −β
β α

)
matrica tog linearnog preslikavanja.

4.4. Kompleksni brojevi kao 2× 2 realne matrice. Očito možemo
identificirati kompleksne brojeve i realne 2× 2 matrice oblika

α+ iβ ←→
(
α −β
β α

)
.

Pri toj identifikaciji zbrajanju kompleksnih brojeva z+z′ odgovara zbrajanje
preslikavanja po točkama

(z + z′) · x = z · x+ z′ · x,

dakle zbrajanje matrica

(α+ iβ) + (α′ + iβ′)←→
(
α −β
β α

)
+

(
α′ −β′
β′ α′

)
,

a množenju kompleksnih brojeva z · z′ odgovara kompozicija preslikavanja

(z · z′) · x = z · (z′ · x),

dakle množenje matrica

(α+ iβ) · (α′ + iβ′)←→
(
α −β
β α

)(
α′ −β′
β′ α′

)
.
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4.5. Kompleksni brojevi jesu 2×2 realne matrice. Svo gornje raz-
glabanje mogli smo preskočiti da smo rekli da kompleksni brojevi naprosto
jesu realne 2× 2 matrice oblika(

α −β
β α

)
, α, β ∈ R,

s operacijama zbrajanja i množenja matrica. Pri tome bi trebalo provjeriti
da je suma i produkt takvih matrica istog oblika i da za(

α −β
β α

)
6= 0 imamo inverz

(
α −β
β α

)−1

=
1

α2 + β2

(
α β
−β α

)
.

Sva ostala svojstva zbrajanja i množenja kompleksnih brojeva, uključujući
komutativnost množenja, slijede iz općih svojstava zbrajanja i množenja
kvadratnih matrica.

4.6. Primjedba. Budući da je algebra kompleksnih brojeva C podal-
gebra algebreM2(R), to algebruM2(C) kompleksnih 2×2 matrica možemo
shvatiti kao podalgebru algebre M4(R) realnih 4× 4 matrica. Posebno za

zij = αij + iβij , αij , βij ∈ R, i, j = 1, 2

imamo identifikaciju

(
z11 z12

z21 z22

)
=


α11 −β11 α12 −β12

β11 α11 β12 α12

α21 −β21 α22 −β22

β21 α21 β22 α22

 .

5. Kvaternioni kao 2× 2 kompleksne matrice

5.1. Imaginarne jedinice. Označimo sM2(C) algebru 2×2 komplek-
snih matrica (

α β
γ δ

)
, α, β, γ, δ ∈ C.

Stavimo

I =

(
1 0
0 1

)
, J1 =

(
i 0
0 −i

)
, J2 =

(
0 1
−1 0

)
, J3 =

(
0 i
i 0

)
.

Taj skup vektora je baza kompleksnog vektorskog prostoraM2(C). Vrijede
relacije

(5.1) J2
1 = −I, J2

2 = −I, J2
3 = −I,

(5.2)

J1J2 = −J2J1 = J3,

J2J3 = −J3J2 = J1,

J3J1 = −J1J3 = J2.



5. KVATERNIONI KAO 2× 2 KOMPLEKSNE MATRICE 225

5.2. Algebra kvaterniona. Iz relacija (5.1) i (5.2) vidimo da je realan
4-dimenzionalan vektorski prostor

H = {α0I + α1J1 + α2J2 + α3J3 | α0, α1, α2, α3 ∈ R}
= RI + RJ1 + RJ2 + RJ3

zatvoren za množenje matrica, tj. da je realna algebra. Algebru H zovemo
algebrom kvaterniona ili algebrom hiperkompleksnih brojeva4. Jedinčna ma-
trica I je jedinični element algebre H, a kvaternione J1, J2, J3 zovemo ima-
ginarnim jedinicama. Iz relacija (5.2) vidimo da algebra kvaterniona nije
komutativna. Algebru kvaterniona možemo zapisati i kao skup matrica

H =

{(
α β
−β̄ ᾱ

) ∣∣α, β ∈ C
}
.

5.3. Zadatak. Stavite α = α0 + iα1 i −β̄ = α3 + iα4 i napǐsite kvater-
nione kao realne 4× 4 matrice.

5.4. Apsolutna vrijednost kvaterniona. Za kvaternion Z defini-
ramo apsolutnu vrijednost (ili normu) |Z| relacijom

Z =

(
α β
−β̄ ᾱ

)
, |Z|2 = |α|2 + |β|2 = detZ.

Očito je |Z| = 0 ako i samo ako je Z = 0. Takoder vrijedi |Z1Z2| = |Z1| |Z2|
za Z1, Z2 ∈ H, kao i

|I| = |J1| = |J2| = |J3| = 1.

5.5. Zadatak. Izračunajte norme kvaterniona(
3 + i 0

0 3− i

)
,

(
3 1
−1 3

)
,

(
3 i
i 3

)
.

5.6. Konjugacija kvaterniona. Za kvaternion Z je hermitski adjun-
girana matrica Z∗ takoder kvaternion pa imamo konjugaciju kvaterniona

(α0I + α1J1 + α2J2 + α3J3)∗ = α0I − α1J1 − α2J2 − α3J3.

Budući da množenje nije komutativno, važno je primijetiti da je (Z1Z2)∗ =
Z∗2Z

∗
1 . Takoder vrijedi

(5.3) ZZ∗ =

(
α β
−β̄ ᾱ

)(
ᾱ −β
β̄ α

)
= |Z|2

(
1 0
0 1

)
= |Z|2 I.

4ili Hamiltonovim brojevima
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5.7. Invertiranje kvaterniona. Iz (5.3) slijedi da je svaki kvaternion
Z 6= 0 invertibilan:

Z−1 =
1

|Z|2
Z∗.

Za Z = α0I + α1J1 + α2J2 + α3J3 to možemo zapisati i kao

Z−1 =
1

α2
0 + α2

1 + α2
2 + α2

3

(α0I − α1J1 − α2J2 − α3J3).

Izuzev komutativnosti množenja, kvaternioni zadovoljavaju sve ostale aksi-
ome polja. Umjesto “nekomutativnog polja” govorimo da kvaternioni zado-
voljavaju aksiome tijela.

5.8. Zadatak. Invertirajte kvaternione(
3 + i 0

0 3− i

)
,

(
3 1
−1 3

)
,

(
3 i
i 3

)
.

5.9. Pitanje. Možemo li riješiti sistem jednadžbi

A11Z1 +A12Z2 = B1,

A21Z1 +A22Z2 = B2,

gdje su zadani kvaternioni Aij i Bi, a nepoznanice su kvaternioni Zj?

5.10. Zadatak. Riješite sistem jednadžbi

Z1 + J1Z2 = 0,

J2Z1 + J3Z2 = 2J2,

gdje su nepoznanice kvaternioni Z1 i Z2.

5.11. Polarna forma kvaterniona. Budući da je |Z∗| = |Z|, svi kva-
ternioni norme 1 čine grupu, ispada da je to SU(2):

SU(2) =

{
g =

(
α γ
β δ

) ∣∣ gg∗ = 1,det g = 1

}
=

{
g =

(
α −β̄ζ
β ᾱζ

) ∣∣ |α|2 + |β|2 = 1, |ζ| = 1,det g = 1

}
=

{
g =

(
α −β̄
β ᾱ

) ∣∣ |α|2 + |β|2 = 1

}
= {Z ∈ H | |Z| = 1}.

Analogno kompleksnim brojevima, svaki kvaternion Z 6= 0 možemo na je-
dinstveni način zapisati u “polarnom obliku”

Z = rg, r = |Z|, g =
1

|Z|
Z ∈ SU(2).

5.12. Zadatak. Napǐsite u polarnoj formi kvaternione(
1 + i 0

0 1− i

)
,

(
1 1
−1 1

)
,

(
1 i
i 1

)
.
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5.13. Skalarni i vektorski dio kvaterniona. Stavimo

V = {α1J1 + α2J2 + α3J3 | α1, α2, α3 ∈ R}
= RJ1 + RJ2 + RJ3

= {K ∈M2(C) | K∗ = −K, trK = 0},
gdje je trK trag kvadratne matrice K, tj. suma dijagonalnih elemenata
matrice K. Očito se svaki kvaternion na jedinstveni način može prikazati
kao

Z = αI +K, α ∈ R, K ∈ V,

gdje je

αI = 1
2(Z + Z∗), K = 1

2(Z − Z∗)
(analogno rastavu kompleksnog broja na realan i imaginaran dio). Budući
da je I jedinični element algebre, često se matrica αI identificira sa skalarom
α ∈ R i zove se skalarni (ili realni) dio kvaterniona Z. Zato često pǐsemo
1 umjesto I. Element K ∈ V zove se vektorski dio kvaterniona Z. Za
kvaternion K ∈ V imamo |K|2 = KK∗ = −K2. Posebno je

K2 = −1 za K ∈ V, |K| = 1

pa kažemo da je K imaginarna jedinica.

5.14. Zadatak. Napǐsite skalarni i vektorski dio kvaterniona(
1− i −2− 3i
2− 3i 1 + i

)
.

5.15. Eksponencijalni zapis kvaterniona. Za imaginarnu jedinicu
K ∈ V, |K| = 1 i realan broj ϕ stavimo

(5.4) eϕK = cosϕI + (sinϕ)K.

Očito je ∣∣eϕK∣∣2 = | cosϕ|2|I|2 + | sinϕ|2|K|2 = 1.

Takoder je jasno da svaki kvaternion norme 1 možemo prikazati u obliku
(5.4): ako je K ′ = 1

2(Z−Z∗) 6= 0, stavimo K = 1
|K′|K

′ i 1
2(Z+Z∗) = cosϕI.

Tada je Z = eϕK . Očito je(
eϕK

)∗
= cosϕI − (sinϕ)K.

Adicioni teoremi za funkcije sin i cos daju

eϕKeψK = (cosϕI + (sinϕ)K)(cosψI + (sinψ)K)

= (cosϕ cosψ − sinϕ sinψ)I + (cosϕ sinψ + sinϕ cosψ)K

= e(ϕ+ψ)K .
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5.16. Zadatak. Napǐsite eksponencijalni zapis kompleksnog broja

z = 1
2 + i

√
3

2 i kvaterniona5

(
1
2 + i

√
3

2 0

0 1
2 − i

√
3

2

)
,

(
1
2

√
3

2

−
√

3
2

1
2

)
,

(
1
2 i

√
3

2

i
√

3
2

1
2

)
.

5.17. Skalarni produkt na H. Lako se provjeri da je formulom

(Z1 | Z2) = 1
4tr (Z∗1Z2 + Z∗2Z1)

definiran skalarni produkt na realnom vektorskom prostoru H i da za ranije
definiranu normu vrijedi |Z|2 = (Z | Z). Takoder se lako vidi da imamo
ortogonalnu sumu potprostora

H = RI ⊕ V,

te da vektori I, J1, J2, J3 čine ortonormiranu bazu. Preslikavanje V→ R3,

(5.5) α1J1 + α2J2 + α3J3 7→ α1e1 + α2e2 + α3e3

je izomorfizam unitarnih prostora, pri čemu je e1, e2, e3 kanonska baza u
R3.

5.18. Antikomutator i skalarni produkt vektora. Neka su K1 i
K2 iz V. Tada je

(K1K2 +K2K1)∗ = K∗2K
∗
1 +K∗1K

∗
2 = K1K2 +K2K1.

Znači da je antikomutator

{K1,K2} = K1K2 +K2K1

hermitski element u H, pa mora biti

{K1,K2} = λI

za neki realni broj λ. No tada je

2λ = tr (λI) = tr (K1K2 +K2K1) = −tr (K∗1K2 +K∗2K1) = −4(K1 | K2),

pa imamo relaciju

{K1,K2} = −2(K1 | K2) za K1,K2 ∈ V.

5Za ϕ = π/3 imamo cosϕ = 1
2

i sinϕ =
√
3

2
.
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5.19. Komutator i vektorski produkt vektora. Neka je K1,K2 ∈
V. Komutator

[K1,K2] = K1K2 −K2K1

je bilinearna operacija i potpuno je odredena na bazi od V. Primijetimo da
je [K,K] = 0. Budući da za izomorfizam (5.5) vrijedi

1
2 [J1, J2] = J3 7→ e3 = e1 × e2,

1
2 [J2, J3] = J1 7→ e1 = e2 × e3,

1
2 [J3, J1] = J2 7→ e2 = e3 × e1,

gdje je v × w vektorski produkt na R3, operaciju

K1 ×K2 = 1
2 [K1,K2]

zovemo vektorskim produktom vektora u V.

5.20. Množenje vektora pomoću skalarnog i vektorskog pro-
dukta. Neka je K1,K2 ∈ V. Budući da je

1
2{K1,K2}+ 1

2 [K1,K2] = 1
2(K1K2 +K2K1) + 1

2(K1K2 −K2K1) = K1K2,

množenje vektora u V ⊂ H možemo zapisati pomoću skalarnog i vektorskog
produkta kao

K1K2 = −(K1 | K2)I +K1 ×K2.

Iz ove formule vidimo da kvaternione možemo definirati, koristeći izomorfi-
zam (5.5), kao zbroj skalara i vektora

α0 + α1e1 + α2e2 + α3e3, α0 ∈ R, α1e1 + α2e2 + α3e3 ∈ R3,

s operacijama zbrajanja i množenja zadanim formulama

(α+ a) + (β + b) = (α+ β) + (a+ b),

(α+ a) · (β + b) = (αβ − (a | b)) + (αb+ βa+ a× b).

5.21. Paulijeve matrice i imaginarne jedinice. Ponekad se uzima
drugu ortonormirana baza u V:

Jx =−iσx =

(
0 −i
−i 0

)
, Jy =−iσy =

(
0 −1
1 0

)
, Jz =−iσz =

(
−i 0
0 i

)
,

gdje su σx, σy, σz Paulijeve matrice

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

te odgovarajući izomorfizam unitarnih prostora V→ R3,

(5.6) αxJx + αyJy + αzJz 7→ αxe1 + αye2 + αze3.
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5.22. Diracove matrice. U realnoj asocijativnoj algebri s jedinicom
2× 2 matrica M2(H) nad kvaternionima matrice

Γ1 =

(
0 Jx
−Jx 0

)
, Γ2 =

(
0 Jy
−Jy 0

)
, Γ3 =

(
0 Jz
−Jz 0

)
, Γ4 =

(
−I 0
0 I

)
.

zovemo Diracovim matricama. Raspǐsite te matrice kao 4 × 4 kompleksne
matrice ili 8× 8 realne matrice. Izračunajte njihove antikomutatore i komu-
tatore.
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Dijagonalizacija operatora

U ovom poglavlju uvodimo pojmove svojstvenog polinoma, svojstvene
vrijednosti i svojstvenog vektora kvadratne matrice i linearnog operatora.
Na primjerima pokazujemo da za linearni operator može postojati i ne po-
stojati baza prostora u kojoj mu je matrica dijagonalna. Nakon toga pokazu-
jemo vezu svojstvenih vrijednosti i svojstvenih vektora s rješenjima sistema
diferencijalnih jednadžbi prvog reda.

1. Svojstvene vrijednosti linearnog operatora

1.1. Teorem. Neka je A = (αij) realna ili kompleksna n× n matrica.
Tada je funkcija

PA(x) = det (xI −A)

od varijable x polinom n-tog stupnja oblika

PA(x) = xn + σ1x
n−1 + · · ·+ σn−1x+ σn,

pri čemu je σ1 = −trA i σn = (−1)n detA. Polinom PA(x) zovemo svoj-
stvenim ili karakterističnim polinomom matrice A.

Dokaz. Prvo primijetimo da su x− αii dijagonalni elementi matrice
xI − A, a da elementi −αij van dijagonale ne sadrže x. Budući da je de-
terminanta matrice suma produkata n matričnih elemenata pomnoženih s
ε(σ) = ±1, to je jasno da je det (xI −A) polinom stupnja ≤ n. Jedini način
da u polinomu PA(x) dobijemo potenciju xn je da množimo dijagonalne
elemente, što u formuli

(1.1) detA =
∑

σ∈S(n)

ε(σ)ασ(1)1 · · ·ασ(n)n

odgovara sumandu za σ = id i ε(id) = 1. Znači da je PA(x) oblika xn + . . . .
Da bismo u polinomu PA(x) dobili potenciju xn−1, moramo zbrojiti sumande
u formuli (1.1) koji kao faktore imaju n − 1 dijagonalnih elementa. No to
je opet moguće jedino ako množimo sve dijagonalne elemente. Znači da je
PA(x) oblika xn + σ1x

n−1 + . . . , gdje je σ1 koeficijent uz xn−1 u polinomu

(x−α11) . . . (x−αnn) = xn+σ1x
n−1 + · · · = xn−(α11 + · · ·+αnn)xn−1 + . . . .

Znači da je σ1 = −(α11 + · · · + αnn) = −trA. Na kraju, σn = PA(0) =
det(−A) = (−1)n detA. �

231
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1.2. Primjer. Za 2× 2 matricu A =

(
1 1
−1 1

)
imamo

xI −A = x

(
1 0
0 1

)
−
(

1 1
−1 1

)
=

(
x− 1 −1

1 x− 1

)
,

pa je

PA(x) = det(xI −A) = det

(
x− 1 −1

1 x− 1

)
= (x− 1)2 + 1 = x2 − 2x+ 2.

1.3. Zadatak. Neka je A kvadratna n×n matrica i T regularna n×n
matrica. Dokažite da A i T−1AT imaju iste svojstvene polinome, tj. da je

PA(x) = PT−1AT (x).

1.4. Zadatak. Dokažite da ne postoji regularna 2× 2 matrica T takva

da je B = T−1AT za matrice A =

(
1 1
1 1

)
i B =

(
1 −1
1 −1

)
.

1.5. Svojstvene vrijednosti matrice. Neka je A realna ili kompleks-
na kvadratna matrica. Nultočke svojstvenog polinoma PA(x) matrice A
zovemo svojstvenim vrijednostima matrice A, a skup svih svojstvenih vri-
jednosti zovemo spektrom matrice A.

1.6. Zadatak. Nadite svojstvene polinome i svojstvene vrijednosti ima-
ginarnih jedinica J1, J3, J3 kvaterniona.

1.7. Zadatak. Nadite svojstvene polinome i svojstvene vrijednosti Pa-
ulijevih matrica.

1.8. Svojstveni polinom linearnog operatora. Neka je V realni ili
kompleksni konačno dimenzionalni vektorski prostor i A : V → V linearan
operator. Polinom

PA(x) = det (xI −A)

zovemo svojstvenim polinomom operatora A. Podsjetimo se da je determi-
nanta operatora definirana kao determinanta matrice operatora u nekoj bazi
E prostora V , pa onda i za svojstveni polinom operatora imamo

PA(x) = det (xI −AE).

1.9. Invarijante linearnog operatora. Važno je primijetiti da svoj-
stveni polinom

det (xI −A) = det (xI −AE)

ne ovisi o izboru baze E od V u kojoj računamo matricu AE operatora A.
Znači da koeficijenti svojstvenog polinoma

σ1 = −trA = −trAE , σ2, . . . , σn−1, σn = (−1)n detA = (−1)n detAE

ne ovise zovemo o izboru baze E. No onda ni bilo koja funkcija tih koefici-
jenata f(σ1, . . . , σn), na primjer

f(σ1, . . . , σn) = σ2
1 − σn = (trA)2 − (−1)n detA,
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ne ovisi o izboru baze E prostora V u kojoj računamo matricu operatora.
Takve funkcije zovemo invarijantama operatora A. Posebno važne invari-
jante operatora A su trA i detA.

1.10. Spektar linearnog operatora. Neka je V konačno dimenzio-
nalni vektorski prostor nad poljem realnih brojeva R ili poljem kompleksnih
brojeva C. Spektrom linearnog operatora A : V → V zovemo skup σ(A) svih
nultočaka svojstvenog polinoma PA(x) u polju kompleksnih brojeva, tj.

σ(A) = {λ ∈ C | PA(λ) = 0},

a elemente spektra zovemo svojstvenim vrijednostima od A. Prema osnov-
nom teoremu algebre spektar

σ(A) = {λ1, . . . , λs}

je neprazan skup i svojstveni polinom PA(x) možemo faktorizirati

PA(x) = (x− λ1)n1 · · · (x− λs)ns ,

gdje se sve medusobno različite svojstvene vrijednosti λ1, . . . , λs javljaju s
algebarskim kratnostima n1,. . . , ns. Uočimo da je

n1 + · · ·+ ns = n.

1.11. Spektar i koeficijenti svojstvenog polinoma. Važno je pri-
mijetiti da koeficijente svojstvenog polinoma PA(x) možemo izraziti pomoću
svojstvenih vrijednosti koristeći faktorizaciju polinoma

(x−λ1)n1 · · · (x−λs)ns = xn−(n1λ1+· · ·+nsλs)xn−1+· · ·+(−1)nλn1
1 · · ·λ

ns
s .

Posebno je

trA = n1λ1 + · · ·+ nsλs i detA = λn1
1 · · ·λ

ns
s .

1.12. Primjer. Svojstveni polinom jediničnog operatora I na Rn je
PI(x) = (x − 1)n, spektar je σ(I) = {1}, algebarska kratnost svojstvene
vrijednosti 1 je n, tr I = n · 1 = 1, det I = 1n = 1.

1.13. Primjer. Svojstveni polinom rotacije u ravnini za kut π
2

J =

(
0 −1
1 0

)
je PJ(x) = x2+1, spektar je σ(J) = {i,−i}, algebarske kratnosti svojstvenih
vrijednosti su 1, tr J = i+ (−i) = 0, det J = i · (−i) = 1.
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1.14. Nula nije u spektru regularnog operatora. Operator A je
regularan ako i samo ako je

detA 6= 0.

Znači da je A regularan ako i samo ako nula nije u spektru od A, tj.

det(0 · I −A) 6= 0.

Isto možemo zaključiti na mnogo kompliciraniji način:

detA = λn1
1 · · ·λ

ns
s 6= 0 ako i samo ako 0 6∈ σ(A) = {λ1, . . . , λs}.

2. Svojstveni vektori linearnog operatora

2.1. Svojstveni vektori. Neka je A linearan operator na V i v ∈ V
vektor različit od nule. Ako je za neki skalar λ

Av = λv,

onda kažemo da je v svojstveni vektor od A. Primijetimo da je tada

(λI −A)v = 0,

pa zbog pretpostavke v 6= 0 operator λI −A nije injekcija i vrijedi

PA(λ) = det(λI −A) = 0, tj. λ ∈ σ(A).

Zato još kažemo da je v svojstveni vektor od A za svojstvenu vrijednost λ.

2.2. Primjer. Spektar rotacije J u ravnini za kut π
2 ,

J =

(
0 −1
1 0

)
,

je {i,−i}. Budući da J nema realnih svojstvenih vrijednosti, to nema ni
svojstvenih vektora.

2.3. Napomena. Ako je v svojstveni vektor od A za svojstvenu vri-
jednost λ, onda je za svaki skalar µ 6= 0 i vektor µv svojstveni vektor od A
za svojstvenu vrijednost λ. Naime, iz pretpostavki slijedi

A(µv) = µAv = µλv = λ(µv), µv 6= 0.

Zbog toga u unitarnom prostoru normiranjem svojstvenog vektora v dobi-
vamo normirani svojstveni vektor e = 1

||v||v. Štovǐse, potprostor

ker(λI −A) = {v ∈ V | Av = λv}

zovemo svojstvenim potprostorom za svojstvenu vrijednost λ. Svojstveni se
potprostor kao skup sastoji od nule i svih svojstvenih vektora za svojstvenu
vrijednost λ.
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2.4. Teorem. (1) Ako je V 6= 0 konačno dimenzionalni kompleksni
vektorski prostor, onda za svaku svojstvenu vrijednost postoji svojstveni vek-
tor. Posebno, postoji bar jedan v 6= 0 i bar jedan λ ∈ C takav da je

Av = λv.

(2) Ako je V 6= 0 konačno dimenzionalni realni vektorski prostor, onda za
svaku realnu svojstvenu vrijednost postoji svojstveni vektor.

Dokaz. (1) Ako je V kompleksan prostor, onda je za svaki λ ∈ σ(A)
definiran operator λI − A. Budući da PA(λ) = det(λI − A) = 0 povlači da
operator λI −A nije injekcija, to postoji v 6= 0 takav da je

(λI −A)v = 0.

(2) Ako je V realan prostor, onda je operator λI −A definiran samo za
realne brojeve λ. Ako je λ ∈ σ(A) realan broj, onda PA(λ) = det(λI−A) = 0
povlači da operator λI −A nije injekcija, pa postoji v 6= 0 takav da je

(λI −A)v = 0.

�

2.5. Primjer. Neka je A : C2 → C2 zadan u kanonskoj bazi matricom(
0 −1
1 0

)
.

Spektar od A je {i,−i}, pa za svojstvenu vrijednost λ = i svojstveni vektor
tražimo rješavajući sistem jednadžbi (A− λI)v = 0, tj.

−iξ1 − ξ2 = 0,

ξ1 − iξ2 = 0.

Jedno rješenje tog sistema je ξ2 = 1, ξ1 = i, pa imamo svojstveni vektor
v = (i, 1) (

0 −1
1 0

)(
i
1

)
=

(
−1
i

)
= i

(
i
1

)
.

Budući da je dim ker(iI − A) = 1, to je skup svih svojstvenih vektora za
svojstvenu vrijednost i

ker(iI −A)\{0} =

{
µ

(
i
1

)
| µ ∈ C, µ 6= 0

}
.

2.6. Zadatak. Neka je A : R2 → R2 zadan u kanonskoj bazi matricom(
2 1
1 2

)
.

Nadite sve svojstvene vrijednosti i sve svojstvene vektore operatora A.
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2.7. Zadatak. Neka je A : V → V zadan u kanonskoj bazi matricom
2 1 0 0
1 2 0 0
0 0 0 −1
0 0 1 0

 .

Nadite sve svojstvene vrijednosti i sve svojstvene vektore operatora A u
slučaju (a) V = R4 i (b) V = C4.

2.8. Lema. Neka je A : V → V linearan operator. Neka su v1, . . . , vr
svojstveni vektori za medusobno različite svojstvene vrijednosti λ1, . . . , λr
operatora A, sve realne ako je V realan prostor. Za i ∈ {1, . . . , r} stavimo

Qi(A) =
1∏

j 6=i(λj − λi)
∏
j 6=i

(A− λjI).

Tada je

Qi(A)vj =

{
vi j = i,

0 j 6= i.

Dokaz. Zbog Avi = λivi imamo

(A− λ1I) . . . (A− λi−1I)(A− λi+1I) . . . (A− λr−1I)(A− λrI)vi

= (A− λ1I) . . . (A− λi−1I)(A− λi+1I) . . . (A− λr−1I)(λi − λr)vi
= (λi − λr)(A− λ1I) . . . (A− λi−1I)(A− λi+1I) . . . (A− λr−1I)vi

...

= (λi − λ1) . . . (λi − λi−1)(λi − λi+1) . . . (λi − λr−1)(λi − λr)vi.

Znači da je ∏
j 6=i

(A− λjI)

 vi =

∏
j 6=i

(λi − λj)

 vi,

pa je Qi(A)vi = vi. Ako je k 6= i, onda zbog Avk = λkvk imamo∏
j 6=i

(A− λjI)

 vk =

∏
j 6=i

(λk − λj)

 vk = 0

jer je za j = k faktor λk−λk = 0. Znači da za k 6= i imamo Qi(A)vk = 0. �

2.9. Teorem. Neka je A : V → V linearan operator. Neka su v1, . . . , vn
svojstveni vektori za medusobno različite svojstvene vrijednosti λ1, . . . , λn
operatora A, sve realne ako je V realan prostor. Tada su vektori v1, . . . , vn
linearno nezavisni.

Posebno, ako je n = dimV , onda su svojstveni vektori v1, . . . , vn baza
od V .



2. SVOJSTVENI VEKTORI LINEARNOG OPERATORA 237

Dokaz. Treba dokazati da ξ1v1 + · · ·+ξnvn = 0 povlači ξ1 = · · · = ξn =
0. Promijenimo li operator Qi(A) iz leme 2.8 dobivamo

Qi(A)(ξ1v1 + · · ·+ ξnvn) = ξ1Qi(A)v1 + · · ·+ ξnQi(A)vn = ξivi = 0,

pa vi 6= 0 povlači ξi = 0. �

2.10. Primjer. Neka je A : R3 → R3 zadan u kanonskoj bazi matricom1 −1 2
0 −1 3
0 0 2

 .

Svojstveni polinom je PA(x) = (x− 1)(x+ 1)(x− 2), pa A ima 3 = dimR3

medusobno različite svojstvene vrijednosti λ1 = 1, λ2 = −1, λ3 = 2. Znači
da A ima i tri svojstvena vektora v1, v2, v3 (za te tri svojstvene vrijednosti)
koji čine bazu od R3. Budući da je

Av1 = v1 = 1 · v1 + 0v2 + 0v3,

Av2 = −v2 = 0v1 + (−1) · v2 + 0v3,

Av3 = 2v3 = 0v1 + 0v2 + 2 · v3,

to je matrica AB operatora A u bazi B = (v1, v2, v3) dijagonalna matrica

AB =

1 0 0
0 −1 0
0 0 2

 .

2.11. Problem dijagonalizacije. Problem dijagonalizacije linearnog
operatora je problem nalaženja baze B = (v1, . . . , vn) od V koja se sastoji od
svojstvenih vektora operatora A. Drugim riječima, problem dijagonalizacije
linearnog operatora A : V → V je problem nalaženja baze B = (v1, . . . , vn)
od V u kojoj je matrica operatora dijagonalna

AB =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn

 ,

pri čemu se na dijagonali matrice AB javljaju svojstvene vrijednosti opera-
tora A. Ako takva baza postoji, onda kažemo da se A može dijagonalizirati.

2.12. Napomena. Ako za A postoji baza svojstvenih vektora, onda je
svojstveni polinom

PA(x) = det(xI −A) = det ((xI −A)B) = (x− λ1)(x− λ2) · · · (x− λn),

pa zaključujemo da se svojstvena vrijednost operatora A javlja na dijagonali
matrice AB onoliko puta koliko puta se javlja u faktorizaciji svojstvenog
polinoma PA(x).



238 11. DIJAGONALIZACIJA OPERATORA

2.13. Napomena. Ako se operator A može dijagonalizirati, onda se
iz dijagonalne matrice AB operatora A u bazi svojstvenih vektora mogu
ǐsčitati gotovo sva bitna svojstva operatora A. Tako odmah vidimo rang,
defekt, svojstveni polinom, trag, determinantu, spektar, algebarske krat-
nosti svojstvenih vrijednosti, itd. Računanje polinoma od A je takoder vrlo
jednostavno, npr.

(A2)B = (AA)B = ABAB = (AB)2 =


λ2

1 0 . . . 0
0 λ2

2 . . . 0
...

...
...

0 0 . . . λ2
n

 ,

(A5)B = (AB)5 =


λ5

1 0 . . . 0
0 λ5

2 . . . 0
...

...
...

0 0 . . . λ5
n

 .

Tako je za operator A : R3 → R3 iz primjera 2.10 i polinom Q(x) = x5−x2+1
mnogo lakše računati u bazi B

Q(A)B = Q(AB) =

15 0 0
0 (−1)5 0
0 0 25

−
12 0 0

0 (−1)2 0
0 0 22

+

1 0 0
0 1 0
0 0 1


nego li u kanonskoj bazi E = (e1, e2, e3)

Q(A)E = Q(AE) =

1 −1 2
0 −1 3
0 0 2

5

−

1 −1 2
0 −1 3
0 0 2

2

+

1 0 0
0 1 0
0 0 1

 .

Zbog svih navedenih, ali i drugih razloga, problem dijagonalizacije line-
arnog operatora je jedan od osnovnih problema linearne algebre.

2.14. Zadatak. Izračunajte1 −1 2
0 −1 3
0 0 2

100

.

(Uputa: koristite činjenicu da je (T−1CT )100 = T−1C100T .)

2.15. Ne može se svaki operator dijagonalizirati. Problem dija-
gonalizacije ne može se riješiti za svaki operator. Najjednostavniji primjer
operatora koji se ne može dijagonalizirati je operator N : R2 → R2 zadan
matricom (

0 1
0 0

)
.
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Primijetimo da je N 6= 0, detN = 0 i trN = 0. Da postoji baza B = (v1, v2)
u kojoj se N dijagonalizira, tj.

NB =

(
λ1 0
0 λ2

)
,

bilo bi detN = detNB = λ1λ2 = 0, trN = trNB = λ1 + λ2 = 0. No to
bi povlačilo λ1 = λ2 = 0 i

NB =

(
0 0
0 0

)
,

tj. N = 0, a što je nemoguće jer je N 6= 0.

2.16. Zadatak. Neka je A : V → V zadan u kanonskoj bazi 4× 4 ma-
tricom (

N 0
0 N

)
=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

pri čemu je N matrica iz prethodnog primjera. Dokažite da se operator A
ne može dijagonalizirati ni u slučaju (a) V = R4 niti u slučaju (b) V = C4.

3. Svojstveni vektori i rješenja diferencijalnih jednadžbi

3.1. Eksponencijalna funkcija. U matematičkoj se analizi dokazuje
da za svaki kompleksni broj z red potencija1

∞∑
k=0

zk

k!

konvergira, tj. da za svaki z postoji limes niza parcijalnih suma reda

lim
n→∞

(
1 + z +

z2

2
+ · · ·+ zn

n!

)
= lim

n→∞

n∑
k=0

zk

k!
=
∞∑
k=0

zk

k!

Eksponencijalna funkcija exp: C→ C je funkcija

z 7→ ez =
∞∑
k=0

zk

k!
.

Ovako definirana eksponencijalna funkcija je funkcija kompleksne varijable
z = x+ iy, a veza s eksponencijalnom funkcijom ex realne varijable i trigo-
nometrijskom funkcijama cos y i sin y realne varijable dana je formulom

ex+iy = ex(cos y + i sin y).

1Ovdje je k! oznaka za k faktorijela, tj. k! = 1 · 2 · 3 · · · · · k.
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3.2. Osnovno svojstvo eksponencijalne funkcije. Za sve komplek-
sne brojeve z i w vrijedi

ez · ew = ez+w, e0 = 1.

U slučaju z = iϕ i w = iψ relacija

eiϕ · eiψ = ei(ϕ+ψ)

svodi se na adicione teoreme za funkcije sinus i kosinus

(cosϕ+ i sinϕ) · (cosψ + i sinψ) = cos(ϕ+ ψ) + i sin(ϕ+ ψ),

odnosno
cos(ϕ+ ψ) = cosϕ cosψ − sinϕ sinψ,

sin(ϕ+ ψ) = sinϕ cosψ + cosϕ sinψ.

3.3. Derivacija eksponencijalne funkcije. Nas će posebno zanimati
funkcije oblika

f : R→ C, f(t) = eλt

za kompleksan broj

λ = α+ iβ, α, β ∈ R.
Obično si zamǐsljamo da je f funkcija vremena t, a zbog relacije

f(t) = eλt = eαt(cosβt+ i sinβt)

tu funkciju interpretiramo kao titranja frekvencijom β realnog i imaginarnog
dijela

eαt cosβt i eαt sinβt,

pri čemu amplituda titranja eαt s vremenom eksponencijalno raste za α > 0,
eksponecijalno pada za α < 0, ili je konstantno 1 za α = 0. Derivaciju takve
funkcije po realnoj varijabli t dobivamo deriviranjem realnog i imaginarnog
dijela

f ′(t) = d
dtf(t) = (eαt cosβt)′ + i(eαt sinβt)′

= (αeαt cosβt− βeαt sinβt)

+ i(αeαt sinβt+ βeαt cosβt)

= αeαt(α+ iβ)(cosβt+ i sinβt)

= λf(t).

3.4. Harmonijski oscilator. U klasičnoj mehanici je gibanje čestice
u vremenu zadano jednadžbom gibanja

m
..
x = F

u kojoj akceleracija2 čestice
..
x ovisi o masi čestice m i sili F koja na česticu

djeluje. Ako znamo jednadžbu gibanja3 i položaj i brzinu čestice u početnom

2tj. druga derivacija
..
x(t) = x′′(t) po vremenu t položaja čestice x(t)

3tj. zakon po kojem se čestica giba
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trenutku, onda je položaj čestice u proizvoljnom trenutku dan rješenjem di-
ferencijalne jednadžbe sa zadanim početnim uvjetom. Jedan od najvažnijih
primjera je jednadžba

(3.1)
..
x+ ω2x = 0

za 1-dimenzionalni harmonijski oscilator frekvencije ω, ω > 0. Ako znamo
položaj x(0) = A i brzinu

.
x(0) = B u trenutku t = 0, onda je položaj

čestice x(t) u proizvoljnom trenutku t dan rješenjem diferencijalne jednadžbe
drugog reda sa zadanim početnim uvjetom

(3.2)
..
x(t) + ω2x(t) = 0, x(0) = A,

.
x(0) = B.

Taj problem rješavamo tako da pretpostavimo da postoji rješenje oblika
x(t) = eλt, pa drugu derivaciju

..
x(t) = λ2eλt uvrštavamo u jednadžbu (3.1)

i dobivamo uvjet

λ2eλt + ω2eλt = 0,

što nakon kraćenja s eλt 6= 0 daje

(3.3) λ2 + ω2 = 0.

Očito je x(t) = eλt rješenje jednadžbe (3.1) ako i samo ako je λ rješenje jed-
nadžbe (3.3), tj. ako je λ = ±iω. Znači da imamo dva rješenja diferencijalne
jednadžbe

x1(t) = eiωt, x2(t) = e−iωt.

No i svaka linearna kombinacija funkcija

x(t) = C1x1(t) + C2x2(t)

je rješenje diferencijalne jednadžbe (3.1), pa da bi zadovoljili i početni uvjet
tražimo konstante C1 i C2 takve da vrijedi

x(0) = C1x1(0) + C2x2(0) = C1 + C2 = A,
.
x(0) = C1

.
x1(0) + C2

.
x2(0) = iωC1 − iωC2 = B.

Taj sistem jednadžbi s nepoznanicama C1 i C2 ima jedinstveno rješenje

C1 =
1

2
A+

1

2iω
B, C2 =

1

2
A− 1

2iω
B

i traženo rješenje diferencijalne jednadžbe s početnim uvjetom (3.2) je funk-
cija

x(t) =
1

2
A(x1(t) + x2(t)) +

1

2iω
B(x1(t)− x2(t)) = A cosωt+

B

ω
sinωt.

Algebarsku jednadžbu (3.3) zovemo karakterističnom jednadžbom diferenci-
jalne jednadžbe (3.1).
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3.5. Sistem jednadžbi za harmonjski oscilator. Diferencijalnu jed-
nadžbu drugoga reda (3.1)

x′′(t) + ω2x(t) = 0

možemo svesti na sistem diferencijalnih jednadžbi prvoga reda tako da sta-
vimo

(3.4)
y1(t) = x(t),

y2(t) = x′(t).

Tada je

y′1(t) = x′(t) = y2(t),

y′2(t) = (x′(t))′ = x′′(t) = −ω2x(t) = −ω2y1(t),

pa imamo sistem jednadžbi

(3.5)
y′1(t) = y2(t),

y′2(t) = −ω2y1(t)

kojeg u matričnom obliku možemo zapisati kao(
y′1(t)
y′2(t)

)
=

(
0 1
−ω2 0

)(
y1(t)
y2(t)

)
.

Ako je funkcija x(t) rješenje diferencijalne jednadžbe (3.1), onda nam očito
supstitucija (3.4) daje rješenje sistema (3.5). No vrijedi i obrat: ako je par
funkcija Y = (y1, y2) rješenje sistema (3.5), onda supstitucijom

x(t) = y1(t)

dobivamo rješenje diferencijalne jednadžbe (3.1) jer je

x′′(t) = y′′1(t) = (y′1(t))′ = (y2(t))′ = −ω2y1(t) = −ω2x(t).

Na taj način problem rješavanja diferencijalne jednadžbe drugog reda svo-
dimo na rješavanje sistema diferencijalnih jednadžbi prvog reda. Očito
se rješavanje diferencijalne jednadžbe s početnim uvjetom (3.2) svodi na
rješavanje sistema s početnim uvjetom

(3.6)

(
y′1(t)
y′2(t)

)
=

(
0 1
−ω2 0

)(
y1(t)
y2(t)

)
,

(
y1(0)
y2(0)

)
=

(
A
B

)
.

3.6. Zadatak. Nadite sva rješenja sistema diferemcijanih jednadžbi(
y′1(t)
y′2(t)

)
=

(
0 1
0 0

)(
y1(t)
y2(t)

)
.

svodenjem na diferencijalnu jednadžbu x′′(t) = 0.
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3.7. Homogeni linearni sistemi diferencijalnih jednadžbi prvog
reda. Neka je zadana n× n matrica A = (αij). Homogeni4 linearni sistem
diferencijalnih jednadžbi prvog reda s konstantnim keficijentima je problem
nalaženja svih n-torki derivabilnih funkcija Y = (y1, . . . , yn) takvih da vri-
jedi

y′1(t) =α11y1(t) + · · ·+ α1nyn(t) ,

y′2(t) =α21y1(t) + · · ·+ α2nyn(t) ,(3.7)

. . .

y′n(t) =αn1y1(t) + · · ·+ αnnyn(t)

za svaki t ∈ R. Često sistem kraće zapisujemo

Y ′(t) = AY (t) ili Y ′ = AY.

Za zadanu n-torku brojeva b = (β1, . . . , βn) rješavanje sistema (3.7) s početnim
uvjetom

y1(0) = β1, . . . , yn(0) = βn

zovemo Cauchyjevim problemom kojeg kraće zapisujemo kao

Y ′(t) = AY (t), Y (0) = b.

3.8. Teorem. Skup svih rješenja homogenog linearnog sistema diferen-
cijalnih jednadžbi prvog reda je vektorski prostor.

Dokaz. Zbog linearnosti deriviranja imamo

(λ1Y1 + λ2Y2)′ = λ1Y
′

1 + λ2Y
′

2 ,

a zbog linearnosti množenja vektora matricom imamo

A(λ1Y1 + λ2Y2) = λ1AY1 + λ2AY2.

Zato je za dva rješenja sistema Y1 i Y2 i njihova kombinacija opet rješenje:

(λ1Y1 + λ2Y2)′ = λ1Y
′

1 + λ2Y
′

2 = λ1AY1 + λ2AY2 = A(λ1Y1 + λ2Y2).

�

4Ako je zadana n × n matrica A = (αij) i funkcije f1, . . . , fn, onda je nehomogeni
linearni sistem diferencijalnih jednadžbi sistem oblika

y′1(t) =α11y1(t) + · · ·+ α1nyn(t) + f1(t) ,

y′2(t) =α21y1(t) + · · ·+ α2nyn(t) + f2(t) ,

. . .

y′n(t) =αn1y1(t) + · · ·+ αnnyn(t) + fn(t) .
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3.9. Svojstveni vektori i rješenja diferencijalnih jednadžbi. Neka
je v = (γ1, . . . , γn) 6= 0 svojstveni vektor matrice A za svojstvenu vrijednost
λ, tj.

Av = λv.

Stavimo Y (t) = eλtv = eλt(γ1, . . . , γn) = (eλtγ1, . . . , e
λtγn). Tada je

Y ′(t) = ((eλtγ1)′, . . . , (eλtγn)′) = (λeλtγ1, . . . , λe
λtγn)

= λeλt(γ1, . . . , γn) = λeλtv = eλtλv = eλtAv = A(eλtv) = AY (t).

Znači da je n-torka funkcija

Y (t) = eλtv

rješenje sistema jednadžbi

Y ′ = AY.

3.10. Dijagonalizacija operatora i Cauchyjev problem. Pretpo-
stavimo da za n× n matricu A postoji baza svojstvenih vektora v1, . . . , vn,

Av1 = λ1v1, . . . , Avn = λnvn.

Tada imamo n rješenja

Y1(t) = eλ1tv1, . . . , Yn(t) = eλntvn

sistema diferencijalnih jednadžbi Y ′ = AY i svaka linearna kombinacija

Y = C1Y1 + · · ·+ CnYn

tih funkcija je opet rješenje sistema. Ako je zadan Cauchjev problem

Y ′ = AY, Y (0) = b,

onda treba treba tražiti konstante C1, . . . , Cn tako da bude zadovoljen i
početni uvjet

Y (0) = C1Y1(0) + · · ·+ CnYn(0) = C1v1 + · · ·+ Cnvn = b.

Budući da je po pretpostavci v1, . . . , vn baza, to gornji sistem jednadžbi s
nepoznanicama C1, . . . , Cn ima jedinstveno rješenje.

Znači da Cauchyjev problem za svaki početni uvjet možemo riješiti na
opisani način ako se A može dijagonalizirati.

3.11. Napomena. Ako su λ1 = α1 + iβ1, . . . , λm = αm + iβm medu-
sobno različite svojstvene vrijednosti operatora A, onda postoje linearno
nezavisni svojstveni vektori v1, . . . , vm i pripadna rješenja Y1, . . . , Ym siste-
ma Y ′ = AY , pri čemu konstruirano rješenje Yk opisuje oscilacije sistema
frekvencijom βk. Zbog te veze s “dopuštenim frekvencijama titranja siste-
ma” skup svojstvenih vrijednosti operatora A zovemo spektrom od A.

3.12. Zadatak. Pokažite da se matrica u Cauchyjevom problemu (3.6)
može dijagonalizirati i nadite rješenje.
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3.13. Zadatak. Riješite Cauchyjev problem(
y′1
y′2

)
=

(
0 1
1 0

)(
y1

y2

)
,

(
y1(0)
y2(0)

)
=

(
1
1

)
.

3.14. Napomena. Valja reći da za svaku kvadratnu matricu A Cauc-
hyjev problem

Y ′ = AY, Y (0) = b

uvijek ima jedinstveno rješenje. Jedan način da se to vidi je da napǐsemo
eksponencijalnu funkciju operatora

(3.8) etA =
∞∑
k=0

tkAk

k!
= 1 + tA+

t2A2

2
+ · · ·+ tmAm

m!
+ . . .

i pomoću nje rješenje Cauchyjevog problema

Y (t) = etAb.

Naravno, za to bi za početak trebalo definirati i dokazati konvergenciju reda
operatora.

3.15. Zadatak. Koristeći definiciju (3.8) izračunajte etA zaA =

(
0 1
0 0

)
i provjerite da je Y (t) = etAb rješenje Cauchyjevog problema Y ′ = AY ,
Y (0) = b. Usporedite to rješenje s rješenjima dobivenim u zadatku 3.6.





POGLAVLJE 12

Operatori na unitarnim prostorima

U ovom poglavlju pretpostavljamo da je V konačno dimenzionalni uni-
tarni prostor nad poljem realnih ili kompleksnih brojeva. Pokazujemo da
svaki operator A ima jedinstveni hermitski adjungirani operator A∗. Defi-
niramo hermitske operatore i kvadratne forme na Rn i za njih dokazujemo
teoreme dijagonalizacije. Uvodimo pojam unitarnog operatora i pokazujemo
da oni čine grupu. Dokazujemo da su elementi grupe SO(3) rotacije u R3.

1. Hermitski adjungirani operator

1.1. Matrica operatora u ortonormiranoj bazi. Neka je
E = (e1, . . . , en) ortonormirana baza od V . Tada su koordinate ξi vektora

x = ξ1e1 + · · ·+ ξnen

dane formulom

(1.1) ξi = (x | ei), i = 1, . . . , n.

Ako je A : V → V linearni operator, onda je matrica AE = (αij) operatora
A u bazi E odredena formulom

Aej =

n∑
i=1

αijei, j = 1, . . . , n.

Budući da koordinate αij vektora Aej u ortonormiranoj bazi E možemo
računati pomoću formule (1.1), to je matrica operatora u ortonormiranoj
bazi dana formulom

αij = (Aej | ei), i, j = 1, . . . , n.

1.2. Lema. Neka su A i B linearni operatori na V . Tada je A = B
ako i samo ako je

(Ax | y) = (Bx | y) za sve x, y ∈ V.

Dokaz. Neka je E = (e1, . . . , en) ortonormirana baza od V . Tada je

(Aej | ei) = (Bej | ei), za sve i, j = 1, . . . , n.

Znači da su matrice AE i BE operatora jednake, pa slijedi i jednakost ope-
ratora A = B. Obrat je očigledan. �

247
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1.3. Hermitski adjungirana matrica. Neka je A = (αij) realna ili
kompleksna n× n matrica. Tada matricu

A∗ = (βij), βij = αji, i, j = 1, . . . , n,

zovemo hermitski adjungiranom matricom matrici A. Znači da je A∗ dobi-
vena iz A transponiranjem i, ako se radi o kompleksnoj matrici, kompleksnim
konjugiranjem svakog matričnog elementa.

1.4. Primjer.0 1 −1
2 3 −2
3 4 5

∗=

 0 2 3
1 3 4
−1 −2 5

,
 i 1 −1

2− 2i 3 −2
3 + i 4 5

∗=

−i 2 + 2i 3− i
1 3 4
−1 −2 5

.

1.5. Hermitski adjungirani operator. Neka je A : V → V linearni
operator. Tada postoji jedinstveni linearni operator A∗ : V → V takav da je

(Ax | y) = (x | A∗y) za sve x, y ∈ V.

Operator A∗ zovemo hermitski adjungiranim operatorom operatoru A.

Dokaz. Dokažimo prvo jedinstvenost. Pretpostavimo da su B i C ope-
ratori na V takvi da je

(Ax | y) = (x | By) i (Ax | y) = (x | Cy) za sve x, y ∈ V.

Tada je zbog hermitske simetrije skalarnog produkta

(By | x) = (Ax | y) = (Cy | x) za sve x, y ∈ V,

pa iz leme 1.2 slijedi B = C.
Dokažimo sada da operator A∗ postoji. Odaberimo neku ortonormiranu

bazu E = (e1, . . . , en) od V . Ako operator A∗ postoji, onda mora biti

(1.2) (Aei | ej) = (ei | A∗ej) za sve i, j = 1, . . . , n.

Zbog hermitske simetrije skalarnog produkta to je ekvivalentno

(A∗ej | ei) = (Aei | ej) za sve i, j = 1, . . . , n.

Zato definiramo linearan operator A∗ tako da mu je u bazi E matrica
(A∗)E = (βij) jednaka

(1.3) (A∗)E = (AE)∗, βij = (A∗ej | ei) = (Aei | ej) = αji,

tj. jednaka adjungiranoj matrici matrice AE = (αij) operatora A. Sada
zbog (1.2) za proizvoljne

x =
n∑
i=1

ξiei i y =
n∑
j=1

ηjej
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imamo

(Ax | y) = (A

n∑
i=1

ξiei |
n∑
j=1

ηjej) =

n∑
i,j=1

ξiηj(Aei | ej)

=

n∑
i,j=1

ξiηj(ei | A∗ej) = (

n∑
i=1

ξiei | A∗
n∑
j=1

ηjej) = (x | A∗y).

�

1.6. Napomena. Zbog hermitske simetrije skalarnog produkta je

(A∗y | x) = (y | Ax) za sve x, y ∈ V.

1.7. Svojstva hermitskog adjungiranja.

(1) (A∗)∗ = A, obično pǐsemo A∗∗ = A i kažemo da je ∗ involucija.
(2) I∗ = I.
(3) (AB)∗ = B∗A∗, obično kažemo da je ∗ antiautomorfizam množenja.
(4) (λA+ µB)∗ = λ̄A∗ + µ̄B∗, u kompleksnom slučaju kažemo da je ∗

antilinearno.

Dokaz. Sve tvrdnje slijede iz relacija

(Ax | y) = (x | A∗y) i (A∗x | y) = (x | Ay)

primjenom leme 1.2:

((A∗)∗x | y) = (x | A∗y) = (Ax | y).

(I∗x | y) = (x | Iy) = (x | y) = (Ix | y).

((AB)∗x | y) = (x | ABy) = (A∗x | By) = (B∗A∗x | y).

((λA+ µB)∗x | y) = (x | (λA+ µB)y) = λ̄(x | Ay) + µ̄(x | By)

= λ̄(A∗x | y) + µ̄(B∗x | y) = ((λ̄A∗ + µ̄B∗)x | y).

�

Pojam hermitski adjungiranog operatora možemo definirati i za linearno
preslikavanja izmedu dva unitarna konačno dimenzionalna prostora V i W
sa skalarnim produktima ( | )V i ( | )W :

1.8. Hermitski adjungirano preslikavanje. Neka je A : V → W
linearni operator. Tada postoji jedinstveni linearni operator A∗ : W → V
takav da je1

(Ax | y)W = (x | A∗y)V za sve x ∈ V, y ∈W.

1Obično pǐsemo samo (Ax | y) = (x | A∗y) podrazumijevajući da jednakost vrijedi za
sve x ∈ V i y ∈ W , te da je na lijevoj strani skalarni produkt vektora iz W , a na desnoj
strani skalarni produkt vektora iz V .
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Operator A∗ zovemo hermitski adjungiranim operatorom operatoru A. Na
primjer, za operator A : C3 → C2 zadan matricom

A =

(
0 2i 1
2 3 −3i

)
imamo hermitski adjungirani operator A∗ : C2 → C3 zadan hermitski adjun-
giranom matricom

A∗ =

 0 2
−2i 3

1 3i

 .

Općenito za ortonormirane baze E u V i F u W matrica adjungiranog ope-
ratora A∗ je transponirana i konjugirano kompleksna matrica operatora A,
odnosno

(A∗)EF = (AFE)∗ = (AFE)t.

Sve do sada iskazane tvrdnje za hermitski adjungirani operator dokazujemo
na isti način i u ovom općenitijem slučaju, samo što trebamo paziti na kojem
unitarnom prostoru računamo skalarni produkt, jer imamo

V
A−→W,

V ←−
A∗

W.

1.9. Teorem. Neka su V i W konačno dimenzionalni unitarni prostori
i A : V →W linearni operator. Tada je

V = kerA⊕ imA∗, W = kerA∗ ⊕ imA.

Dokaz. Prvo uočimo da je

x ∈ kerA⇔ Ax = 0⇔ (Ax | y) = 0 ∀y ∈W
⇔ (x | A∗y) = 0 ∀y ∈W ⇔ (x | z) = 0 ∀z ∈ imA∗.

Znači da je kerA = (imA∗)⊥, pa prva jednakost vrijedi zbog teorema o
projekciji. Druga tvrdnja slijedi iz upravo dokazane prve tvrdnje za operator
A∗ i jednakosti (A∗)∗ = A. �

1.10. Primjer. Za operator A : R3 → R2 zadan matricom

A =

(
1 1 1
1 2 −1

)
imamo hermitski adjungirani operator A∗ : R2 → R3 zadan transponiranom
matricom

At =

1 1
1 2
1 −1

 .

Tada je imA∗ razapet stupcima matrice At, a rješavanjem homogenog si-
stema linearnih jednadžbi vidimo da je prostor svih rješenja kerA razapet
vektorom (−3, 2, 1).
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1.11. Zadatak. Odredite potprostore kerA i imA∗ za linearno presli-
kavanje A : R3 → R3 zadano matricom

A =

1 1 1
1 2 −1
2 3 0

 .

2. Hermitski operatori i kvadratne forme

2.1. Hermitske matrice. Neka je A = (αij) realna ili kompleksna
n× n matrica. Kažemo da je A hermitska matrica ako je

A∗ = A,

odnosno

αij = αji za sve i, j = 1, . . . , n.

Primijetimo da su zbog αii = αii svi dijagonalni elementi hermitske matrice
realni brojevi. Realne hermitske matrice zovemo i simetričnim matricama.

2.2. Zadatak. Provjerite da su matrice A i B hermitske,

A =

(
2 1
1 3

)
, B =

 0 2 + 2i 1
2− 2i 3 −3i

1 3i 5

 .

2.3. Hermitske matrice čine realan vektorski prostor. Za her-
mitske matrice A i B i realne brojeve λ vrijedi

(A+B)∗ = A∗ +B∗ = A+B, (λA)∗ = λA∗ = λA,

pa je skup svih kompleksnih n × n hermitskih matrica realan vektorski
prostor. No općenito produkt hermitskih matrica nije hermitska matrica,
na primjer (

0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
.

2.4. Zadatak. Pokažite da jedinična matrica zajedno s Paulijevim ma-
tricama

I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
čini bazu realnog 4-dimenzionalnog prostora hermitskih 2× 2 matrica.

2.5. Zadatak. Pokažite da je skup realnih simetričnih n × n matrica
realni

(
n+1

2

)
-dimenzionalni prostor, a da je skup kompleksnih hermitskih

n× n matrica realni n2-dimenzionalni prostor.
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2.6. Hermitski operatori. Za linearan operatora A : V → V kažemo
da je hermitski operator ako je

A∗ = A.

Zbog veze (1.3) je operator A hermitski ako i samo ako mu je matrica AB
u ortonormiranoj bazi B hermitska matrica. Zbog definicije A∗, operator A
je hermitski ako i samo ako je

(2.1) (Ax | y) = (x | Ay) za sve x, y ∈ V.

2.7. Lema. Neka je A = (αij) realna ili kompleksna n × n hermitska
matrica. Tada su svojstvene vrijednosti od A realni brojevi.

Dokaz. Neka je A linearan operator

A : Cn → Cn

zadan u kanonskoj ortonormiranoj bazi matricom A. S obzirom na kanonski
skalarni produkt u Cn operator A je hermitski. Ako je λ svojstvena vrijed-
nost matrice A, onda prema teoremu 11.2.4 postoji svojstveni vektor v 6= 0
u Cn za tu svojstvenu vrijednost. Tada je zbog (2.1)

λ(v | v) = (λv | v) = (Av | v) = (v | Av) = (v | λv) = λ(v | v),

pa kraćenjem s (v | v) 6= 0 dobivamo da je λ = λ, odnosno da je λ realan
broj. �

2.8. Teorem o dijagonalizaciji hermitskog operatora. Neka je A
hermitski operator na realnom ili kompleksnom unitarnom konačno dimenzi-
onalnom prostoru V . Tada postoji ortonormirana baza od V koja se sastoji
od svojstvenih vektora operatora A.

Dokaz. Teorem dokazujemo indukcijom po n = dimV . Ako je dimV =
1 i e1 normirani vektor koji razapinje V , onda je Ae1 = λe1 i vrijedi tvrdnja
teorema.

Pretpostavimo sada da za svaki hermitski operator A1 na (n−1)-dimen-
zionalnom unitarnom prostoru W postoji ortonormirana baza svojstvenih
vektora. Neka je dimV = n i

A : V → V

hermitski operator. Prema teoremu 2.4 postoji svojstveni vektor e1 6= 0 u
V za svojstvenu vrijednost λ1, tj.

Ae1 = λ1e1.

Smijemo pretpostaviti da je ||e1|| = 1. Neka je W potprostor okomit na e1,
tj.

W = {v ∈ V | (v | e1) = 0}.
Prema teoremu o projekciji imamo

V = 〈e1〉 ⊕W, dimW = n− 1.
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Za w ∈W , tj. (w | e1) = 0, imamo

(Aw | e1) = (w | Ae1) = (w | λ1e1) = λ1(w | e1) = 0.

Znači da je

AW ⊂W,
pa imamo dobro definirani linearni operator

A1 : W →W, A1w = Aw za w ∈W.

To je hermitski operator na W jer za u,w ∈W vrijedi

(A1u | w) = (Au | w) = (u | Aw) = (u | A1w).

Sada po pretpostavci indukcije postoji ortonormirana baza e2, . . . , en svoj-
stvenih vektora od A1

A1ei = Aei = λiei, i = 2, . . . , n.

No onda je e1, e2, . . . , en ortonormirana baza od V koja se sastoji od svoj-
stvenih vektora operatora A. �

2.9. Primjer. Matricu A =

(
2 1
1 2

)
ima ortonormiranu bazu svojstve-

nih vektora f1 = 1√
2

(
1
1

)
i f2 = 1√

2

(
1
−1

)
za koje vrijedi Af1 = 3f1 i

Af2 = f2.

2.10. Zadatak. Nadite ortonormiranu bazu svojstvenih vektora za ma-

tricu A =

(
1 1
1 1

)
.

2.11. Zadatak. Na realnom n-dimenzionalnom unitarnom prostoru za
vektor a norme ||a|| = 1 imamo definiranu tzv. ortogonalnu refleksiju Ta s
obzirom na hiperravninu 〈a〉⊥

Ta(x) = x− 2(x | a)a.

(i) Interpretirajte geometrijski djelovanje Ta u slučaju n = 2, 3. (ii) Dokažite
da je Ta hermitski operator. (iii) Nadite neku ortonormiranu bazu svojstve-
nih vektora.

2.12. Kvadratne forme na Rn. Neka je A = (αij) realna n× n ma-
trica. Funkciju

QA : Rn → R, x = (ξ1, . . . , ξn) 7→ QA(x) = QA(ξ1, . . . , ξn) =

n∑
i,j=1

αijξiξj

zovemo kvadratnom funkcijom ili kvadratnom formom. Na primjer, funkcija

(ξ0, ξ1, ξ2, ξ3) 7→ Q(ξ0, ξ1, ξ2, ξ3) = ξ2
0 − ξ2

1 − ξ2
2 − ξ2

3

je kvadratna forma na R4.
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2.13. Kvadratne forme i simetrične matrice. U kvadratnoj formi
za i < j imamo dva sumanda

αijξiξj + αjiξjξi = (αij + αji)ξiξj

koji daju jedan koeficijent uz kvadratni monom ξiξj . Zbog toga je običaj
da za A uzimamo simetričnu matricu kod koje je αij = αji tako da je

αijξiξj + αjiξjξi = 2αijξiξj .

Tako, na primjer, za kvadratnu formu

Q(ξ1, ξ2) = ξ2
1 + 2ξ1ξ2 + ξ2

2

na R2 uzimamo simetričnu matricu

A =

(
1 1
1 1

)
,

a ne matricu (
1 2
0 1

)
ili matricu

(
1 3
−1 1

)
.

Zbog toga imamo bijekciju izmedu simetričnih matrica i (koeficijenata) kva-
dratnih formi

A←→ QA.

2.14. Zadatak. Napǐsite simetričnu matricu kvadratne forme

Q(ξ0, ξ1, ξ2, ξ3) = ξ2
0 − ξ2

1 − ξ2
2 − ξ2

3 .

2.15. Zadatak. Skup kvadratnih funkcija na Rn je vektorski prostor s
operacijama zbrajanja i množenja skalarom definiranim po točkama

(Q1 +Q2)(x) = Q1(x) +Q2(x), (λQ)(x) = λQ(x),

a i skup simetričnih matrica je vektorski prostor. Dokažite da je bijekcija
A←→ QA izomorfizam tih vektorskih prostora.

2.16. Kvadratne forme i skalarni produkt. Očito je kvadrat norme
za kanonski skalarni produkt

||x||2 = (x | x) = ξ2
1 + · · ·+ ξ2

n

kvadratna forma na Rn. Štovǐse, za simetričnu n× n matricu A = (αij) je

(Ax | x) = (A(
n∑
j=1

ξjej) |
n∑
k=1

ξkek) = (
n∑

i,j=1

αijξjei |
n∑
k=1

ξkek)

=

n∑
i,j,k=1

αijξjξk (ei | ek) =

n∑
i,j=1

αijξjξi.

Znači da kvadratnu formu QA zadanu simetričnom matricom A možemo
zapisati pomoću kanonskog skalarnog produkta na Rn formulom

QA(x) = (Ax | x).
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2.17. Dijagonalizacija kvadratne forme. Simetrična matrica A se
dijagonalizira u nekoj ortonormiranoj bazi f1, . . . , fn od Rn tako da je

Af1 = λ1f1, . . . , Afn = λnfn.

Za vektor x = η1f1 + · · ·+ ηnfn zapisan u toj bazi imamo

QA(x) = (Ax | x)

= (A(η1f1 + · · ·+ ηnfn) | η1f1 + · · ·+ ηnfn)

= (η1λ1f1 + · · ·+ ηnλnfn) | η1f1 + · · ·+ ηnfn)

= λ1η
2
1 + · · ·+ λnη

2
n,

pa kažemo da smo kvadratnu formu dijagonalizirali u ortonormiranoj bazi2

prostora Rn.

2.18. Primjer. Za matricu A =

(
2 1
1 2

)
iz primjera 2.9 imamo kva-

dratnu formu

QA(ξ1, ξ2) = 2ξ2
1 + 2ξ1ξ2 + 2ξ2

2 .

Matrica A ima ortonormiranu bazu svojstvenih vektora

f1 =
1√
2

(
1
1

)
, f2 =

1√
2

(
1
−1

)
za koje vrijedi Af1 = 3f1 i Af2 = f2, pa se QA u toj bazi dijagonalizira

QA(x) = 3η2
1 + η2

2.

Budući da su koordinate xF = (η1, η2) vektora x = (ξ1, ξ2) u bazi F =
(f1, f2) dane formulom xF = F−1x, tj.

η1 =
1√
2

(ξ1 + ξ2), η1 =
1√
2

(ξ1 − ξ2),

za kvadratnu formu imamo dijagonalni oblik

QA(x) =
3

2
(ξ1 + ξ2)2 +

1

2
(ξ1 − ξ2)2.

2.19. Zadatak. Dijagonalizirajte u ortonormiranoj bazi kvadratnu formu

QA(ξ1, ξ2) = ξ2
1 + 2ξ1ξ2 + ξ2

2 .

2Valja reći da kvadratnu formu možemo dijagonalizirati i u drugim bazama.
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2.20. Glavne osi elipse u R2. Neka je A realna simetrična 2× 2 ma-
trica i pretpostavimo da su joj obje svojstvene vrijednosti λ1 i λ2 pozitivne.
Tada postoji ortonormirana baza f1 i f2 od R2 u kojoj se kvadratna forma
QA dijagonalizira, tj.

Q(η1f1 + η2f2) = λ1η
2
1 + λ2η

2
2.

Budući da je po pretpostavci λ1λ2 > 0, skup točaka

{x = η1f1 + η2f2 ∈ R2 | QA(x) = λ1η
2
1 + λ2η

2
2 = λ1λ2}

je elipsa s glavnim osima u smjeru vektora f1 i f2. Jednadžbu te elipse
možemo zapisati u obliku(

η1√
λ2

)2

+

(
η2√
λ1

)2

= 1.

2.21. Primjer. Iz prethodnog primjera 2.18 vidimo da je skup točaka
x = (ξ1, ξ2) ∈ R2 zadan kvadratnom jednadžbom

2ξ2
1 + 2ξ1ξ2 + 2ξ2

2 = 3

elipsa s glavnim osima odredenim jednadžbama ξ1 = −ξ2 i ξ1 = ξ2.

2.22. Zadatak. Dijagonalizirajte u ortonormiranoj bazi kvadratnu formu

Q(ξ1, ξ2) = ξ2
1 + 4ξ1ξ2 + ξ2

2

i pokažite da su skupovi u R2 zadani kvadratnim jednadžbama Q(x) = 3 i
Q(x) = −3 hiperbole.

3. Unitarni operatori

3.1. Unitarne i ortogonalne matrice. Za kompleksnu n×n matricu
A = (a1, . . . , an) kažemo da je unitarna ako su vektori a1, . . . , an ortonormi-
rana baza u Cn. Budući da je kanonski skalarni produkt u Cn dan formulom

(a | b) = α1β1 + · · ·+ αnβn ,

to uvjet (ai | aj) = δij ortonormiranosti vektora možemo zapisati kao mno-
ženje matrica

A∗A = I.

No za kvadratne matrice to je ekvivalentno uvjetu

AA∗ = I

ili uvjetu A∗ = A−1. Realne unitarne matrice zovemo i ortogonalnim ma-
tricama.

3.2. Primjeri unitarnih matrica.

J1 =

(
i 0
0 −i

)
, J2 =

(
0 1
−1 0

)
, J3 =

(
0 i
i 0

)
.
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3.3. Zadatak. Dokažite da su sve ortonormirane baze u C2 oblika

g =

(
α −β̄ζ
β ᾱζ

)
, |α|2 + |β|2 = 1, |ζ| = 1, α, β, ζ ∈ C.

Primijetite da unitarna matrica g kao gore ima determinantu det g = ζ.

3.4. Unitarni i ortogonalni operatori. Za linearan operatora U na
kompleksnom ili realnom unitarnom konačno dimenzionalnom prostoru V
kažemo da je unitaran operator ako čuva skalarni produkt, tj. ako je

(Ux | Uy) = (x | y) za sve x, y ∈ V.

Ovaj uvjet je ekvivalentan

(U∗Ux | y) = (x | y) za sve x, y ∈ V,

odnosno

U∗U = I.

Kao i u slučaju matrica, to je ekvivalentno uvjetu UU∗ = I ili uvjetu
U∗ = U−1. Odavle očito slijedi da je operator U unitaran ako i samo ako u
nekoj/svakoj ortonormiranoj bazi ima unitarnu matricu. U slučaju realnog
unitarnog prostora unitarne operatore zovemo i ortogonalnim operatorima.

3.5. Teorem. Za linearan operatora U na kompleksnom ili realnom
unitarnom n-dimenzionalnom prostoru V sljedeće su tvrdnje ekvivalentne:

(i) U čuva normu, tj. ||Ux|| = ||x|| za svaki x ∈ V .
(ii) U čuva skalarni produkt, tj. (Ux | Uy) = (x | y) za sve x, y ∈ V .
(iii) U čuva ortonormirane baze, tj.

(Uei | Uej) = δij ako je (ei | ej) = δij za i, j = 1, . . . , n.

Dokaz. (i) povlači (ii). Ako je V realan unitaran prostor, onda nam
formula za polarizaciju norme daje

4(x | y) = ||x+ y||2 − ||x− y||2.

Sada iz pretpostavke da U čuva normu slijedi

4(Ux | Uy) = ||Ux+ Uy)||2 − ||Ux− Uy)||2

= ||U(x+ y)||2 − ||U(x− y)||2

= ||x+ y||2 − ||x− y||2

= 4(x | y).

Na sličan način dokazujemo i tvrdnju za kompleksan prostor.
Očito (ii) povlači (iii).
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(iii) povlači (i). Neka je e1, . . . , en ortonormirana baza u V . Tada je po
pretpostavci i Ue1, . . . , Uen ortonormirana baza u V i za vektor x imamo

||Ux||2 = (Ux | Ux) = (U
n∑
i=1

ξiei | U
n∑
j=1

ξjej)

=

n∑
i,j=1

ξiξj (Uei | Uej) =

n∑
i,j=1

ξiξj (ei | ej) = ||x||2.

�

3.6. Lema. Svojstvene vrijednosti unitarnog operatora su kompleksni
brojevi apsolutne vrijednosti 1.

Dokaz. Neka je λ svojstvena vrijednost unitarnog operatora U . Prema
teoremu 11.2.4 postoji svojstveni vektor v 6= 0 za tu svojstvenu vrijednost,

Uv = λv.

Tada iz definicije slijedi

(v | v) = (Uv | Uv) = (λv | λv) = λλ(v | v),

pa kraćenjem s (v | v) 6= 0 dobivamo da je λλ = |λ|2 = 1. �

3.7. Zadatak. Na n-dimenzionalnom unitarnom prostoru za vektor a
norme ||a|| = 1 imamo definiranu unitarnu refleksiju Ta

Ta(x) = x− 2(x | a)a.

(i) Dokažite da je Ta unitarni operator i nadite mu spektar.

3.8. Grupe unitarnih i ortogonalnih matrica. Za unitarne n × n
matrice vrijede sljedeća svojstva:

(i) produkt unitarnih matrica je opet unitarna matrica jer

(U1U2)∗(U1U2) = U∗2U
∗
1U1U2 = U∗2 IU2 = U∗2U2 = I,

(ii) jedinična matrica I je unitarna matrica jer je I∗ = I i
(iii) inverz unitarne matrice U−1 = U∗ je unitarna matrica jer je

(U−1)∗U−1 = (U∗)∗U∗ = UU∗ = I.

Drugim riječima, skup U(n) svih unitarnih kompleksnih n × n matrica je
grupa, a isto tako je grupa i skup O(n) svih ortogonalnih realnih n × n
matrica. Iz Binet-Cauchyjevog teorema

det(U1U2) = detU1 detU2

slijedi da je skup SU(n) svih unitarnih n×n matrica determinante 1 grupa,
a isto tako je grupa i skup SO(n) svih ortogonalnih realnih n × n matrica
determinante 1.
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3.9. Grupe O(1) i SO(1). Skalarni produkt na realnom 1-dimenzionalnom
prostoru je množenje brojev v·w, a linearan operator λ čuva skalarni produkt

λv · λw = λ2(v · w)

ako i samo ako je λ2 = 1. Znači da imamo grupe

O(1) = {1,−1}, SO(1) = {1}.

3.10. Grupe O(2) i SO(2). Već smo vidjeli da su sve ortonormirane
baze u R2, ili, što je isto, sve ortogonalne 2× 2 matrice oblika

O(2) =

{(
cosϕ − sinϕ
sinϕ cosϕ

)
,

(
cosϕ sinϕ
sinϕ − cosϕ

) ∣∣∣ ϕ ∈ R
}
.

Budući da je det
(

cosϕ − sinϕ
sinϕ cosϕ

)
= 1 i det

(
cosϕ sinϕ
sinϕ − cosϕ

)
= −1, to je

SO(2) =

{(
cosϕ − sinϕ
sinϕ cosϕ

) ∣∣∣ ϕ ∈ R
}
.

Geometrijski elemente grupe SO(2) interpretiramo kao rotacije u euklidskoj
ravnini za kut ϕ. S druge strane operatore(

cosϕ sinϕ
sinϕ − cosϕ

)
geometrijski interpretiramo (nacrtajte sliku!) kao refleksije u ravnini u od-
nosu na os razapetu vektorom (cos 1

2ϕ, sin
1
2ϕ). Označimo li s T refleksiju u

R2 u odnosu na x-os, tj.

T =

(
1 0
0 −1

)
,

onda je (
cosϕ sinϕ
sinϕ − cosϕ

)
=

(
1 0
0 −1

)(
cosϕ − sinϕ
sinϕ cosϕ

)
,

pa imamo

O(2) = SO(2) ∪ T · SO(2) = SO(2) ∪ {Tg | g ∈ SO(2)}.

Koristeći adicione teoreme za funkcije sinus i kosinus dobivamo da je svaka
rotacija u R2 produkt dvije refleksije:(

cos 1
2ϕ sin 1

2ϕ
sin 1

2ϕ − cos 1
2ϕ

)(
cos 1

2ϕ − sin 1
2ϕ

− sin 1
2ϕ − cos 1

2ϕ

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

3.11. Determinanta ortogonalne matrice. Za realnu ortogonalnu
matricu g vrijedi

det g ∈ {1,−1}.
Naime, za realnu ortogonalnu matricu g po definiciji vrijedi ggt = I, pa iz
Binet-Cauchyjevog teorema slijedi

(det g)2 = det g det gt = det(ggt) = det I = 1.
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3.12. Grupe O(3) i SO(3). Označimo s T ortogonalnu refleksiju u R3

s obzirom na xy-ravninu, tj.

T =

1 0 0
0 1 0
0 0 −1


i primijetimo da je T ortogonalna matrica, T 2 = I i detT = −1. Ako je orto-
gonalna matricu g ima determinantu −1, onda je prema Binet-Cauchyjevom
teoremu det(Tg) = 1, tj. h = Tg ∈ SO(3). No onda je g = T 2g = Th ∈
T · SO(3). Znači da je

O(3) = SO(3) ∪ T · SO(3).

Teorem Svaki element g ∈ SO(3) je rotacija u R3 oko neke osi 〈v〉 za neki
kut ϕ.

Dokaz. Teorem dokazujemo u tri koraka.
(1) Matrica g ima svojstvenu vrijednost λ = 1. Neka je

Pg(x) = det(xI − g) = (x− λ1)(x− λ2)(x− λ3)

svojstveni polinom matrice g i λ1, λ2, λ3 svojstvene vrijednosti. Znamo da
je det g = λ1λ2λ3 = 1. Polinom Pg(x) je polinom s realnim koeficijen-
tima neparnog stupnja 3, pa mora imati bar jednu realnu nultočku, recimo
λ1. Budući da za svojstvenu vrijednost λ unitarnog operatora g mora biti
|λ| = 1, to je λ1 = 1 ili λ1 = −1. Ako su i druge dvije nultočke λ2 i λ3

svojstvenog polinoma Pg(x) realne, one su i one jednake 1 ili −1, a zbog
uvjeta λ1λ2λ3 = 1 bar je jedna svojstvena vrijednost jednaka 1. Ako pak
druge dvije nultočke λ2 i λ3 polinoma Pg(x) s realnim koeficijentima nisu

realne, one su medusobno konjugirano kompleksne, tj. λ3 = λ2, pa uvjet
1 = λ1λ2λ3 = λ1λ2λ2 = λ1|λ2|2 daje λ1 > 0, tj. λ1 = 1.

(2) Postoji os 〈v〉 koju operator g ostavlja fiksnom po točkama. Naime, za
svojstvenu vrijednost λ = 1 postoji svojstveni vektor v tako da je

gv = v,

pa je onda i g(µv) = µv za svaki µv ∈ 〈v〉. Smijemo pretpostaviti da je
||v|| = 1.

(3) Operator g čuva ravninu 〈v〉⊥ i u toj ravnini rotira vektore za neki kut
ϕ. Naime,

〈v〉 = {µv | µ ∈ R} i 〈v〉⊥ = {a ∈ R3 | (a | v) = 0},

pa za (a | v) = 0 imamo (ga | v) = (ga | gv) = (a | v) = 0, tj. a ∈ 〈v〉⊥
povlači ga ∈ 〈v〉⊥. Znači da g čuva ravninu 〈v〉⊥. Označimo s g1 restrikciju
preslikavanja g na tu ravninu,

g1 : 〈v〉⊥ → 〈v〉⊥, g1 : a 7→ ga.
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Zbog teorema o projekciji imamo

R3 = 〈v〉 ⊕ 〈v〉⊥,
pa za vektor x ∈ R3 imamo jedinstveni rastav

x = µv + a, ||x||2 = ||µv||2 + ||a||2.
Budući da je gv = v, da g čuva ravninu 〈v〉⊥ i da g čuva normu, imamo
rastav

gx = µv + ga, ||x||2 = ||gx||2 = ||µv||2 + ||ga||2,
odakle slijedi da g1 čuva normu vektora ||ga||2 = ||a||2 u ravnini 〈v〉⊥. Znači
da je g1 unitaran operator na ravnini 〈v〉⊥. Odaberemo u toj ravnini neku
ortonormiranu bazu F = (f1, f2). Tada u toj bazi F operator g1 ima orto-
gonalnu matricu

(g1)F ∈ O(2).

S druge strane, u ortonormiranoj bazi B = (v, f1, f2) od R3 operator g ima
blok-matricu

gB =

(
1 0
0 (g1)F

)
, det gB = det

(
1 0
0 (g1)F

)
= 1 · det(g1)F .

Odavle det g = det gB = 1 povlači det(g1)F = 1, odnosno

(g1)F ∈ SO(2).

No to nam i znači tvrdnja da je g1 rotacija u ravnini 〈v〉⊥ za neki kut ϕ. �

3.13. Primjer. Neka je g1 rotacija oko z-osi za kut π/2 i g2 rotacija
oko x-osi za kut π/2. Tada je i g = g1g2 rotacija oko neke osi 〈v〉 za neki
kut ϕ. Da ih odredimo prvo izračunamo

g = g1g2 =

0 −1 0
1 0 0
0 0 1

1 0 0
0 0 −1
0 1 0

 =

0 0 1
1 0 0
0 1 0


Homogeni sistem jednadžbi

gv = v

ima očigledno rješenje v = (1, 1, 1), i to je vektor koji odreduje os rotacije
g. Da bismo odredili kut rotacije ϕ odaberimo neki vektor a ⊥ v i zavrtimo
ga u vektor b = ga. Budući da g čuva ravninu Σ okomitu na vektor v, to su
oba vektora u ravnini Σ i kut ϕ izmedu njih je

cosϕ =
(a | b)
||a|| · ||b||

.

Konkretno možemo izabrati a = (1,−1, 0). Tada je b = ga = (0, 1,−1) i

cosϕ =
−1√
2 ·
√

2
= −1

2
,

pa je kut rotacije ϕ = 2π/3.

3.14. Zadatak. Neka je g1 rotacija oko z-osi za kut π/2 i g2 rotacija
oko x-osi za kut π/2. Nadite os i kut rotacije g = g2g1.
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3.15. Zadatak. Dokažite da je svaka rotacija g ∈ SO(3) produkt dviju
refleksuja u R3.

3.16. Zadatak. Za permutaciju σ ∈ S3 je matrica permutacije Tσ orto-
gonalna matrica, tj. Tσ ∈ O(3). Za svaku matricu permutacije Tσ ∈ SO(3)
odredite os i kut rotacije.

3.17. Grupe U(1) i SU(1). Skalarni produkt na kompleksnom 1-dimenzionalnom
prostoru je množenje brojev v·w, a linearan operator λ čuva skalarni produkt

λv · λw = λλ(v · w)

ako i samo ako je |λ|2 = 1. Znači da imamo grupe

U(1) = {λ ∈ C | |λ| = 1} = {eiϕ | ϕ ∈ R}, SU(1) = {1}.
Odavle prepoznajemo izomorfne grupe

U(1) ∼= SO(2).

3.18. Grupe U(2) i SU(2). Već smo vidjeli da su sve ortonormirane
baze u C2, ili, što je isto, sve unitarne 2× 2 matrice oblika

U(2) =

{(
α −β̄ζ
β ᾱζ

) ∣∣∣ |α|2 + |β|2 = 1, |ζ| = 1, α, β, ζ ∈ C
}
.

Odavle slijedi da je

SU(2) =

{(
α −β̄
β ᾱ

) ∣∣∣ |α|2 + |β|2 = 1, α, β ∈ C
}
.

Grupu SU(2) smo susreli ranije kao grupu kvaterniona norme 1.

3.19. Grupe SU(2) i SO(3). Podsjetimo se da je vektorski dio kva-
terniona 3-dimenzionalni realni vektorski prostor

V = {α1J1 + α2J2 + α3J3 | α1, α2, α3 ∈ R}

=

{(
iα1 α2 + iα3

−α2 + iα3 −iα1

) ∣∣∣ α1, α2, α3 ∈ R
}

= {K ∈M2(C) | K∗ = −K, trK = 0}
i da je

detK = det

(
iα1 α2 + iα3

−α2 + iα3 −iα1

)
= α2

1 + α2
2 + α2

3 = ||K||2.

Ako je g ∈ SU(2), onda je za K ∈ V
(gKg∗)∗ = g∗∗K∗g∗ = −gKg∗ i tr gKg∗ = tr gKg−1 = trK = 0,

pa je i gKg∗ ∈ V. Znači da imamo linearno preslikavanje preslikavanje na
3-dimenzionalni realni unitarnom prostoru

Rg : V→ V, K 7→ Rg(K) = gKg∗.

Zbog Binet-Cauchyjevog terema imamo

||Rg(K)||2 = ||gKg∗||2 = det gKg∗ = det gK det g−1 = detK = ||K||2.
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To znači da Rg čuva normu, tj. da je

Rg ∈ O(3).

Može se pokazati da je Rg rotacija, tj. Rg ∈ SO(3), da se svaka rotacija u
V može dobiti na taj način i da je

Rg = Rh

ako i samo ako je h = ±g.

3.20. Zadatak. Dokažite da je preslikavanje

R : SU(2)→ SO(3), R : g 7→ Rg

homomorfizam grupa, tj. da za sve g1, g2 ∈ SU(2) vrijedi

Rg1g2 = Rg1Rg2 .

3.21. Zadatak. Odredite matricu rotacije

K 7→ eiϕσzKe−iϕσz

u ortonormiranoj bazi Jx, Jy, Jz prostora V. Odredite os i kut te rotacije.


